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Abstract

The book that launched the Dempster-Shafer theory of belief functions
appeared 40 years ago. This intellectual autobiography looks back on how
I came to write the book and how its ideas played out in my later work.
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This year, 2016, is the 40th anniversary of the publication of A Mathematical
Theory of FEvidence. Thierry Denoeux, the editor of International Journal of
Approximate Reasoning, has asked me to use the occasion to reflect on how I
came to write the book and how I experienced its subsequent reception. I am
honored and pleased by this invitation.

The occasion has reminded me how many individuals have worked on the
Dempster-Shafer theory of belief functions and how little I know about many
of their contributions. I offer these reflections as an intellectual autobiography;,
not as a comprehensive review of this vast body of work nor as an attempt to
assess which contributions are most important and lasting.

As I have retraced my steps, I have also been reminded of how many friends
I made and how many other lives touched mine, often only briefly but usually
with good will and good cheer. Few of these friends and acquaintances are
mentioned here, but memories of their generosity infuses these pages for me.

1 What does probability mean?

Early in my doctoral studies, I found I was interested most of all in the philo-
sophical and historical aspects of probability and statistics. What does proba-
bility mean? How can statistical inferences be justified? What do the debates
of centuries past teach us about these questions?

My interest in the history and philosophy of mathematics began in Marion
Tyler’s algebra class in my small home town, Caney, Kansasﬂ Mrs. Tyler had a
small mathematics library in the corner of her classroom, and I was fascinated
by James R. Newman'’s four-volume The World of Mathematics [73]. At the end
of my sophomore year at Princeton, I hesitated between majoring in philosophy
and majoring in mathematics, switching to mathematics at the last minute.

When I decided to attend graduate school, after a Peace Corps stint in
Afghanistan, I was not thinking about probability and statistics. But when I
showed up at Berkeley in July 1969, the faculty members who advised applicants
to the Mathematics Department were on vacation. Lucien LeCam, the graduate
advisor in the Statistics Department, was in his office with the door open, and
he enthusiastically assured me, “We do mathematics here.” Indeed they did,
brilliantly. But it was mathematics with a philosophy about its applications
that T found puzzling. In almost every meeting of his class, I would ask Peter
Bickel, “How big does n need to be?” Peter could not answer the question,
though he never lost his good-natured unflappability.

Someone suggested that statistics at Harvard would be more to my taste,
and I spent a very enjoyable year there in 1970-1971. Then, leaving Harvard for
personal reasons, I finished my doctoral work back at Princeton in 1971-1973.

T was born on 21 November 1946 at my grandmother’s farmhouse west of Caney and
spent my childhood at my parents’ farmhouse east of Caney. Because many of its residents
worked as professionals for the oil companies headquartered twenty miles south in Bartlesville,
Oklahoma, Caney had a better school system than most Kansas towns of its size. Mrs. Tyler,
who had graduated first in her class from Grinnell College, was married to an engineer who
worked for Phillips Petroleum in Bartlesville.



This unusually peripatetic doctoral program worked out better than one might
expect. I benefited especially from the exposure it gave me to the history of my
subject. At Berkeley in the spring of 1970, I attended F. N. David’s course on
the history of probabilityﬂ At Harvard in the spring of 1971, T was fascinated
by Art Dempster’s course on statistical inference, with its heavily historical
flavor. At Princeton in the fall of 1972, I was captivated by Ivo Schneider’s
seminar on the history of probabilityﬂ Princeton also offered the wonderful
historical resources of Fine Library and a stream of stimulating visitors. Those
who became important contributors to the history of probability and statistics
included Ian Hacking, Eugene Seneta, and Steve Stigler.

Today’s student of the history of probability and statistics does not lack for
secondary sources; there are dozens of books, hundreds of articles, even a journal
(Electronic Journal for History of Probability and Statistics, www.jephs.net).
The picture was quite different in 1970. Biometrika was publishing a series
of historical articles, David had published her book on the early history of
probability in 1962 [19], and of course we still had Isaac Todhunter’s methodical
treatise from 1865 [136], but that was about it. I am delighted by what my
contemporaries have accomplished since then, but the paucity of historical work
forty years ago may actually have been a blessing to me. It gave me license to
believe that I could make a contribution to history, and that I might find in the
work of historical figures insights that had been lost to my contemporaries.

I was hardly alone in the early 1970s in being dissatisfied with the objectivist
Neyman-Pearson philosophy of probability and statistical inference that I had
encountered at Berkeley. The pendulum was already swinging back to a sub-
jectivist view of probability. Bruno de Finetti and Jimmie Savage, still active,
were attracting more and more attention. De Finetti’s Teoria Delle Probabilta
[23] appeared in 1970 and would appear in English a few years later. Savage
died in November 1971, but his celebrated article on elicitation appeared in the
Journal of the American Statistical Association [80] the following month.

There were always many statisticians who sought a balance between objec-
tivist and subjectivist methods. Maurice G. Kendall, one of the great system-
atizers and organizers of mathematical statistics, published an eloquent plea for
reconciliation in 1949 [58]. The best known application of Bayesian methods in
the 1960s was the study of the authorship of the Federalist papers by two very
mainstream statisticians, Frederick Mosteller at Harvard and David Wallace at
Chicago [72]. But the leading proponents of subjectivism in the 1970s, including
de Finetti, Savage, I. J. Good, and Denis Lindley, wanted to push the pendulum

2This was when the Berkeley campus exploded over the bombing of Cambodia. Florence
Nightingale David (1909-1993) had worked for decades at University College London, be-
ginning as an assistant to Karl Pearson in 1933. There she had experienced R. A. Fisher’s
misogyny and developed a lasting friendship with Jerzy Neyman. Long encouraged by Ney-
man to move to the United States, she finally took a position at Riverside in 1967, usually
spending three days a week at Berkeley ([66], p. 243). She looked out our classroom window
askance at the demonstrators fleeing tear gas, anticipating political repercussions for higher
education in California and the statistics department she was building at Riverside.

3Tvo Schneider (born 1938) visited Princeton’s History Department in 1972-1973. He spent
most of his later career as a distinguished historian of science at the University of Munich.
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farther. They contended that mathematical probability, properly understood,
is subjective always and subjective only. Rationality and coherence somehow
demand, they contended, that a person have numerical beliefs that obey the
probability calculus.

I found the subjectivist arguments about rationality and coherence as un-
persuasive as the Neyman-Pearson methodology. I found older writers much
more persuasive. For example, Augustin Cournot’s Exposition de la théorie des
chances et des probabilités, published in 1843 [16], seemed to me fresh and full of
common sense. For Cournot, it was evident that probabilities were sometimes
objective and sometimes subjective, and that some propositions might not have
numerical probabilities of any sort.

2 Dempster’s upper and lower probabilities

In the summer of 1971, after leaving Harvard, I began an intensive study of
Art Dempster’s articles on upper and lower probabilities. Art had discussed
them briefly in his course on statistical inference. Others had spoken of them as
important, philosophically deep, but hard to understand. What was he talking
about?

In the mid-1950s, when Dempster was completing his own doctoral study at
Princeton, R. A. Fisher’s fiducial probabilities were being widely debated. Ac-
cording to Fisher, the probabilities involved in a statistical model can sometimes
be used, after observations from the model are obtained, to give probabilities for
a parameter in the model, without the use of prior probabilities as required by
the inverse method introduced in the eighteenth century by Bayes and Laplace;
the probabilities thus obtained for the parameter constituted its fiducial distri-
bution. Fisher had first offered examples of his fiducial argument in 1930 [46],
and he was still stubbornly defending it in Statistical Methods and Scientific
Inference in 1956 [47]. Fisher’s stature assured that he continued to have a
hearing, but most statisticians were more persuaded by Jerzy Neyman’s confi-
dence intervals, which at least had a clear definition [68, [82]. Donald Fraser, a
statistician who became a friend of Dempster’s when he visited Princeton dur-
ing the first year of Dempster’s doctoral study, summed up the status of the
fiducial argument with these words in 1961:

The method has been frequently criticized adversely in the literature,
particularly in recent years. Some of the grounds for this criticism
are: conflict with the confidence method in certain problems; non-
uniqueness in certain problems; disagreement with ‘repeated sam-
pling’ frequency interpretations; and a lack of a seemingly-proper
relationship with a priori distributions.

John Tukey, a leading statistician at Princeton, devoted his 1958 Wald Lectures
at the Massachusetts Institute of Technology to an attempt to systematize and
interpret Fisher’s various fiducial arguments. In his notes, eventually published
in his collected works [137], he concluded, “I see no justified general conclusions.”



Dempster, who joined the Harvard faculty in 1958 after a brief stint at Bell
Labs, ventured into the fiducial controversy in the early 1960s, first giving ad-
ditional examples of inconsistencies [25] [26] and then offering some examples he
found more convincing and discussing how the probabilities involved might be
better understood [27, [28]. Then he attacked the problem of discontinuous data.
The fiducial argument required continuous data, but in 1957 Fisher had sug-
gested that quasi-probabilistic conclusions, expressed by intervals rather than
point probabilities, might be appropriate in discontinuous cases such as the bi-
nomial [48]. In the late 1960s, Dempster developed this idea in a series of articles
on upper and lower probabilities [29, [30} 31}, 33, [32] 34]E|

Of the several models in Dempster’s articles of the 1960s, I was most in-
trigued by his “structures of the second kind” in [29]. These models used a uni-
form probability distribution on a £ — 1 dimensional simplex to define random
sampling from a multinomial distribution with k categories and then contin-
ued to believe this uniform distribution in the fiducial spirit after data were
observed. In principle, this provided posterior upper and lower probabilities
for the parameters of any parametric statistical model; you could condition the
distribution on the simplex to define random sampling for a model that allowed
fewer probability distributions on the k categories, and you could take limits to
obtain models in which the data take infinitely many values, even values in a
continuous range ([29], p. 373). My first contribution to these ideas came in the
summer and fall of 1971, when I devised postulates that implied this simplicial
model.

3 A dissertation about allocating belief

Perhaps I was always more interested in the meaning of probability than in
statistical inference. In any case, by the fall of 1971 my focus had shifted from
Dempster’s methods for statistical inference to the calculus of belief embedded
in them. In addition to defining upper and lower probabilities for statistical
hypotheses based on a single observation, Dempster had proposed a rule for
combining the upper and lower probabilities obtained from independent obser-
vations. There was also a rule of conditioning that generalized Bayesian condi-
tioning and could be understood as a special case of the rule of combination.
Before Cournot had distinguished between objective and subjective proba-
bilities, Poisson had distinguished between chances (objective) and probabilities
(subjective). I found the rules of the probability calculus (or Kolmogorov’s ax-
ioms, as we say more often nowadays) convincing for frequencies and objective
chances but not convincing for degrees of belief or subjective probabilities. Why

4Dempster discussed Fisher’s and Tukey’s influence on his thinking in [39]. He does not
mention Fisher’s 1957 article there or in his articles of the 1960s. Fisher’s lack of clarity in
the 1957 article makes this unsurprising. Dempster has told me that he did try to read it
several times and remembers hearing Fisher talk about it in a crowded auditorium at Columbia
University around 1961. It may have triggered Dempster’s thinking, but it evidently provided
little guidance for his thought.



not adopt Dempster’s calculus for degrees of belief based on non-statistical ev-
idence?

Jacob Bernoulli famously declared that probability differs from certainty as
a part differs from the wholeﬂ The British logician William Fishburn Donkin
wrote that the theory of probabilities is concerned with how we should distribute
our belief [44]E| This mode of expression probably sounded naive or merely
metaphorical to most twentieth-century statisticians, but I took it seriously.
Why not take the notion of distributing belief as basic and allow the distribution
to be more or less specific? Confronted with a finite number of exhaustive and
mutually exclusive hypotheses, we might distribute some portions of our belief
to individual hypotheses while assigning other portions only to groups of the
hypotheses.

Dempster had interpreted his upper and lower probabilities as “bounds on
degrees of knowledge” ([31], p. 515). He had characterized his lower probability
P,(A) as the “probability that necessarily relates to an outcome in A” and his
upper probability P*(A) as “the largest amount of probability that may be
related to outcomes in A” ([33], p. 957). My thought was to surrender the
word probability to the objective concept and to build a new subjective theory
using mainly the word belief. To give it the same mathematical autonomy as
Kolmogorov’s axioms gave the usual theory of probability, we could adopt the
inclusion-exclusion properties Dempster had noticed ([30], p. 333) as axioms.

Kolmogorov’s axioms are general and abstract. A probability measure can
be defined on any space, finite or infinite. I aimed for the same generality
and abstractness. In my doctoral dissertation [83], I renamed Dempster’s lower
probabilities degrees of belief. 1 gave axioms for a function Bel on a Boolean
algebra A, which could be an algebra of propositions or a g-algebra of subsets as
in Kolmogorov’s theory. I called functions satisfying the axioms belief functions;
probability measures were a special case. I showed that any belief function can
be represented by a mapping from a probability algebra. I called the mapping an
allocation of probability; each element of the probability algebra (thought of as
a portion of belief) was mapped or allocated to the most specific element of A to
which it was committed. This was the structure that Dempster had represented
as a multivalued mapping from a measure space [30] or as a random closed
interval [33], now made general and abstract. It was also Donkin’s distribution
of belief, except that belief committed to a proposition was not necessarily
distributed among more specific propositions. Within this abstract picture, I
showed how two belief functions on the same Boolean algebra could be combined
and called the method Dempster’s rule of combination. Conditioning was a
special case. The rule was appropriate when the bodies of evidence on which
the belief functions were based were independent—i.e., their uncertainties were
distinct.

5In the original Latin, p. 211 of [8]: “Probabilitas enim est gradus certitudinis, & ab hac
differt ut pars a toto.” In Edith Sylla’s translation, p. 315 of [9]: “Probability, indeed, is degree
of certainty, and differs from the latter as a part differs from the whole.”

6 Augustus De Morgan also wrote about amounts of belief ([24], pp. 179-182). See Zabell
[145].



While working in Princeton, I kept in close touch with Dempster, corre-
sponding and occasionally visiting Cambridge. He was always very supportive,
then and in the decades since. Geoff Watson, the chair of the Statistics De-
partment at Princeton, who also became an enthusiastic supporter, chaired my
dissertation. Dempster was on the committee, along with Gil Hunt, a well
known probabilist in the Mathematics Department at Princeton. Probably the
only person who actually read the dissertation at the time, Gil certified that
my mathematics was sound. Since he shared the Princeton mathematicians’
skepticism about the whole enterprise of mathematical statistics (Fisher’s work
had been nonsense, and the field had not seen any interesting ideas since Wald),
his encouragement made me feel like a big deal. T was also encouraged by the
philosophers I knew at Princeton, especially Dick Jeffrey, a personal friend. I
submitted the dissertation in May 1973 and defended it in September.

The dissertation had been more or less finished by the summer of 1972.
Watson wanted to keep me at Princeton, and I was more anxious to work on
my ideas than to travel the country giving job talks. So I did not bother to apply
elsewhere and agreed to become an assistant professor at Princeton starting in
the fall of 1973. Applying also to Harvard and Stanford might have been a
better career move

I spent 1972-1973 planning a larger treatise. I now think of this as the
first of my several attempts to write the great American probability book. I
explained my ambition in the preface to the dissertation. I would begin with “a
historical and critical account of the Bayesian paradigm”. Then would come the
material in the dissertation. Then an “exposition and justification of some of
A. P. Dempster’s methods of statistical inference”. This project soon fell by the
wayside, but I did write an overlong article that summarized the dissertation
and stated the postulates that implied Dempster’s structures of the second kind.
I presented it at a meeting of philosophers and statisticians organized by the
philosophers at the University of Western Ontario in May 1973, and it appeared
in the meeting’s proceedings [85]. This article is not very accessible nowadays,
but it brought my ideas to the attention of philosophers and philosophically
minded statisticians, including Terry Fine, I. J. Good, Henry Kyburg, Denis
Lindley, and Pat Suppes.

4 A book that succeeded in an unexpected way

When we go beyond statistical modeling and undertake to assess evidence that
arises naturally in the world, we must settle on some level of detail. We cannot
formalize every aspect of our experience. This is especially clear in the theory
of belief functions, because in addition to the set of possibilities that defines the
propositions for which we assess degrees of belief (the frame of discernment, 1
called it), we must have less formal bodies of experience (bodies of evidence 1
called them) that provide the basis for the assessments. But we must make our

7Affirmative action had not yet taken hold at Princeton. By the late 1970s no assistant
professor could have been hired so casually from the inside.



formal list of possibilities detailed enough to discern what the evidence is telling
us about the questions that interest us. If the evidence suggests an inside job,
then Sherlock Holmes’s frame of discernment must distinguish between whether
the burglar was an insider or an outsider. The importance of this point is
clear in both the Bayesian and belief-function formalisms. When we implement
a Bayesian conditioning design, in which we construct subjective probabilities
over a frame and then condition on one or more subsets representing additional
evidence, the frame must be detailed enough to describe the evidence in a way
that captures its pointing to an inside job. When we implement a belief-function
design in which we use Dempster’s rule to combine the evidence for an inside
job with other evidence, say evidence the burglar was tall, the frame must
be detailed enough to separate the uncertainties involved in the two bodies of
evidence. If a stool might have been available to an insider, then the frame must
consider whether or not this was the case.

My teaching duties as an assistant professor not being onerous (Watson saw
to that), my research continued apace, and I was soon preoccupied with issues
that arise when we look at an evidential problem in more and more detail,
thus refining the frame. Perhaps if we carry on far enough, decomposing our
evidence as we go, we will arrive at individual items of evidence all as simple
as the testimony of one of the witnesses imagined by Bishop George Hooper
in the seventeenth century, justifying belief p in a particular proposition and
leaving the remaining 1 —p uncommittedEI I called a belief function of this form
a simple support function, and I called a belief function obtained by combining
simple support functions a separable support function. When a simple support
function gives degree of belief p to A, I called — log(1 —p) the weight of evidence
for A. When we combine two simple support functions for A we multiply the
uncommitted beliefs (1 —p;) and (1 —p2) and hence add the weights of evidence.
In general, a separable support function is characterized by the total weights
of evidence against the various propositions it discerns. How are these total
weights of evidence affected by refinement? If a separable support function on
one frame turns out to be the coarsening of a separable support function on a
finer frame, is there some consistency? Will the total weight of evidence against
A, say, be at least as great in the finer frame as in the coarser one? I conjectured
that it will be but had no proof. The conjecture seemed very important, and I
threw myself into writing a paper to explain it.

There was a lot to explain. Since the conjecture involved only finite frames,
the relatively sophisticated mathematics in my dissertation was not needed.
Since the conjecture had nothing to do with statistical inference, the statistical
ideas in Dempster’s articles were not needed. But I still needed to explain

8Hooper’s rules for concurrent and successive testimony [55] are particularly simple ex-
amples of Dempster’s rule. The rule for concurrent testimony says that if two independent
witnesses testify to the same event, and we give them probabilities p; and p2 of being indi-
vidually reliable, then the probability that neither is reliable is (1 — p1)(1 — p2), and so we
have a degree of belief 1 — (1 — p1)(1 — p2) that the event happened. His rule for successive
testimony says that if we give witness A probability p1 of being reliable, we give witness B
probability p2 of being reliable, and B says that A said that an event happened, then we have
a degree of belief p1ps that the event happened.



the picture that motivated my conjecture: the axioms for belief functions, the
representation in terms of portions of belief, Dempster’s rule of combination, the
rule of conditioning, the relation to Bayesian theory, simple support functions
and weights of evidence, and the notion of refinement. The article got longer
and longer. Soon it was a book. To round it off, I added a simple method for
statistical inference, translating likelihoods into what I called consonant belief
functiomﬂ rather than using Dempster’s structures of the second kind. I entitled
the book A Mathematical Theory of Evidence [84].

At Watson’s suggestion, I talked with Bea Shube, the longtime editor of
the Wiley Series in Probability and Statistics. The series had deep ties with
Princeton, having been founded by Sam Wilks of Princeton and Walter Shew-
hart of Bell LabsE Shube was eager to publish my book, and Wiley would
have marketed it well, but I felt the price Wiley would charge, around $20,
would be too high for many potential readers. I also believed that because my
research for the book had been supported by a government grant, it should have
a non-profit publisher. The Princeton University Press was willing to issue the
book in both hardcover and paperback and to charge only about $10 for the
paperback. I went with Princeton and insisted on a contract with no royalties.
Surely another bad career move by an insufferable young idealist. The masses
did not buy the book even at $10, and Princeton’s marketing capacity was even
weaker than I had expected. In the 1980s, unable to manage a book that had
been issued in both hardcover and paperback, they routinely told bookstores
that tried to order it for their customers that it was out of print, even though
only the paperback stock was exhausted.

By the time the book came out, I had made another bad career move, aban-
doning Princeton’s Department of Statistics and my east-coast mentors to move
to the Department of Mathematics at the University of Kansas. “Mathemati-
cians don’t know how to treat statisticians,” Watson warned me. “I can get
along with anyone,” I said. Kansas was home.

But Blow a kiss, take a bow! Honey, everything’s coming up roses! Within a
few years, A Mathematical Theory of Evidence was an immense success, giving
me a scholarly reputation across disciplines hardly matched by any statistician of
my generation and enabling me to keep following my own drummer indefinitely.
Everyone interested in statistics and reasoning with uncertainty had heard about
the Dempster-Shafer theory. At Kansas, the university promoted me against the

91n Statistical Methods and Scientific Inference [47], which I read and reread in those years,
Fisher had contended that values of the likelihood are better fitted than Neyman’s confidence
intervals “to analyze, summarize, and communicate statistical evidence too weak to supply
true probability statements” (p. 75). In Chapter 11 of A Mathematical Theory of Evidence,
where 1 showed how to translate a likelihood function into a consonant belief function, 1 also
acknowledged that a consonant belief function had the same mathematical structure that the
economist G. L. S. Shackle had used to express “potential surprise.” To my surprise, the
philosopher Isaac Levi later took me to task for distorting Shackle’s ideas [69]. For a recent
review of the use of likelihoods to construct consonant belief functions, see [43].

10The series has long carried the subtitle “Established by Walter A. Shewhart and Samuel
S. Wilks.” Shewhart was already editing Wiley’s series in statistics in the late 1940s; Wilks
joined him in the 1950s.



recommendation of the faculty in Mathematics, and a few years later I moved
to the Business School, where statisticians were full citizens and where I was
soon appointed to an endowed chair.

What had I done right? T had written a book with ideas that many people,
mostly outside probability and statistics, could build upon. I remember Richard
Hamming telling a doctoral class at Princeton that in order to become widely
cited, you should not write a paper that exhausts its topic; instead, you should
leave things for others to do. I had done just that, inadvertently.

The conjecture that had inspired the book was little noticed, even when its
main point was proven by Nevin Zhang [146]. What attracted attention were
the introductory chapters of the book: the challenge to Bayesian orthodoxy,
the straightforward vocabulary for talking about partial belief and ignorance,
the convincing representation of ignorance by zero beliefs on both sides of a
question, the straightforward method of discounting, and the simple examples
of Dempster’s rule. For many people in engineering, artificial intelligence, and
other applied areas, the mathematical level was just right—abstract but elemen-
tary for anyone with strong undergraduate mathematics—and there was obvious
work to do in implementation and elaboration. I had not told all I knew about
belief functions, and what I did tell was self-contained, leaving readers with a
sense of freedom. My rules seemed newly made up; others could make up some
more.

5 Unfinished business

By the time I had finished the book, I had a substantial backlog of related
projects to complete. My list of unfinished papers was always at the top left
of my blackboard, whether in my sunny second floor office in Fine Hall at
Princeton or in the basement of Strong Hall, which housed the University of
Kansas’s Mathematics Department at the time. Most of them eventually found
their way into print.

The first to appear was my account of non-additive probabilities in the work
of Bernoulli and Lambert, which had been gestating since I had participated in
Schneider’s seminar as a graduate studentE-] It appeared in Archive for History
of Ezact Sciences in 1978 [86][17]

M7 first encountered Bernoulli’s non-additive probabilities in Bing Sung’s translation of Part
IV of Bernoulli’s Ars Congjectandi. Sung made the translation while working with Dempster at
Harvard, but I was not aware of it until I attended Schneider’s seminar. I was so enthusiastic
about the importance of understanding Bernoulli’s entire viewpoint that in the early 1980s L
raised a modest amount of money from the National Endowment for the Humanities to trans-
late all of Ars Conjectandi into English. I recruited Edith Sylla, an historian accomplished
in late medieval Latin, to help, and in the end she completed the translation without my
participation [9]. Her translation and commentary constitutes a very important contribution
to the history of probability, but it has not, sadly, dented the established tradition of praising
the theorem Bernoulli proved in Part IV (now often called the weak law of large numbers)
while ignoring his broader concept of probability judgement and his insistence that probability
judgements cannot always be additive.

12This article also discussed George Hooper’s 1699 article in the Philosophical Transactions
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I also had things to say about some of my friends’ ideas. Dick Jeffrey had
introduced a generalization of Bayesian conditioning that he called probability
kinematics; my article showing that his rule is a special case of Dempster’s ap-
peared in a philosophy journal, Synthese, in 1981 [89HE| The following year, the
Journal of the American Statistical Association published my belief-function
treatment of the possible discrepancy between Bayesian and frequentist assess-
ments of near-matches in forensic testing, discussed earlier by Harold Jeffreys
and my friend Denis Lindley [93].

The article I most enjoyed writing concerned the house where my family and
Ilived at the time, in the country north of Lawrence, Kansas. Like many houses,
it had been built in stages. I wanted to remove the wall between the kitchen and
an adjoining room. One of these two rooms must have been the original building
from which the house had grown. Which one? I gathered some evidence: hints
from the ceiling above, from the crawl space below, from talking with neighbors,
and from my experience with how things were done in Kansas. Why not use my
theory to combine this evidence? I carried out a belief-function analysis and a
Bayesian analysis. This was a real example, with ordinary evidence, without a
statistical model in sight. Tan Hacking had invited me to talk about my work
at the 1978 Biennial Meeting of the Philosophy of Science Association in San
Francisco. I told about my Kansas house there and published my analysis in the
meeting’s proceedings [90]. This is another relatively inaccessible publication,
but I remain very fond of it, for it demonstrates how you can convincingly handle
everyday evidence with belief functions.

And then there was my dissertation. The book that was supposed to in-
corporate it was not happening. I was in a Mathematics Department, and my
dissertation was my most mathematical work. I should publish it in article
form, as mathematicians do. There was a wrinkle. A couple years after defend-
ing the dissertation, I had discovered that André Revuz, a student of Gustave
Choquet, had long before published the bit I had thought most important—the
representation theorem for functions satisfying my axioms [78]. So, again as
mathematicians do, I generalized the theorem and emphasized some auxiliary
ideas. I submitted the resulting paper to the Annals of Probability at the end
of 1976; it appeared in 1979 [87]. That was essentially the first half of my dis-
sertation. I then duly drafted the second half, which treated Dempster’s rule
of combination in the same generality and submitted it to the same journal.
No, the editor said. Enough of this. The mathematics is probably fine, but not
enough of our readers would be interested.

of the Royal Society of London [53], but at that time I and my fellow historians of statistics
did not know that Hooper was its author; see [95].

13Born in 1926, Jeffrey died of lung cancer in 2002. His great American probability book
appeared posthumously in 2004 [57].

11



6 Constructive probability

After my first two years at Kansas, I was awarded a Guggenheim fellowship and
used it to spend most of the 1978-1979 academic year at the Department of
Statistics at Stanford, then as now arguably the leading department of statis-
tics in the United States. This was a stimulating time for me. The chair of
the department, Brad Efron, was a generous and congenial host. Aside from
statisticians, Stanford’s own and a flock of visitors, I met many philosophers and
psychologists who were interested in probability judgement and decision theory.
Pat Suppes hosted a lively seminar where I met Lotfi Zadeh. The distinguished
mathematical psychologist David Krantz, known for his work on measurement
and color, showed up at my office one day to tell me how important he thought
my book was; he had learned about it from Amos Tversky. The Belgian scholar
Philippe Smets also came by to introduce himself. After having earned a medical
degree in Brussels in 1963 and a master’s degree in statistics at North Carolina
State, he had just completed a doctoral dissertation applying belief functions
to medical diagnosis. All these individuals were a decade or a generation older
than me, but I also met Akimichi Takemura, a young student visiting from
Japan, who would become an important collaborator decades later.

The new friend who influenced me most was Tversky, a gentle and brilliant
man loved by all who knew him[/%] Krantz, one of Tversky’s collaborators on the
theory of measurement, introduced me to him. Having just moved to Stanford
from Hebrew University, Tversky was already famous for his work with Daniel
Kahneman on how untutored reasoning violates the standard rules of proba-
bility, and he was looking for nonstandard rules that might fit practice better.
Did I think belief functions described people’s behavior better than Bayesian
probabilities? Were my rules meant to be descriptive or normative? Neither,
I responded. My theory could not account for the “biases” that Tversky and
Kahneman had identified, but neither it nor the Bayesian theory were norms in
my eyes. Each was a calculus for assessing and combining evidence that might
or might not produce persuasive and useful results in any particular problem.
The proof was always in the pudding.

Krantz and Tversky thought my answer needed more depth. They were ex-
perts on measurement theory. Along with Suppes and R. Duncan Luce, they
had published the first volume of a treatise on the topic, Foundations of Mea-
surement, in 1971 [63], and they were still working on Volume IIE Measurement
theory was concerned with creating and using scales against which psycholog-
ical magnitudes could be measured, and Krantz, Tversky, Suppes, and Luce
had made it very mathematical, adducing delicate axioms and complicated con-
sequences. If my theory measured the strength of evidence, then I must be
creating and using some scale that could be analyzed in their terms.

The notion that subjective probability judgement as practiced by Bayesians
involves comparing one’s evidence or belief to a scale of canonical examples is

14Born in 1937, Tversky died of skin cancer in 1996. He is still missed, personally and
professionally, by a legion of admirers.
15Volumes 1I and 111 finally appeared in 1989 and 1990.
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very old; we can find it in the work of Joseph Bertrand in 1889 ([11], p. 27) and
Emile Borel in 1924 ([13], pp. 332-333). The examples that form the scale are
provided by chance devices: urns with known composition, coins with known
biases, etc. What scale did belief functions use? Hooper’s sometimes reliable
witnesses come immediately to mind in the case of simple support functions.
We can compare the strength of evidence pointing to A by comparing it to a
scale of such witnesses, who are reliable with different probabilities p. We can
generalize this idea to an arbitrary belief function by positing a scale of examples
involving random codes. In each example a code is drawn at random, with code
¢; drawn with probability p; for i = 1,...,n, where p; +---+p, = 1. We do
not see which code is drawn, but we see a coded message, which means A; if
¢; was used. In the fiducial spirit, we continue to believe the probabilities and
thus commit p; of our belief to A; and nothing more specific, for i = 1,... n.
This defines our belief function.

Back in Kansas, I explained this idea in an lengthy article entitled “Construc-
tive probability”, published in Synthese in 1981 [88]. This article also responded
to several reviews and commentaries on A Mathematical Theory of Evidence,
especially Peter Williams’s review in The British Journal for the Philosophy of
Science [142]. Williams and others often wanted to interpret belief functions as
one-sided betting rates, more conservative than the two-sided betting rates of
Bayesian theory. This is more or less equivalent to thinking of belief-function
degrees of belief as lower bounds on a set of possible probabilities. One can
indeed build a theory of probability judgement from this idea; in this theory
each example on the scale to which you fit your evidence involves a set of prob-
ability measures, lower bounds over which you can call lower probabilities and
upper bounds over which you can call upper probabilities. Such a theory was
developed by Williams himself and later much further developed by Peter Wal-
ley, who called it a theory of imprecise probabilities [141]. But it is a different
theory, with a different scale of canonical examples, from belief functions.

Tversky felt that we could develop these ideas further, and in 1985 he and 1
published together an article in which we argued that the Bayesian and belief-
function formalisms should be seen as different languages of probability judge-
ment and pointed out that these languages were not complete guides to how a
problem should be analyzed. For any particular problem, we also need a design
for collecting, decomposing, assessing, and combining judgements [120].

Dempster readily accepted the notion of a variety of theories of probability
judgement, each with its own scale of canonical examplesm and the notion also
found resonance among other authors interested in belief functions. It made
little headway, however, among proponents of Bayesian subjective probability.
I recall discussing their normative claims with Tversky and Howard Raiffa at a
conference at the Harvard Business School in 1983@ Raiffa, along with Ralph
Keeney, had long emphasized the constructive nature of successful Bayesian
decision analysis, and Tversky thought that the word prescriptive, which Raiffa

163ee, for example, [39].
17 Conference on Decision Making: Descriptive, Normative, and Prescriptive Interactions,
16-18 June 1983. This conference led to an edited volume of papers on its theme, [6].
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sometimes preferred, might address my unhappiness with normative. As Raiffa
and Tversky and David Bell explained ([7], pp. 17-18), we might distinguish
three kinds of models:

e Descriptive models are evaluated by their empirical validity, that is, the
extent to with they correspond to observed choices.

e Normative models are evaluated by their theoretical adequacy, that is the
degree to which they provide acceptable idealizations of rational choice.

e Prescriptive models are evaluated by their pragmatic value, that is, by
their ability to help people make better decisions.

Did this open a space for alternatives to Bayes? Would it be helpful to call
belief-function assessments of evidence prescriptive? To me, it seemed more
helpful to say merely that they are legitimate arguments, which may or may
not be persuasive. Perhaps the belief-function calculus is like another tool in
the toolbox or another medicine in the pharmacy. A decision analyst might
prescribe it for a particular problem, but it might still fail.

For Raiffa also, the word prescriptive did not really open the way to alter-
natives to Bayes. For him, being in a prescriptive mode merely meant being
realistic about how close to the normative Bayesian ideal you can bring your
decision maker. The Bayesian ideal was still uniquely normative. As Raiffa’s
collaborator John Pratt wrote in 1986, in response to my explanation of why I
did not find Savage’s Bayesian axioms convincing,

If your procedures or decisions or feelings are intransitive or other-
wise discordant with subjective expected utility, they are incoherent,
“irrational,” or whatever you want to call it, and trying to justify
them as coherent or find other rationalities is a waste of time. ([97],
p. 498)

In our personal conversations, Tversky agreed with me that such rhetoric was
over the top but confessed that when he talked with Raiffa, he also agreed with
him.

Pratt’s comments struck the earnest young Glenn Shafer as egregiously un-
fair, as did many other critiques of A Mathematical Theory of Evidence. Always
the wise counselor, Tversky advised me to take them in stride. In challenging
Bayes, I had criticized an established tradition of thought, with passionate fol-
lowers, and I had to expect to be criticized in return. Would that I had heeded
this advice more often. Instead I sometimes made my own tone more strident,
especially in book reviews. Perhaps this is why E. T. Jaynes labeled me a “fa-
natical anti-Bayesian” in his posthumous great American probability book ([56],
p. 717).

My work with Tversky had still not dealt with the question Dave Krantz had
raised. Can we put the measurement of belief in the framework of the theory of
measurement, and will this justify rules for belief functions? David and I dis-
cussed this for more than a decade, and he eventually obtained some interesting
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results with his students; see for example [77]. We talked about collaborating
on the theme, but I never really contributed. As Krantz observed at the time, I
had become more interested in relating belief functions to traditional concepts
of probability. In the last analysis, throughout my career as at the beginning, 1
was always most interested in the meaning of probability.

The normative claims of my Bayesian critics were tied up, of course, with
choice and decision making. A Mathematical Theory of Evidence had been con-
cerned only with probability judgement. But if we do construct degrees of belief
using the book’s theory, can we use them for decision making? I addressed this
question in a working paper entitled “Constructive decision theory,” which I
completed in December 1982. In this paper I argued that value, like belief,
usually has limited specificity and cannot be distributed over ever more finely
described states or consequences. The goals we construct and adopt do not have
infinite detail. This limited specificity of goals matches the limited specificity
of Dempster-Shafer degrees of belief and allows us to score proposed actions
without worrying, as we used to say, about the price of beans in China. This
idea addresses Jimmie Savage’s problem of small worlds, which I discussed in an
appendix to the paper. I submitted the paper to Statistical Science, and the ap-
pendix evolved into a discussion article in that journal [97], but the paper itself,
with its proposal for Dempster-Shafer decision making, was never publishedE

Although I had an opportunity to teach decision analysis after moving to the
business school at Kansas, and enjoyed doing so, I never returned to the topic
of Dempster-Shafer decision making. Other authors took it up, including Ron
Yager [143] and Philippe Smets [127]. Jean-Yves Jaffray’s approach, developed
starting in the late 1980s, was especially sophisticated [140]@

7 Independence and conditional probability

Dempster’s rule of combination, I explained in A Mathematical Theory of Ev-
idence, requires that the belief functions to be combined be “based on entirely
distinct bodies of evidence and that the frame of discernment discerns the rele-
vant interaction of those bodies of evidence” (p. 57). I elaborated on this in my
paper for the 1978 meeting of the Philosophy of Science Association:

Probability judgments are, of course, always difficult to make. They
are, in the last analysis, a product of intuition. But the job is often
easier if we can focus on a well-defined and relatively simple item of
evidence, such as my neighbor’s testimony, and make our judgments

181t appears finally in this issue of International Journal of Approzimate Reasoning. A
similar proposal about combining goals and values was developed very persuasively, without
reference to Dempster-Shafer theory, by Krantz and Howard Kunreuther in 2007 [62].

19Thig article, by Peter P. Wakker, appeared in a special issue of Theory and Decision
dedicated to Jaffray’s memory. Student of and successor to Jean Ville at the University of
Paris, Jaffray was a very generous individual. I was his guest for a sabbatical year in Paris
in 1996-1997, and in later years I spoke with him many times as I collected material for a
biography of Ville [IT3]. Born in 1939, he died of pancreatic cancer in 2009.
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on the basis of that evidence alone. The theory of belief functions
suggests that we try to break our evidence down into such relatively
simple components, that we make probability judgments separately
on the basis of each of these components, and that we then think
about how to combine these judgments. This makes sense intuitively
if the different components of evidence seem to involve (depend for
their assessment on) intuitively independent small worlds of experi-
ence. And in this case the theory offers a formal rule for combining
the probability judgments—Dempster’s rule of combination. ([90],
p. 444)

Many readers found these explanations insufficient. I was proposing to replace
the Bayesian rule of conditioning, which is built into probability theory, with a
complicated rule that lacked clear justification and guidance about its applica-
tion. The standard probability calculus used by Bayesians had a definition of
independence. I had only intuition. As Teddy Seidenfeld put it ([81], p. 486),
“At least the Bayesian theory provides the machinery for deciding whether the
data are mutually independent.”

In my view, these criticisms were based on a misunderstanding of Bayesian
probability arguments. Bayesian conditioning requires the same kind of intuitive
judgement of independence as Dempster’s rule requires. In both cases, the
judgement of independence is constitutive of the probability argument. We
make a judgement whether to use the machinery. The machinery does not tell
us whether to make the judgement.

I first arrived at this view of the matter in the fall of 1972, when I discussed
Bayes’s posthumous essay on probability [5] in Schneider’s seminar. Most dis-
cussion of Bayes’s essay focuses on how he represented ignorance about an un-
known probability. I was interested instead in his argument for updating: if
at first we have probabilities P(A), P(B), and P(A&B), and we subsequently
learn that B has happened, then we should change our probability for A from
P(A) to P(A&B)/P(B). Nowadays we lead students to think that this is true
almost by definition; we call P(A&B)/P(B) the “conditional probability of A
given B” and write P(A|B) for it. But our notion of conditional probability
was invented only in the late 19th and early 20th centuries. Bayes needed an
argument for changing from P(A) to P(A&B)/P(B), and the argument he gave
hardly has the force of a mathematical theorem. It comes down to a fiducial-
type judgement of independence: we judge that learning B was independent of
the uncertainties involved in a bet on A that was to be called off if B did not
happen, and so we continue to believe these latter probabilities.

Writing up my critique of Bayes had always been on the to-do list on my
blackboard. It finally appeared in the Annals of Statistics in 1982 [01]. It
was taken seriously by Andrew Dale, who mentioned it several times in his
comprehensive history of inverse probability [I7], relating it to early sequels
to Bayes. My friends Steve Stigler and Lorraine Daston also cited it in their
masterful books on the history of probability and statistics [131} 18], but without
commenting on the point I was making. I could hardly hold this against them;

16



they were wise to keep their historical work out of the line of fire from our
impassioned contemporary Bayesians.

For Bayes, as for other eighteenth-century writers, probability was situated
in time. He took into account what happened first. If B is to be decided first
in the game we are playing, and the game defines the probability for A after B
has happened or failed, then the relation

P(A&B) = P(B)P(A after B has happened)

follows from arguments made by Bayes’s predecessors, especially Abraham De
Moivre, and repeated by Bayes in the proof of the third proposition in his
essay. The argument to which I objected was the one Bayes gave for his fifth
proposition, which concerns the case where A is to be decided first and we
learn of B’s happening without knowing whether A has happened or failed.
It is here that we need a constitutive judgement about whether our learning
about B’s happening or failing is independent of the uncertainties involved in
A’s happening or failing. If we do not face up to this need, we open the way to
paradoxes, as Joseph Bertrand was explaining already in the 19th century@

The arrow of time was effectively excluded from the foundations of prob-
ability theory by Kolmogorov’s axioms. Stochastic processes were central to
the work of Kolmogorov and the other mathematicians who developed measure-
theoretic probability in the twentieth century, but when they based abstract
probability on functional analysis, Fréchet and Kolmogorov made the time struc-
ture auxiliary to the basic structure and therefore apparently auxiliary to the
meaning of probability [61, 122] 123]. My analysis of Bayes’s two arguments
convinced me that time should be brought back into the foundations. The
fundamental object of probability theory should not be a flat space with a
probability measure; it should be a probability tree—i.e., a tree with branching
probabilities. We should begin abstract probability theory by proving the rule
of iterated expectation and the law of large numbers in this setting. I devel-
oped this theme in “Conditional probability” in 1985 [04] and in a stream of
subsequent articles.

By the mid-1980s, even as the Dempster-Shafer theory gained steam, putting
probability trees into the foundation of probability had become the intellectual
project closest to my heart. I believed it could unify the disparate and com-
peting philosophies of probability: frequentist, Bayesian, logical, etc.—and even
make a place for belief functions. As I saw it, the different meanings and ap-
plications of probability derived from an ideal picture involving a sequential
betting game. Basic theorems such as the law of large numbers gained their
applied meaning from the principle of the excluded gambling strategy, which
said that no strategy for betting at the odds given in the game would result in
a large gain. The different interpretations of probability were tied together in a
circle of implication, from knowledge of the long run to fair price to warranted
belief and back to knowledge of the long run.

208ee pp. 2-3 of Bertrand’s 1889 book [I1]. Later writers who discussed such paradoxes
include Ball in 1911 (|2], p. 32) and many contemporary authors (see for example [3], pp.
262-264 of [94], pp. 3-15 of [122], and [L38]).
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In 1988-1989, I spent a sabbatical year at the Center for Advanced Study in
the Behavioral Sciences in Palo Alto, where I proposed to begin a book entitled
The Unity and Diversity of Probability. Like the previous versions of my great
American probability book, it was never completed. “The unity and diversity of
probability” became instead merely the title of a discussion article in Statistical
Science [102]@ But probability trees led me to new intellectual vistas: causal
conjecture and game-theoretic probability.

The year at Palo Alto also produced something more important: my mar-
riage to the distinguished Princeton historian Nell Irvin Painter. Nell and I
made history at the Center, being the first couple to come single and leave en-
gaged. The marriage launched me on a period of happiness and productivity
that T had not known since my earlier years in Princeton, and it brought me
back to Princeton for many years

8 Parametric statistics

“You have a great spiel about probability, but what happened to statistics?”
This was Geoff Watson’s question when I dropped by to see him in Princeton
in the early 1980s. Dempster’s papers had been about mathematical statistics.
My first great success at Princeton had been to devise postulates that led to
Dempster’s most general model. My first article had been entitled “A Theory of
Statistical Evidence”. I had been one of the most promising young statisticians
of my generation. What happened to statistics?

I never published the proof that my postulates implied Dempster’s structure
of the second kind. The postulates singled out some nice properties, but the
structure also had less appealing properties. John Aitchison had pointed to one
in his discussion of Dempster’s 1968 paper at the Royal Statistical Society: even
when two hypotheses give an observation the same probability, the observation
can shift their upper and lower probabilities, not favoring the one over the other
but indicating less uncertainty. Denis Lindley brought Aitchison’s example up
in the discussion of my talk at the University of Western Ontario in May 1973,
and in response I conceded the point and suggested that the simpler likelihood
method that T later used in Chapter 11 of A Mathematical Theory of Evidence
might be preferable@ This simpler method also had its paradoxes, which critics
did not overlook, but at least it was simple.

The problem that Dempster had addressed with his upper and lower prob-
abilities begins with the assumption that z, some not-yet observed element of
a known set &', is somehow governed by a probability distribution that we do
not know. We assume that this distribution is one of a set of distributions that
we do know, and this set is indexed by a parameter, say 6. We may call the

218ee also [103] (106} [107].

22Nell and I were married in the chapel on the Princeton campus in October 1989. Dick
Jeffrey’s wife Edie was the witness for our New Jersey marriage license.

23 Aitchison’s comments and Dempster’s response are on pp. 234-237 and 245-246 of [32].
My exchange with Lindley is on pp. 435-436 of [85].

18



indexed set of probability distributions, say {Pp}gco, our parametric model or
specification. Now we observe x. What does this observation tell us about the
value of #7 Does it give us degrees of belief or probabilities for the value? If we
begin with probabilities for 6, then Py(x) can be interpreted as the probability
of x after 0 is decided, and Bayes’s third proposition gives updated probabilities
for #; this Bayesian solution is uncontroversial if the initial probabilities for 6 are
agreed to. But if we have no initial probabilities for 8, then we have a problem,
the problem Fisher proposed to solve with his fiducial argument and Dempster
proposed to solve with his upper and lower probabilities.

After completing my dissertation, I was happy with the theory of evidence
that I had extracted from Dempster’s work but not equally happy with any
solution it provided to the question he had been addressing. Perhaps the fault
was with the question. Perhaps it was not well posed. How could you know that
x was governed by Py without knowing 67 What kind of evidence could provide
such knowledge? In the final chapter of A Mathematical Theory of Evidence,
I hinted at this disenchantment by emphasizing that a parametric model or
specification is always a provisional and unsupported assumption. Dempster,
with whom I talked frequently, went a step farther in the foreword he wrote
for the book; its last sentence reads, “As one thought for the future, I wish to
suggest that, just as traditional Bayesian reasoning has been shaken loose from
its moorings, perhaps there will appear a comparable weakening of the strong
form of information implied by a typical specification.”

The list on my blackboard always included returning to this topic, and I
finally did so with a paper that I presented to the Royal Statistical Society in
May 1982 [92]. Here I noted that a given parametric model can be represented
by many different belief functions. For a given model {Py}gco, that is to say,
there are many different belief functions Bel on © x X that produce Py when
conditioned on # and can be conditioned on x to produce posterior degrees of
belief about 6. The choice among these should, I argued, depend on our evidence
for the parametric model. If this evidence tells us only that x is random, with no
restriction on its possible probability distributions, then perhaps we should use
Dempster’s simplicial multinomial model. If the different values of 8 are different
diseases and we have extensive experience with each disease, perhaps we should
use a model developed by Smets in his dissertation. If our evidence actually
takes the form of a single frequency distribution, such as a distribution for errors,
and we have constructed the model by anchoring the frequency distribution to
different values of 6, then we should surely use what amounts to a fiducial
argument that continues to believe the frequency distribution. If our evidence
is scanty, perhaps it merits no more than the likelihood method in Chapter 11
of A Mathematical Theory of Evidence, for all its shortcomings.

My presentation was followed by a lengthy and friendly discussion. After-
wards Peter Williams whisked me off to visit Bristol and the village of Tunbridge
Wells, famous to statisticians as the home turf of Bayes. When the paper ap-
peared in the society’s journal, the discussion included contributions from good
friends, others I had known only by reputation (such as George Barnard), and
a brilliant newcomer, Terry Fine’s student Peter Walley. The contribution that
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impresses me most now is Dave Krantz’s; he argued, convincingly, that in ad-
dition to my randomly coded messages we can use other canonical examples to
construct belief functions, including the likelihood examples he had developed
with John Miyamoto [64].

I drifted away from mathematical statistics in the 1980s, and in retrospect
the paper for the Royal Statistical Society feels almost like a farewell. Its un-
derlying message is that the problem of parametric inference, central as it has
been to mathematical statistics, is artificial; we never really have evidence that
justifies parametric models, so let’s look instead at the evidence we do have and
model it. Let’s do evidence instead of mathematical statistics. But this is not
the way I felt at the time. I was a proud statistician, proud to have been invited
to read a paper at the Royal Statistical Society. It was only after a campaign to
convince the administration at Kansas to launch a statistics department that I
moved to the business schoolﬁ and my attention drifted away from statistics
as a discipline only because other disciplines came insistently calling.

9 Artificial intelligence

At the beginning of the 1980s, A Mathematical Theory of Evidence had been
reviewed in several statistics and philosophy journals, and I was happily busy
working through the list on my blackboard (and busy with family; my first son
arrived in 1978, the second in 1981). But hardly anyone else had taken up belief
functions. Aside from Dempster and myself, the only person who published a
journal article on the topic in the 1970s was Hung Nguyen, who had related
belief functions to random sets while working with Lotfi Zadeh [74]@ This
changed abruptly in 1981, when belief functions were discovered by the field of
artificial intelligence.

At the Seventh International Joint Conference on Artificial Intelligence in
Vancouver, British Columbia, in August 1981, three papers by California re-
searchers concluded that A Mathematical Theory of Evidence provided the
means to reason under uncertainty. Jeff Barnett, at Northrop in Los Ange-
les [4], christened the theory the Dempster-Shafer theory, a name that stuck@
Tom Garvey and his group at SRI in Palo Alto called it evidential reasoning
[50]. Leonard Friedman, at the Jet Propulsion Laboratory in Pasadena, called

24 A1l the statisticians on campus supported the proposal for a new department. Fred
Mosteller of Harvard and Ingram Olkin of Stanford, two of the country’s most respected
statistical statesmen, came to campus to support it, and we wrote a persuasive report on how
the university would benefit. The subsequent success of statistics nationwide confirms the
wisdom of that report, even from a purely financial point of view. But moving Glenn Shafer
to the Business School was obviously more feasible than finding money for a new department
in the College of Liberal Arts and Sciences.

25In [75], Nguyen recalls that Zadeh asked him to read my dissertation when he arrived
at Berkeley in the late winter of 1975. After doing so, Nguyen explained the connection to
random sets to Zadeh. Shortly afterwards, after hearing Suppes say something similar about
my dissertation, Zadeh asked Nguyen to put his insights into writing.

26For years afterwards, Barnett would apologize, every time we talked, that he had not
called it the Shafer-Dempster theory.
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it plausible inference and suggested using it in systems such as MYCIN and
PROSPECTOR [49].

The authors of the three papers had not discovered A Mathematical Theory
of Evidence independently. They had all learned about it from John Lowrance,
who was using belief functions in a doctoral dissertation at the University of
Massachusetts at Amherst and had toured the California labs with a job talk
in 1980, finally taking a position in Garvey’s group at SRIE John had first
seen the book in 1978 or 1979, when Nils Nilsson, then visiting Amherst from
Stanford, gave him a copy he had received from Dick Duda. The book was
evidently circulating in the Stanford artificial intelligence community, probably
as a result of the influence of Suppes, Tversky, Zadeh, and my own presence at
Stanford in 1978-1979.

Artificial intelligence was resurgent in the early 1980s, with new applications,
new excitement and expanded funding. Everyone was talking about expert
systems. Numerous researchers followed up on the discovery of belief functions
at the Vancouver meeting, and I was soon being invited across the country and to
Europe to talk about my work at corporate research centers, university computer
science and engineering departments, and artificial intelligence conferences. I
was hardly a computer scientist, but people were looking to me to tell them how
to use degrees of belief in computer systems.

During the 1960s and 1970s, artificial intelligence had developed its own
culture, distinct even within computer science and very different from the cul-
ture of statistics. It seemed to think in formal logic. I spent a month with
Tom Garvey’s group at SRI in June 1985, talking about the construction of
belief-function arguments and wondering whether I could contribute more if I
learned to express my thoughts in Lisp@ In 1984 T had submitted a paper to
the annual meeting of the American Association for Artificial Intelligence, show-
ing by example how dependent items of evidences can be resorted into items
that are independent in the sense of Dempster’s rule. Not surprisingly, it had
been rejected@ Aside from its brevity, it hardly resembled a computer-science
conference paper. I had more success telling statisticians about probability in
artificial intelligence [100].

But you did not need to become a hard-core Al researcher to join the Al
bandwagon. All sorts of engineers and applied mathematicians were jumping on.
Zadeh was promoting his fuzzy sets and possibility measures with considerable
success. Jim Bezdek invited me to the First International Conference on Fuzzy

2TLowrance’s Structured Evidential Argumentation System, eventually deployed widely in
federal intelligence agencies, used a Likert scale to obtain inputs from analysts but combined
arguments using Dempster’s rule and belief-function discounting; see [70]. For an explicit
discussion of the use of belief functions in intelligence, see [134}, [135].

28 My visit at SRI was funded by Enrique Ruspini’s grant from the Air Force. Others in
Garvey’s group included Lowrance and Tom Strat. I encountered e-mail for the first time
there; it was fun and sometimes even useful, even when my correspondents were down the
hall.

291 distributed and cited it as Kansas School of Business Working Paper No. 164, “The
problem of dependent evidence”, October 1984. It is published for this first time in this issue
of International Journal of Approzimate Reasoning.

21



Information Processing in Hawaii in 1984, where I met a whole new cast of
characters, including the dynamic duo Didier Dubois and Henri Prade, who
were making the whole world fuzzy with infectious good naturem People were
often surprised that I looked so young. Famous for a classic book, I should
have been ancient. I contributed a long paper to Bezdek’s proceedings, trying
to place Sugeno measures and Zadeh’s possibility measures alongside Bayes and
belief functions as languages for managing uncertainty [98]. T also contributed
to the first Uncertainty in Artificial Intelligence meeting, in Los Angeles in 1985
[99]. In those years the UAI meeings brought together everyone with opinions
about the management of uncertainty, including Zadeh and the usual quota of
impassioned Bayesians.

Although I enjoyed the out-of-town attention, my fondest academic memo-
ries from the mid-1980s are of the seminar I led in the Business School at Kansas
after moving there from Mathematics in 1984. Several of my fellow statisticians
joined in, but my strongest collaborations were with two colleagues who were
not statisticians, Prakash Shenoy, who had worked in game theory and deci-
sion theory, and Raj Srivastava, a physicist turned accountant. Prakash and I
focused on belief-function computation, and Raj and I worked on the applica-
tions of belief functions to financial auditing. Prakash and Raj were generous,
thoughtful, and capable colleagues, and we had funding for studentsﬂ

In 1985, Jean Gordon and Ted Shortliffe at Stanford published an approxi-
mate implementation of Dempster’s rule for simple support functions that could
be arranged hierarchically in a tree [53]. In 1984, when they sent me a preprint
of the article, I realized that the approximation was unneeded, and I asked a
graduate student in Mathematics at Kansas, Roger Logan, to work out the de-
tails. Since Roger was new to belief functions, this took a while, but by the
middle of 1985 we completed a working paper and submitted it to Artificial In-
telligence. It appeared in 1987 [116]. In the meantime, I discussed the problem
with my colleagues in the seminar in the Business School, and it became clear
that the modular computation made possible by Gordon and Shortliffe’s hier-
archical structure was much more general. Judea Pearl was just beginning, at
that time, to discuss modular Bayesian computation in the context of graphical
models, and we saw that our picture was also more general than his. So we pub-
lished our own results as soon as we could. In a conference paper at a meeting
in Miami Beach at the end of 1985, I pointed out that Gordon and Shortliffe’s
hierarchical picture made modular computation possible even if the individual

30Dubois and Prade also had plenty to say about belief functions; see for example [45].

31T could now attract federal and corporate funding well beyond the summer-salary grants
I had been receiving since I became an assistant professor at Princeton. When Ron Yager
became a program officer at the National Science Foundation, he telephoned me out of the
blue to urge me to apply for a larger grant. Additional funding came from the business school’s
Ronald G. Harper Chair in artificial intelligence, to which I was appointed in 1988. In 1971,
Harper had launched a business using an algorithm he learned as an MBA student at Kansas
to locate retail outlets. His methodology became steadily more complex, and by the 1980s
he was advertising it as artificial intelligence. When he took his business public, he donated
funds for the school to endow a chair in artificial intelligence. A national search led to the
conclusion that I was better qualified to fill it than anyone else the school could recruit.
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belief functions were more complicated than simple support functions. In an
article in IEEFE Ezpert in 1986, Shenoy and I explained the general structure of
modular belief-function computation; we also explained that Pearl’s Bayesian
scheme is a special case, because Bayesian conditioning is a special case of Demp-
ster’s rule [125]. This theme was further developed in a doctoral dissertation by
Khaled Mellouli (1987) and articles that he co-authored, including [I18]. The
seminar also produced doctoral dissertations by Pierre Ndilikilikesha (1992) and
Ali Jenzarli (1995).

The most influential product of my collaboration with Shenoy was the article
in which we put the basic ideas of probability propagation into axiomatic form;
it appeared in the proceedings of the 4th Uncertainty in AI meeting in 1988 and
in a more widely circulated form in 1990 [126]. Shenoy developed the idea into
a general methodology for expert systems [124]. In 1991, realizing that very
similar schemes for modular computation arise in many other areas of applied
mathematics, including database management, dynamic programming, and the
solution of linear equations, I wrote a lengthy working paper trying to identify
axioms that would bring out the common features of all these schemes [104]@
I ultimately left this project aside as too ambitious, but others, especially Jirg
Kohlas and his collaborators [60], have continued to develop it.

My collaboration with Srivastava was also very rewarding, because Dempster-
Shafer theory is well adapted to assessing the evidence that arises in financial
auditing. Although statistical sampling has played some role there, most of
the evidence that an auditor must consider does not involve statistical models,
and combination of different types of evidence is of paramount importance@
Moreover, standard advice on combining the different risks in an audit has long
been formulated in ways that echo Hooper’s rules. Srivastava, Shenoy, and I
attracted grants from the foundation funded by the accounting firm KPMG,
developed expert systems that used belief-function algorithms]ﬂ and published
articles in leading accounting journals [119},[130]. The collaboration wound down
after I moved to Rutgers in 1992, but Srivastava has continued to develop the
use of Dempster-Shafer theory in accounting, often in collaboration with his
students and with other leading accounting researchers. Several of Raj’s stu-
dents, including Saurav Dutta and Peter Gillett, were later my colleagues in the
accounting department at Rutgers. Gillett had built an expert system based on
belief functions for an accounting firm before he pursued his doctorate [51], and

32This working paper profited from advice from Steffen Lauritzen, who hosted me for a
month at Aalborg in the spring of 1991.

33The combination of evidence in legal settings has these same features. I did not have
the opportunity to collaborate with legal professionals as I did with accounting professionals
during the 1980s, but my work on the construction of arguments did bring me into contact
with the legal tradition in this area. I especially enjoyed my interactions with Peter Tillers,
who was a thoughtful leader in studying the role of probability in the law until his death
from Lou Gehrig’s disease in 2015. My work on the use of belief functions arguments in legal
settings appeared in the Boston University Law Review in 1986 [96].

34Raj wanted to patent one of our algorithms, but I did not want to go down that path.
Raj later had commercial success with algorithms for searching financial statements, including
one for which he and the University of Kansas obtained a patent.
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at Rutgers he worked with me on causality.

The computational issues that arose in the 1980s also brought Art Demp-
ster back into active work on belief functions. Three of Dempster’s doctoral
students wrote dissertations on belief-function computation in the 1980s: Au-
gustine Kong (1986), Mathis Thoma (1989), and Russell Almond (1989)@ Kong
and Dempster published together on computational issues [42], and Almond’s
work appeared in book form [I]. Other writing on belief functions by Dempster
in this period included [35] 36, B7]. He and I continued to keep in touch; I
continued to visit Harvard, and he also visited Kansas. We never actually wrote
together, but the degree to which we remained on the same page about basic
issues is remarkable.

The work at Kansas and Harvard was only a fraction of the work on belief
functions in the second half of the 1980s and the early 1990s. Then as now, the
greatest part of this work was in Europe. From his base in Brussels, Philippe
Smets played the most significant leadership role. He was known not only for his
own innovations but also for a distinctive vocabulary; instead of talking about
committing belief as I had done in my dissertation and in A Mathematical Theory
of Evidence, he preferred to talk about transferring belief, and he shied away
from the normalization step in Dempster’s rule [128]. At least equally important
was his role in organizing exchanges among others working on belief functionsm
Other leaders included Jean-Yves Jaffray and Bernadette Bouchon-Meunier in
Paris and Jiirg Kohlas in Switzerland. Kohlas and his collaborators added yet
another dialect to the language of belief functions; for them, it was a theory of
hints [59].

For my own part, I did not keep up with the explosion of work on belief
functions in the late 1980s. I was turning more and more to probability trees
and the unity of probability, and I felt I had said what I had to say about belief
functions. I was repeating myself, and the repetition was no longer productive.
In the first decade of my work on belief functions, in the 1970s and into the 1980s,
I was working in a relatively small community of statisticians and philosophers.
We had no internet in those days; you could not so easily bring yourself up
to date on someone else’s work. But those interested in the foundations of
probability and statistics saw and discussed each other’s work by correspondence
and in a relatively small number of journals and meetings. The late 1980s felt
different. We still had no internet, and the interest in belief functions had
outgrown any manageable community. Many who read A Mathematical Theory
of Evidence in the late 1980s and then proceeded to use, extend, and criticize
it were unaware of what I and others had said five or ten years earlier about
questions they were raising. Indeed, the very features that made the book so
successful—its self-contained appearance and sense of innovation—encouraged
reinventionf’| and disinterest in what might have come before.

35In the early 1970s, two other students of Dempster’s had completed dissertations on upper
and lower probabilities: Herbert Weisberg (1970) and Sandra West (1972).

36Smets’s contributions were cut tragically short when he died of a brain tumor in 2005, at
the age of 66 [10].

37Tom Strat’s invention of continuous belief functions in his paper for the 1984 meeting
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International Journal of Approzimate Reasoning, launched by Jim Bezdek
in 1987, became recognized over time as the leading outlet for work on belief
functions, providing a center that helped make the topic less fragmented than in
the 1980s. In 1990, in a special issue of the journal devoted to belief functions,
I once again gave an overview and responded to critics [I01], and I expanded on
the response two years later [105]. I also joined with Judea Pearl, with whom I
had enjoyed a friendship of some years, to publish a book of readings that situ-
ated Bayes, belief functions, and other approaches to uncertainty management
in artificial intelligence in the larger traditions of probability and logic [1I7].
This was published in 1990 by Morgan Kaufman, a well regarded publisher in
artificial intelligence, and it served a need at the time. These contributions
marked the end of a chapter for me. In the 1990s, I would focus on causality
and game-theoretic probability, not on belief functions, and I would drift away
from artificial intelligence as I had earlier drifted away from statistics.

I recall another revealing interaction with International Journal of Approz-
imate Reasoning. My paper on Dempster’s rule had been setting on the shelf
since its summary rejection by Annals of Probability and another journal a
decade earlier. When Bezdek recruited me as one of the initial associate editors
of his new journal and told me about his interest in articles on belief functions,
it occurred to me that this old paper might finally find a home. He encour-
aged the submission, but the paper was badly out of date, making no reference
to newer work on Sugeno and Choquet integrals. One referee made the point
with exasperation: “Shafer only knows what Shafer has done.” Quch. A direct
hit. But as I realized, my disinterest extended to what I had been trying to
do in my dissertation. The point of constructing Dempster’s rule abstractly in
infinite spaces had been to give belief functions an interpretation and a math-
ematics independent of probability theory. Now, as Dave Krantz had told me,
my philosophy of constructive probability and canonical examples had taken me
back to a view closer to where Dempster had started. A belief function was ob-
tained by “continuing to believe” probabilities. Since the combination involved
in Dempster’s rule could be accomplished in the probability domain, there was
no need for a mathematics of combination autonomous from probability. For
this reason, I was not interested enough to find the time to update the paper to
satisfy the referees. It remained on the shelf@

10 Causal conjecture

In 1970, when I began studying mathematical statistics, statisticians often
avoided talk about causation. The word appeared most often in a negative

of the American Association for Artificial Intelligence [I32] was emblematic for me. Tom
was an important contributor, and the paper did more than most to advance the use of belief
functions in artificial intelligence, but neither Tom nor his reviewers were aware that aside from
A Mathematical Theory of Evidence, most previous work on belief functions had emphasized
the continuous case.

381t appears for the first time in this issue of International Journal of Approzimate Rea-
soning.
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statement: correlation does not imply causation. The goal of most statisti-
cal investigations is to understand causal relations, but because our concept of
probability was clearly objectivist, we could express causal conclusions without
using causal language. Once you had said that the probability of B is high
whenever property A is present, it was superfluous and perhaps unnecessarily
provocative to say that A causes B. This changed as Bayes gained ground,
especially among those who believed that all probabilities are subjective. If
probabilities are subjective, then we need causal language to describe relation-
ships in the world. Influential calls for explicitly causal probabilistic language
came from the philosopher Pat Suppes in 1970 [133] and the statistician Don
Rubin in 1974 [79].

Probability theory is about events and variables. So when you marry it with
causal talk, you will probably call these formal objects causes. So it was in
Suppes’s and Rubin’s work, and so it was in the late 1980s, when researchers
in artificial intelligence and statistics began calling networks of events and vari-
ables causal, as in the classic 1988 articles by Pearl [76] and by Lauritzen and
Spiegelhalter [67]@

Believing as I did that probability trees provide a more fundamental foun-
dation for probability, I saw this as superficial. Events in the probabilistic sense
are merely reports on how things come out at the end of a process. Causes, if
we want to use this word, are more specific events localized in time—steps in
nature’s probability tree, if you will. Variables may be the cumulative result
of many small steps in nature’s probability tree. When I explained this to my
friend Judea Pearl, he argued that causal relations must be law-like relations,
not isolated happenings. I agreed, but causal laws should be rules governing na-
ture’s probabilities for what happens next on various steps across and through
nature’s tree, not laws governing the relations between the superficial and global
variables that we are able to measure. Relations between such global variables
can provide grounds for conjectures about this largely hidden causality, but that
does not make the variables causes.

The distinction between probabilistic relations among variables and causal
laws in the underlying probability tree can be illustrated with the concept of
independence. When we consider two variables X and Y in a probability space,
independence has a purely formal definition: X and Y are probabilistically
independent if the probability of a pair of joint values, say x and y, can always
be obtained by multiplication: P{X =z and Y = y} = P{X = 2} P{Y = y}.
This is not a causal relation, but it is implied by a causal relation that might
(or might not) hold in the underlying probability tree. The probabilities for X
and Y change as time moves through the tree, and it is reasonable to say that
X and Y are causally independent if there is no step in the tree that changes
the probabilities for both X and Y. (The steps in the tree are the causes, and
X and Y are causally independent if they have no common causes.) As it turns
out, this causal independence implies probabilistic independence. So when we

39These were the same “Bayesian” networks for which we were all studying schemes for local
computation. I tried to explain these schemes in the simplest possible terms in a series of
lectures I gave in North Dakota in 1992, which I finally published in 1996 [I10].
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observe probabilistic independence, we may conjecture that it is due to causal
independence.

I became fascinated with this idea in early 1992, as I was preparing to move
from Kansas to Rutgers in New Jersey. My wife Nell taught at Princeton, and
after commuting between Kansas and New Jersey for three years, we wanted to
live in the same state. I spent much of my time in Princeton for the first couple
of years, and in the fall of 1992, I persuaded some of my friends in the philosophy
department therﬂ to join me in a seminar devoted to probabilistic causality,
especially the work by Peter Spirtes, Clark Glymour, and Richard Scheines
at Carnegie-Mellon [129]. During this seminar I explained my little theory of
causal independence and tried to generalize it from independence to conditional
independence, which characterized the networks that had been occupying the
attention of statisticians and our colleagues in artificial intelligence.

Success. I did find a generalization to conditional independence. I started
talking about it at the Fourth International Workshop on Artificial Intelligence
and Statistics in Fort Lauderdale in January 1993. For the next two years,
I did not want to talk about anything else. The result was my second book,
The Art of Causal Congecture [109], which appeared in 1996, twenty years af-
ter A Mathematical Theory of Evidence. 1 thought it equally important. It
provided a probabilistic account of causality, and it demonstrated the power of
my probability-tree foundation for probability. Of course, it did not have the
unique explosive success that A Mathematical Theory of Evidence had enjoyed.
My colleagues in statistics, philosophy, and artificial intelligence were still en-
thusiastically developing their own ways of thinking about causal networks of
variables, and the book suffered from a defect I had only inadvertently avoided
in A Mathematical Theory of Evidence: it did too much. I had discovered not
just a single causal interpretation of a single probabilistic concept of conditional
independence but a plethora of different probabilistic concepts with different
causal interpretations. The Art of Causal Conjecture catalogs them all@ I
still believe that its picture will prove influential in the long run, but I did not
do as much as I might have to make this picture more widely understood af-
ter the book appeared, because I was quickly drawn into a related and deeper
enterprise: game-theoretic probabilitylEI

11 Game-theoretic probability

Early in 1992, I received a letter from Moscow. Dated 17 January, it read,

Dear Professor Shafer,

40Dick Jeffrey, Gil Harman, and Bas van Fraassen. We were joined by Paul Holland from
ETS and Adam Grove from NEC.

41The best introduction to the simplest example is in my article in the proceedings of the
Paris meeting organized by Bernadette Bouchon-Meunier in 1994 [108].

421 did return to causality in the late 1990s and early 2000s. I touched on the theme of
causality and responsibility [111], and with Peter Gillett and Richard Scherl, I studied a logic
of events derived from the idea of indefinitely refining a probability tree [115, [52]. This logic
of events merits additional study.
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In your 1990 paper in Statist. Science I found excellent exposition of
ideas that guided me in my research during the past several years.
It seems that we are moving in the same direction. Please find en-
closed one of my papers. With great interest I am looking forward
to reading your forthcoming book The Unity and Diversity of Prob-
ability.

Sincerely yours,
Volodya Vovk

Very flattering, all the more so that the enclosed paper was obviously brilliant
and totally mystifying. I responded positively, and within a couple months Vovk
and I were corresponding about possible collaboration.

Vovk was also in contact with Phil Dawid in London, and Dawid and I found
multiple occasions to discuss his work. In September 1992, Vovk gave a discus-
sion paper at the Royal Statistical Society [139] that built on Dawid’s notion
of prequential probability [20, 2], 22]; T could not attend but participated in
the discussion. Dawid’s prequential (sequential prediction) picture was related
to my picture of a probability tree and had influenced my thinking as well as
Vovk’s. Central to Dawid’s picture was his prequential principle, according to
which the performance of a forecaster who gives successive probabilities should
be assessed only by comparing his probabilities to the outcomes, ignoring any
strategy the forecaster might have followed and any probabilities such a strategy
might have recommended had events taken a different path.

Even though I was occupied with my book on causality from fall 1992 to
spring 1995, Vovk and I continued to correspond about possible collaborations,
including grant applications. By February 1994 we were discussing a possible
book that would use probability trees to develop the theories of classical prob-
ability, filtering and control, and statistics. In May 1994 I traveled to Moscow
to spend a week talking with him about our joint interests.

In June 1995, Steffen Lauritzen invited Vovk, Dawid, myself and others to a
week-long seminar at Aalborg at which I presented the main results of The Art
of Casual Conjecture and Vovk presented some of his results. Vovk’s picture
had evolved; instead of probability trees, he was now using formal games. These
games are fully described by a probability tree when a probability distribution
for outcomes is fixed in advanced, but the probabilities might instead be given
in the course of the game, and this greater generality permits a more natural
treatment of many applications of probability. During the meeting, with Lau-
ritzen’s encouragement, Vovk returned to the notion that he and I should write
a book together. I was hesitant, because I was still eager to complete that great
American probability book I had started at the Center in Palo Alto. But Vovk
was insistent, and I agreed to his proposal a year later, in the summer of 1996,
when we met again at my home in Princeton. He and his family were then
arriving in the United States for a year at the Center in Palo Alto, and Nell
and I were about to leave for a year’s sabbatical in Paris. The book appeared
five years later: Probability and Finance: It’s Only a Game! [121]. In the 15
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years since then, Vovk and I and others, especially Kei Takeuchi and Akimichi
Takemura in Tokyo, have continued to develop its ideas.

Since the late 1930s, it has been a commonplace that Kolmogorov’s axioms
can be interpreted and used in different ways. They can be interpreted as
axioms for objective probabilities, as axioms for degrees of belief, or as axioms
for logical degrees of support. Mathematically, the game-theoretic foundation
for probability Vovk and I proposed is a generalization of Kolmogorov’s picture.
Philosophically, it allows us to deepen our understanding of the diversity of
interpretation. We begin with a flexible game that typically has three players:
(1) Forecaster, who prices gambles, (2) Skeptic, who decides how to gamble,
and (3) Reality, who decides the outcomes. We can use games of this form in
many ways. For example:

Classical probability. Classical theorems such as the law of large numbers
and the central limit theorem become more general, because the probabil-
ities may be given by Forecaster freely as the game proceeds, rather than
by a probability distribution for the whole sequence of Reality’s moves,
which can be thought of as a strategy for Forecaster.

Statistical testing. If the role of Forecaster is played by a theory (quantum
mechanics, for example), we can take the role of Skeptic and test the
theory by trying to multiply the capital we risk by a large factor; it turns
out that all statistical tests can be represented in this way.

Forecasting. To make probabilistic forecasts, we can put ourselves in the role
of Forecaster and play to beat Skeptic’s tests.

Subjective probability. We can take the role of Forecaster to state prices
that express our belief. Instead of suggesting, as de Finetti did, that we
are offering these prices to all comers (this may be dangerous, because
surely there are others who know more), we may say that we do not think
we could beat them if we took the role of Skeptic.

Finance. We can put an actual financial market in the roles of Forecaster (the
day’s opening prices being Forecaster’s move) and Reality (the day’s clos-
ing prices being Reality’s move), so that the hypothesis that Skeptic, the
investor, cannot multiply his capital by a large factor becomes a testable
version of the efficient-market hypothesis.

Causality. We can imagine that the probabilistic predictions are successful
(inasmuch as Skeptic cannot beat them), but that the game is played out
of our sight, so that we see only some aspects of Reality’s moves. This
leads to the theory of causality I had developed in The Art of Casual
Congjecture.

This is a picture far richer and more powerful than what I imagined when I
began writing, 25 years ago, about the unity and diversity of probability.

The greatest historical and philosophical lesson I have drawn from 20 years
of work on game-theoretic probability is the importance of what I called the
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principle of the excluded gambling strategy in the 1980s. The game-theoretic
picture gives this principle a more precise form; it says that no simple strategy
will allow Skeptic to multiply the capital he risks by a large factor. When
used in finance, this is a game-theoretic form of the efficient-market hypothesis.
It is fundamental to most applications of game-theoretic probability, just as
the corresponding principle that no event of small probability singled out in
advance will happen is fundamental to most applications of measure-theoretic
probability.

I call the principle that Skeptic will not multiply the capital he risks by a
large factor the game-theoretic Cournot principle. As I learned in the historical
studies I undertook in order to understand game-theoretic probability, it was
Cournot who first argued that probability connects with the world only by
means of the principle that an event of small probability will not happen. This
principle was adopted explicitly by Cournot’s greatest continental successors,
including Borel and Kolmogorov [122] 112, 12]. But the principle was never as
prominent in the English-language literature, and it became less salient as the
center of gravity of probability and statistics shifted to English after World War
II. Tts game-theoretic reformulation reminds us of its central role.

The game-theoretic Cournot principle also enriches the interpretation of be-
lief functions. As I have explained, Dempster-Shafer judgements measure ev-
idence by comparing it to canonical examples where we continue to believe
certain probabilities. What exactly are we continuing to believe about these
probabilities? We are continuing to believe that they cannot be beat—that a
betting opponent will not, using a simple strategy, multiply the capital he risks
by a large factor betting at the implied odds. I developed this idea in Interna-
tional Journal of Approzimate Reasoning in 2011 [114].

12 Dempster-Shafer redux

Although I have done little work directly related to belief functions since the
1980s, I have been pleased to see that research on the topic has continued apace
and is, in some respects, resurgent. We see a steady stream of applications
of belief functions in meetings such as FUSION (International Conference on
Information Fusion) and ISTPTA (International Symposium on Imprecise Proba-
bility: Theories and Applications), and other applications arise in a bewildering
variety of fields.

The belief-function community in Europe suffered a heavy blow with Philippe
Smets’s death in 2006, but it has clearly recovered, with the organization of the
Belief Functions and Applications Society in 2010 and its subsequent growth.
I was honored to participate in the Society’s founding meeting, along with Art
Dempster, in Brest in April 2010. Thierry Denoeux, the Society’s current pres-
ident, has outstripped Smets in the breadth of belief-function applications that
he has explored with his students at Compiegne.

In 2009, Dempster and I accepted honorary doctorates from the University
of Economics in Prague, where Radim Jirousek has led a strong group in belief
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functions. After focusing on applied problems, including climate change, in
the 1990s, Demspter returned to working and publishing on belief functions. In
2001, he explained the belief-function interpretation and computation of Kalman
filters [38]. He reviewed the history of belief functions in 2003 [39], published
on the use of belief functions for object recognition in 2006 [41], and published
a general exposition for statisticians in 2008 [40]. Two additional students have
completed dissertations on belief functions at Harvard under his supervision:
Wai Fung Chiu (2004) and Paul Edlefsen (2009).

Within mathematical statistics, which plays a relatively large role in the
United States, belief functions have been largely dormant since the 1980s. The
Bayesian paradigm has mushroomed in importance during this period, as statis-
ticians have realized that Neyman-Pearson methods cannot cope with the field’s
increasingly complex parametric models, and as computational methods for
Bayesian solutions have been developed. One might even say that the domi-
nant research paradigm has become the development of Bayesian computational
methods. Discussions of philosophical foundations, even in forums where they
were once popular, such as the International Society for Bayesian Analysis, have
been displaced by discussions of computation. A similar shift has occurred in
artificial intelligence, for example in the Uncertainty in Al meetings.

In very recent years, however, puzzles encountered by complex Bayesian
models are leading to a reconsideration of fiducial and Dempster-Shafer meth-
ods. Even when they use Bayesian methods to obtain posterior probabilities for
parameters, most statisticians retain an objectivist conception of the paramet-
ric model, and they have been most comfortable with Bayesian methods when
they can identify prior probability distributions for the parameters that seem
to represent ignorance, inasmuch as the posterior probabilities come close to
having frequency properties like those required for Neyman-Pearson confidence
coefficients. As parametric models have become increasingly complex, with
huge numbers of parameters, it has become clear that this desideratum cannot
be satisfied for all parameters. A prior probability distribution that seems to
represent ignorance about one group of parameters may clearly express very
strong opinions about another. In response to this conundrum, a number of
authors have been studying fiducial and Dempster-Shafer style arguments that
have attractive properties for targeted parameters. See the recent book by Ryan
Martin and Chuanhai Liu [71] and the recent review article by Jan Hannig and
his collaborators [54].

In the spirit of my earlier discussion of parametric models (and Dempster’s
remark in the foreword to A Mathematical Theory of Evidence), we might ad-
dress this issue by asking what evidence could possibly justify such complex
parametric models. To construct a fiducial and or Dempster-Shafer analysis,
we must decide what aspects of a parametric model we can continue to believe
after observations are made. Perhaps we should first ask what aspects we can
believe in the first place. What bets do we really believe can be safely offered
to an opponent trying to multiply their capital by a large factor?
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13 Conclusion

After studying probability and partial belief for 45 years, my sturdiest belief
about the enterprise is that the most enduring advances will draw on history.
Intellectual developments, like so many other aspects of life, are path-dependent.
We cannot understand where we are, nor how to get out, without understanding
how we got there.

The Dempster-Shafer theory of belief functions was launched 40 years ago in
the context of long-standing puzzles concerning the representation of ignorance
and the interplay between subjective and objective aspects of probability. My
intellectual path since then has involved looking back at how these puzzles arose:
how probability theory grew out of the picture of betting, how we acquired
the concept of conditional probability, how probabilities became additive, how
time was pushed out of the foundations. I have found a few answers to these
questions, and I believe these answers can help us move forward.
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