GLENN SHAFER

CONSTRUCTIVE PROBABILITY

In a series of papers published in the 1960°s, A. P. Dempster
developed a generalization of the Bayesian theory of statistical in-
ference. In A Mathematical Theory of Evidence, published in 1976, |
advocated extending Dempster’s work to a general theory of prob-
ability judgement. The central idea of this new general theory is that
we might decompose our evidence into intuitively independent com-
ponents, make probability judgements based on each component, and
then extend, adapt, and combine these judgements using formal rules.
In this way we might be able to construct numerical degrees of belief
based on total evidence that is too complicated or confusing to deal
with holistically. The systems of numerical degrees of belief that the
theory helps us construct are called belief functions. Belief functions
have a certain structure, but they.are not, in general, additive like
Bayesian probability distributions: a belief function Bel may assign a
proposition A and its negation A degrees of belief Bel(A) and Bel(A)
that add to less than one.

The theory of belief functions should be sharply distinguished from
the ideas on ‘“‘upper and lower probabilities™ that have been
developed by 1. J. Good [1962], C. A. B. Smith [1961}, and, more
recently, Peter Williams [1975, 1976]. It is true that the theory's
degrees of belief Bel(A) have some properties in common with these
authors’ lower probabilities P ,(A). And it is also true that Dempster,
in his writing, used the vocabulary of upper and lower probabhilities.
But the conceptual structure of the theory of belief functions is quite
different from the structure underlying Good, Smith, and Williamns’
work.

Since its publication, A Mathematical Theory of Evidence has been
reviewed or discussed by several authors, including Persi Diaconis
[1978], Terry Fine [1977]. Isaac Levi [1981], Dennis Lindley [1977],
Teddy Scidenfeld [1981], and Peter Williams [1978). Most of these
critics, being themselves dissatisfied with the Bayesian theory, have
welcomed the new theory. But they have been troubled by the
absence of a behavioral interpretation for the theory. The Bayesian
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theory can appeal to its “'betting interpretation” to explain what its
degrees of belief mean and to justify its rules for these degrees of
belief. No such interpretation has been supplied for the thcory of
belief functions. So what do its degrees of belief mean? And why
should we accept the theory’s rules for these degrees of belief? Why,
in particular, should we prefer these rules to the rules suggested by
Good, Smith, and Williams?

In this paper, I argue that a constructive theory of probability
judgment need not rely for its meaning and justification on any
behavioral interpretation. My argument is based on an understanding
of constructive probability judgment developed in recent unpublished
work by Amos Tversky and myself. According to this understanding,
numerical probability judgment amounts to comparing one’s evidence
to a scale of canonical examples, and a constructive theory of
probability judgment must supply both the scale of canonical exam-
ples and methods of breaking the task of comparison down into
simpler judgments, As I explain in §1 below, the Bayesian theory, the
theory of belief functions, and a theory of lower probability functions
can all be developed in this framework. All three of these con-
structive theories use the idea of chance in their scale of canonical
examples. The theory of belief functions uses examples where the
meaning of a message depends on chance, while the other two
theories use examples where the truth is generated by chance.

In the course of the paper 1 give particular attention to Peter
Williams® review of A Mathematical Theory of Evidence. Williams’
writing is exceptionally lucid. and he is exceptionally explicit in
relating his criticisms of the theory of belief functions to the betting
interpretation of probability.

Williams treats both lower probabilities and Bayesian (i.e., additive)
probabilities as betting rates. And he hints his intuitions about lower
probabilities are inherent in the very idea of betting. One of the
purposes of this paper is to show that this is not so. The theory of
belief functions is as consistent with the use of probability judgments
as betting rates as the theory of lower probabilities Williams favors. It
is especially important to recognize that one cannot choose between
the different rules of conditioning used by belief functions and by
Williams® theory (see §3 below) on the basis of the idea of betting
alone.
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I. THE MEANING OF PROBABILITY

Williams begins his review of A Mathematical Theory of Evidence
with two questions: *(i) What is meant by ‘degree of belief’ and how
might an individual determine his degrees of belicf in a particular
case? (ii) For what reasons are degrees of belief required to satisfy
the conditions imposed?”

On a practical level, making a probability judgments means assess-
ing the strength and significance of one’s evidence by fitting it into a
scale of canonical examples. And the probability judgment or “degree
of belief™ itself means that we have made the comparison — perhaps
with the aid of some theory - and found our evidence fo match a
certain example on the scale best. Thus the meaning of a degree of
belief depends on the scale we use and, more generally, the theory we
use in arriving at it.

To make numerical probability judgments we nced, of course, a
numerical scale, and the obvious approach to constructing such a
scale is to use examples involving chance. There is, however, more
than one way of using the idea of chance to construct a scale of
examples, and different ways correspond to different theories of
probability judgment. It will be helpful, before going into Williams’
questions more fully, to compare three such theories — the Bayesian

theory, the theory of belief functions, and a theory of lower prob-
abilities.

The Bayesian Theory

In the classical picture of chance, we imagine a game that can be
played repeatedly and for which we know the chances. These chances
are long-run frequencies, they can be thought of as propensities, and
they also definc fair betting rates - rates at which a bettor would
break even in the long run. Since they are known and there is no
other evidence, these chances give a measure of how much reason we
have to believe that one or another of the game’s outcomes will occur
on a particular occasion. So we can call them numerical degrees of
belief. If we imagine a number of different games, with different
chances, then we have a scale of numerical degrees of belief.

The Bayesian theory uses this scale in a straightforward way. The
Bayesian’s task is to compare his problem to a scale of examples in
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which the truth is generated according to known chances and to
decide which of these examples is most like his problem. And so
when he makes the probability judgment P(A) = p, say, he is saying
that his evidence provides support for A comparable to what would
be provided by knowledge that the truth is generated by a chance
setup that produces a result in A exactly p of the time. He is not
saying that his evidence is just like such knowledge in all respects,
nor that the truth is in fact a result of chance. But he is measuring the
strength of his evidence by comparing it to a scale of chance setups.

How can the Bayesian accomplish his task? How can he make his
scale of chances and the affinity of his evidence to this scale vivid
enough to his imagination that he can meaningfully locate the evi-
dence on the scale? This question does not, I believe, have a simple
general answer. In any particular case the Bayesian must struggle to
find ways of understanding his evidence that facilitate its comparison
to the scale of chances. Perhaps he can understand his evidence in
terms of a causal model and assess numerically the propensity of the
model to produce various outcomes. Perhaps he can discern relevant
frequencies in his evidence. And perhaps he can make enough well-
founded judgments of these sorts to enable him to construct an
overall probability distribution that seems well-founded to him. Or
perhaps he cannot. There is nothing in the Bayesian theory that can
guarantee its success.

The probability distributions of the Bayesian theory have, of
course, exaclly the same structure as chance distributions: a function
P dcfined for all subsets of a finite set © (the frame of discernment) is
a Bayesian (or additive) probability distribution if there exist non-
negative numbers p(8) for the elements @ of @ such that

(n P(A)= .Z;"“”

for all AC @, (It is also required that Tycq p(8) =1.) In words: the
degree of belief P(A) that the truth lies in A is the sum over the
clements 8 of A of the degrees of belief p(0) that the truth is 0.

The Theory of Belief Functions

A function Bel defined for all subsets of a frame O is called a belief
function if it is of the form
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(2) Bel(A) = AE m(B)

CA

where m(B) are non-negative numbers satisfying m(#)=0 and
Zscam(B)=1. Every Bayesian probability distribution is a belicf
function. (The m-values for a Bayesian probability distribution P are
obtained by setting m({8}) = p(8) and m(B) =0 for all B that contain
more than one element.) But not every belief function is a Bayesian
probability distribution.

The theory of belief functions is based on a way of comparing our
evidence to the scale of chances that is quite different from that of
the Bayesian theory. Instead of comparing our evidence to a scale of
examples where the truth is generated according to known chances,
we compare it to a scale of examples where the reliability and
meaning of a message depends on known chances.

Here is a way to develop the scale of examples needed for belief
functions. Suppose someone chooses a code at random from a list of
codes, uses the chosen code to encode a message, and then sends us
the result. We know the list of codes and the chance of each code
being chosen -say the list is c),..., c, and the chance of ¢; being
chosen is p. We decode the encoded message using each of the codes
and find that this always produces a message of the form *‘the truth is
in A” for some non-empty subset A of €. Let A, denote the subset
we get when we decode using ¢, and set

m(A) =Y {pll <i<n; A = A}

for each A C ©. Then m(A) is, in a certain sense, the total chance that
the true message was A'. And Bel(A), given by (2), is the total chance
that the true message implies A. If the true message is infallible and
the coded message is our only evidence, then we will want to call
Bel(A) our degree of belief that the truth lies in A.

We can tell this story with whatever values of the m(A) we please,
and so it provides us a canonical example corresponding to every
possible belief function Bel. Of course we will seldom or never
encounter in practice a situation in which our evidence really does
consist of a coded message and all the assumptions of the canonical
example are satisfied. But it is also rare that our evidence amounts to
knowledge of a chance distribution according to which the truth has
been or will be generated. In both cases the canonical examples are
meant not as realistic examples but as standards for comparison.
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Our task, when we assess evidence using beliel functions, is to
choose values of m(A) that make the canonical “coded-message”
example most like that evidence. But how do we do this? In com-
plicated problems it is absurd, surely, to suppose that we can simply
look at our evidence holistically and write down the best values for
the m(A). So we need a theory - a set of tools for constructing belief
functions from simpler, more elementary judgments. A Mathematical
Theory of Evidence suggests a number of such tools: assessment
using simple support functions, assessment using consonance, dis-
counting, minimal extension, and Dempster's rule of combination.
All these tools are readily intelligible in terms of the canonical examples.

Dempster’s rule of combination is the most important single tool of
the theory. This rule tells us how to combine a belief function Bel,
(with m-values m,(A), say) representing one body of evidence with a
belief function Bel, (with m-values n(A)) representing an unrelated
body of evidence so as to obtain a belief function Bel (with m-values
m(A)) representing the pooled evidence. The idea underlying the rule
is that the unrelatedness of the two bodies of evidence makes pooling
them like combining two stochastically independent randomly coded
messages. We should, that is to say, combine the canonical examples
corresponding to the two bodies of evidence by supposing that the
two random choices of codes are stochastically independent. It is
easy to see how this leads to a rule for obtaining the m(C) from the
m,(A) and the myB). Denote by c\.....c, and by pi.....pa the
codes and their chances in the case of the first message, and by
ci...,chand pi,...,pa the codes and their chances in the case of
the second. Then independence means that there is a chance p,p;that the
pair (¢, ¢)) of codes will be chosen. But notice that decoding may now
tell us something. If the message A, we get by decoding the first
message with ¢, contradicts the message B; we get by decoding the
second message with cj (i.e., if AN B, = #), then we know that (¢, ¢})
could not be the pair of codes actually used. So we must condition the
chance distribution, eliminating such pairs and multiplying the
chances for the others by K, where

K'=3 {ppjl<i<nit<j=m; AinB##

=3 (m(A)m(BJJAC®: BCO: ANB#§).
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Notice also that if the first message is A and the second message is B,
then the overall message is AN B. Thus the total chance of the
overall message being C is

3) mC)=K Y {ppli<i=n:t<j=sm;ANB =C)

=K Y {(m(Am(B|ACB; BCO; ANB=C).

Formula (3) is Dempster’s rule,

The availability of Dempster's rule opens the possibility that we
might construct a belief function based on complicated evidence by
decomposing the evidence, breaking it down into small unrelated
items whose message is relatively clear. The most convenient case,
perhaps, is when each small item points clearly and unambiguously to
a single subset of 8. In this case the assessment of each item mcans
the determination of a simple support function.

A simple support function focused on a subset A, of © and
awarding it degree of support s is a belief function with m-values
m(Ag)=S8, m(@)=1-s5 and m(A)=0 for all other AC®. This
corresponds to a coded message which means A, with chance s and
means @ (i.e., means nothing at all) with chance 1 —s. The values of
the belief function are

0 if AuZ A
Bel(A)= s if A,CA#8
1 ifA=0

In words: we have no positive beliefs beyond those implied by the

. degree of support s for A, Simple support functions are appropriate

when the message of an argument or an item of evidence is clear and
unambiguous, but its reliability must be assessed. The chance s
corresponds, in such a case. to an assessment of that reliability. It is
our assessment, so to speak, of the chance that the argument is
sound.

(The idea of the chance that an argument is sound (as opposed to
the Bayesian idea of the chance that an assertion is true) is illustrated
by the following example, which is essentially due to J.H. Lambert
(see Shafer [1978a]) and which could be used to provide an alternative
scale of canonical examples for simple support functions. Suppose we
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know all a's are B's, and we are told, by a randomizing device that
tells the truth with chance s and lies with chance 1-5, that y is an a. If
the device told the truth (chance s), then we have a syllogism:

All a’s are B°s.
v is an a,
yisap,

If the device lied (chance 1 - 5), then we have nothing, for when the
minor premise in the syllogism Barbara is negated, there is no
conclusion:

All a’s are B's.
v is not an a.
Maybe vy is a B; maybe not.

So the argument for the proposition “y is a " is sound with chance s
and unsound with chance 1 —s. As evidence, it amounts to the same
thing as a message that asserts this proposition with chance s and
says nothing with chance 1-35.)

There is no guarantece that a satisfactory analysis of one’s evidence
will be achieved using belief functions, just as there is no guarantee
of success with the Bayesian theory. 1 do belicve, however, that the
greater flexibility of belief functions will often be valuable. In many
cases our deliberation needs to be directed towards the structure and
reliability of the evidence rather than towards the nature of the
process by which the truth is generated, and this means that a random
model for the evidence may fit our needs better than a random model
for the truth.

Lower Probabilities

Suppose we know a certain process is governed by chance, but
instead of knowing precisely the chance law P governing it, we know
only that P is in a class @ of chance laws. Denote by 6 the set of
possible outcomes for the process. Then we might set our degree of
belief that the outcome of a given trial will be in a subset A of @
equal to

4) P(A)=inf{P(A)|P € P).

This seems natural because we know the chance of A is at least
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P ,(A). And so, in particular, we can expect to at least break even in
the long run if we offer to bet (with others who have no more
knowledge than we) on A at the odds P ,(A):1 - P ,(A).

By varying the class @ in this story we obtain a scale of examples.
Perhaps we can construct a theory of probability judgment -a
“theory of lower probabilities™— using this scale as the standard 1o
which to compare our evidence. It will rarely if ever happen, of
course, that our evidence really consists of knowledge that the truth
is generated by chance and the chance law is in a class P. But we
have said the same thing about the canonical examples underlying the
Bayesian theory and the theory of belief functions.

But what are the clements of this theory of lower probuabilities?
What tools do we have for locating our evidence on its scale of
canonical examples? How. that is to say, do we break the task of
constructing the class @ down into simple judgments?

Here is an idea. Suppose we assess our evidence by muaking
judgments of the form *“‘our evidence is like knowing that the truth is
generated by chance and that the chances have such-and-such a
property.” Since there are many properties of chance distributions,
this formulation permits a wide variety of judgments. We may say
that our evidence is like knowing that the chance of A is greater than
the chance of B, or like knowing that the conditional chance of A
given C is greater than that of B given C, or like knowing that the
mathematical expectation of some function of the truth is between
certain bounds, etc. Our theory will ask us to make as many of these
judgments as we think necessary 1o capture the message of the
evidence, and @ will consist of all the distributions that have all the
properties we have specified.

Notice that this idea does not involve the decomposition of evi-
dence. The task of constructing @ is broken down into simple
judgments by distinguishing different questions, not by distinguishing
different items of cvidence bearing on these questions. All the judg-
ments are supposed to be based on the total evidence.

A class @ of chance distributions determines, of course, more than
the lower probabilities (4). It also determines lower conditional prob-
abilities

(5) P.(A|B) = inf{P(A|B)|P €P; P(B) >0},

which are defined whenever P(B) >0 for some P € @} and lower
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expectations
E«(X) = inf{Ep(X)|P € P},

which are defined (in the case where O is finite) for every real-valued
function X on ©. Since a lower unconditional probability is a special
case of a lower conditional probability (P.(A)=P,(A[®)) and a
lower conditional probability can be determined from knowledge of
lower expectations (P ,(A|B)=p if E.(X)=0, where X(8)=1-p if
0EANB, —p if 06 ANB, and 0 if § € B), we obtain more in-
formation about # as we pass from lower probabilities to lower
conditional probabilities to lower expectations.

EXAMPLES. (1) Here are two classes #, and %, that have the same
lower unconditional probabilities but can be distinguished by their
lower  conditional  probabilities. Set ©={ab,c}), P =
{PP({a, b= 1), and @, = (PIP(b)I{b. c}) =1). Then P(A) = P-(A)
for all AC®. But P.({b}|{b,c})=0, while P ({b}l{h,c})= §,
(2) Here are two classes that have the same lower conditional prob-
abilities but can be distinguished by other lower expectations. Set
0 ={-2,-1,1,2}, set #, ={P|Ep =0}, where Ep denotes the mean of
the distribution P, and set @, = ®, U{P,}, where P, is the distribution
that puts mass on —2.Jon 1,and}on 2. Then P,(A|B) = P-(A|B)forall
A and B, but the lower expectations of the identity function X(6) =6
are Eo(X) =0 and E«(X) =~ (3) Here are two distinct classes that
cannot be distinguished by their lower expectations. Set @ = {a, b},
@, ={P|P({a}) = -5}, and P, ={P|-5<P({a})<-6 or P({a})=9}.

Let us call a function P, defined for all A C O, a lower probability
function if it is given by (4) for some class ?. And let us call a
function of two variables P (A|B) a lower conditional probability
function if it is given by (5) for some class @: such a_function is
defined for B = @ and for all other B C O such that P (B|®) <. In
general, as we have seen, there are many classes that yield the same
lower probability function or lower conditional probability function.
But the largest class that yields a given lower probability function P,
18

(6) P(P )= {P|P(A)= P (A) for all AC 6},

and the largest class that yields a given lower conditional probability
function P (") is
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(7 PP | N={Plif P(Bl®)<1, then P(B)>0 and
P(A|B)> P .(A|B)}.

Lower probability functions have been characterized axiomatically by
Williams [1976}, Huber [1976], and Wolf [1977]. 1 have not scen
simple axioms for lower conditional probability functions, but see
Williams [1975].

Our “‘theory of lower probabilitics,” as I have described it so far,
includes in its scale of canonical examples every possible class & of
chance distributions over a frame ©. For the theory allows us to
specify an arbitrary property of a chance distribution and to say that
our evidence is like knowing that the truth is generated according to
chances having that property. Perhaps this is too rich a scale. In
practice there will surely be a limit to the complexity and subtlety of
properties that can sensibly be said to correspond to intuitive insights
about our evidence. And it may be desirable, from a psychological
point of view, for the theory to recognize this explicitly by specifying
a somewhat sparser scale. It cannot help us in fitting our evidence to a
scale of canonical examples to have that scale encumbered with
confusing and superfluous possibilities.

Just what classes 9 should be included in the theory’s scale? I see
no definitive answer to this question, but it does seem that an
adequate scale should include all @ that can be defined by the sorts of
constraints commonly placed on chance distributions - all that can be
defined, say, by (1) bounds on chances, conditional chances, and
expectations, (2) comparisons among chances and conditional
chances, and (3) conditions of independence and conditional in-
dependence. This is a rich scale. It includes far more @ than those of
the form (6) or (7), and far more, even, that those that can be defined
by bounds on expcctations. (As we have alrcady noted, bounds on
chances and conditional chances can be reduced to bounds on expec-
tations. Moreover, some comparisons can be reduced to bounds: the
ggndilion P(A)=P(B), for example, is equivalent to P(AN
B|AAB) =4, or simply to P(A|AU B)=!if AN B =#. But conditions
of independence and comparisons of the form P(A|B) = P(A), say,
go beyond bounds on expectations.)

Notice that if we werc content with a scale consisting of # of the
form (7), then the lower conditional probability function P (- |°)
would completely identify ? and hence would be a complete report
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of our assessment of our evidence. If we agree, as [ think we must,
that a richer scale is nccessary, then P (- | ) cannot be regarded as a
complete assessment. But it might be an adequate summary for some
purposes.

The Literature on Lower Probabilities

The idea of constructing a class of distributions by comparing our
evidence to knowledge that the truth is generated according to
chances having certain properties is an adaptation of an idea
developed by LJ. Good [1962]. Good suggests that we pretend we
have an additive probability distribution P in a black box. Initially we
know nothing about P, except that it is defined for subsets of a frame
0. But we make qualitative probability judgments about @, and we
interpret these judgments as constraints on P. For example, we judge
that A is more probable than B, and we interpret this as P(A) > P(B).
Or we judge that we would think A more probable than B if we knew
C for certain, and we interpret this as P(A|C)> P(B|C). If we
manage to keep these constraints from conflicting, then they deter-
mine a non-empty set & of additive probability distributions.

Unfortunately, Good does not say that we are comparing our
evidence with knowledge that the truth is generated by some chance
law in @. Instead he studiously avoids pinning down the nature of the
unknown praobability distribution P —he locates P in a “black box™
precisely in order to avoid saying whether it is a chance law, a hidden
subjective distribution, or something else. [ believe this deliberate
vagueness is untenable in a constructive theory. It leaves us uncertain
about how to make the qualitative probability judgments and uneasy
about whether we really want to interpret these judgments as con-
straints on P, We cannot make even qualitative probability judgments
unless we have a definite language in which to work.

Most other recent literature on lower probabilities seems less
relevant to our constructive view. Smith [1961] and Williams [1975,
1976] study lower probabilitics as betting rates, but as I argue in §2
below, it is difficult to relate talk about betting to constructive
probability judgment. Huber’s work on lower probabilities (1973,
1976] is mainly concerned with situations where the truth's being
generated by chance is a serious hypothesis and not just a metaphor.
For further references, see Shafer {1978a).
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Belief Functions and Lower Probabilities

Mathematically, every belief function is a lower probability function.
Every function of the form (2), that is to say, is also of the form (4).
Here is one way to see this. Given a belicf function Bel on a frame ),
we can construct an additive probability distribution P such that
P(A) = Bel(A) for all AC® by choosing an element 8; of every
non-empty subset B of @ and setting

p(8) = 3 {m(B)|0s = 6}.

Let @ denote the class of distributions obtained by varying the choice
of the 85. Then P(A) is smallest for those P in @ that choose 0, to be
outside A whenever possible —i.e., whenever BZ A. So

inf{P(A)|P € P} =3 {m(B)|B C A} = Bel(A).

Not every lower probability function, on the other hand, is a belicf
function; Williams exhibits an example of one that is not on page 380
of his review.

Does the fact that every belief function is a lower probability
function mean that our theory of lower probabilities is more general
than the theory of belief functions? Certainly not. For the theory of
belief functions uses a belief function in a different way than our
theory of lower probabilities would use it. The meaning is quite
different in the two cases. One theory is comparing our evidence to
knowledge provided by a randomly coded message: the other is
comparing our evidence to knowledge about chances governing the
truth. 1 will discuss some of the implications of this difference in
meaning in §8§3 and § below,

Since it does retain the Bayesian idea that our evidence is like
knowing that the truth is generated by chance, our theory of lower
probabilities is much closer in spirit to the Bayesian theory than the
theory of belief functions is. And, as we shall sce in §3 below, it does
not escape as thoroughly as one might think from the Bayesian
emphasis on prior probabilities.

I will not surprise the reader when [ say that 1 find belief functions
more interesting and promising than lower probabilities. In many
cases, I belicve, our cvidence is so unlike knowledge that the truth is
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generated by chance that it is misleading to liken a conviction that the
evidence supports A better than B to knowledge that the chance of A
is greater than the chance of B.

I hope, on the other hand, that the theory of lower probabilities |
have sketched here is more than a straw man. It is quite possible that
judgments of the kind the theory suggests will sometimes provide the
most useful and insightful way to analyze one’s evidence. And, as |
shall try to show in this paper, the theory provides explicit motivation
for assumptions that Good, Smith, and Williams have taken for
granted in their writings on lower probabilities.

What is a Degree of Belief?

What is meant by “degree of belief,” and how might an individual
determine his degrees of belief in a particular case?

The meaning of an “epistemic probability” or “degree of belief” is
very rich. It depends, | have argued, on the whole theory by which
the probability judgment is made or, as we might put it, on the whole
language in which it is expressed. A degree of belief of -3, say, means
one thing in the Bayesian theory and something different in the theory
of belief functions. It also depends on the canons of judgment that
have been established in the particular field of inquiry. A historian's
valuation of certain kinds of evidence may differ from a judge’s.

There is toom for ambiguity in the question about how an in-
dividual might “determine his degrees of belief.” Some Bayesians
give the impression of thinking that we have numerical probabilities
for everything hidden in our psyche: they would interpret “deter-
mine” as a synonym for “elicit.” Others take a more constructive
view; for them probability judgment is a matter of assessing cvidence
and constructing reasonable numerical belicfs. As 1 have tried to
make clear, I subscribe to the constructive view. Probability judg-
ment is a matter of construction. We may come to the task with some
vague beliefs, but these will not be numerically precise and will
usually not even have any very definite structure. (It would be silly,
for example, to argue about whether our unreflective beliefs have a
structure more like belief functions or more like Bayesian probability
distributions. There simply is not that much structure there.) And the
process of construction should ideally be sufficiently fruitful in new
insights and understanding as to render obsolete much of any
rudimentary structure that might be in these initial vague beliefs.
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Why Belief Functions?

For what reasons arc degrees of belief required to satisfy the con-
ditions imposed? Why, that is to say, should “belief functions™ be
required to be of the form (2) instead of, say, the more general form
(4)?

As I see it, the theory of belief functions is a language in which one
can construct and express probability judgments. Asking why the
theory uses degrees of belief with a given structure is like asking why
some aspect of a language’s grammar is as it is. Explanations can be
given, but they are incvitably internal explanations - explanations of
how that aspect fits in with other aspects of the language. Challenged
to explain why belief functions are required to be of the form ), 1
might point out that only functions of this form can be combined by
Dempster’s rule. Or | might point out that functions of this form
result when evidence is assessed using the scale of canonical exam-
ples involving randomly coded messages. But these are only internal
explanations. They do not rule out the usefulness or even supcriority of
a different theory using a different and possibly more general structure
for degrees of belief.

As 1 have tried to make clear, I do not deny the possibility of a
theory superior to the theory of belief functions. I believe, though,
that the superiority of one theory of probability judgment to another
can be demonstrated only by a preponderance of examples where the
best analysis using the one theory is more insightful than the best
analysis using the other. As Amos Tversky puts it, the unit of
comparison for theories of probability judgment is the individual
analysis.

The individual analyses we compare should be complete analyses ~
analyses beginning with an intuitive account of one's actual evidence
and building up formal judgments step by step. (Examples of such
analyses using belief functions are given in Shafer [1981] and
Shafer and Breipohl [1979].) It may be unfair to ask a theory to deal
with a problem which has alrecady been translated from actual
experience into the language of another theory.

It would be unfair, for example, to argue that the very existence of
a class @ of chance distributions such that (4) is not a belief function
is proof of the inadequacy of the theory of belief functions. For it is
not the case that we can ever really know, in a concrete problem, that
the truth is generated by chance in accordance with some distribution
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in a class @. Rather, the determination of the class # must itself be
regarded as the first step in one particular approach to constructing
probability judgments. And so it proves nothing that the theory of
belief functions may be unable to carry on from this first step. The
important questions are: (1) Can a theory of lower probability func-
tions show us how to carry out this first step insightfully? (2) In real
examples where such a theory succeeds, can the theory of belief
functions do as good or better using some other first step?

2. BETTING

Since they use the picture of chance, our three constructive theories
inevitably lead us to think about betting. But what exactly is the
significance of betting for these theories?

Certainly we should not, in a constructive theory, interpret a
probability judgment as an actual commitment to bet. Nor should we
interpret it as a declaration that the person making the judgment has
exactly the same attitude towards a bet in accordance with that
judgment as he has towards a fair bet in a game of chance. Our
relative equanimity about fair bets in games of chance is based on the
assurance that the chances are objective facts and on the assurance
that no possible opponent can gain an advantage over us through
deeper understanding or knowledge of the game, and these clements
are missing when we construct probability judgments on the basis of
ordinary evidence. A probability judgment using the Bayesian theory,
for example, is merely a judgment that our evidence is more similar in
strength and significance to the evidence provided by knowledge of
given chances than to the evidence provided by knowledge of
different chances. We will not be happy unless we feel that the
similarity is substantial and instructive and that our judgment is
sound, but we will not pretend that the similarity is complete, nor that
we are certain no one else could make a better judgment.

Long-Run Policies

So what are we saying about betting when we announce a probability
judgment in one of our constructive theories? We are only saying, |
think, that we judge our evidence to be similar to knowledge of a
chance model where certain bets conform to a prudent long-run policy.
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It is instructive to spell this out for each of our three theorics.

~ When we construct a Bayesian probability distribution P, we are
judging our evidence to be like knowledge of a chance model where
betting on A at the rate P(A) conforms to a policy that breaks even in
the long run. (If, for i = 1,2,..., a chance distribution P; over O, is
used to generate an independent outcome 6, €@, and if on each
occasion we choose a subset A; of ©: and bet on it at rate P;(A;), then
we break even in the long run.)

- When we construct a belief function Bel, we are judging our
evidence to be like knowledge of a chance model where betting on A
at the rate Bel(A) would conform to a policy that at least breaks even
in the long run, (Consider a sequence of randomly and independently
coded messages. Suppose the i"™ message bears on 6;. If we choose a
subset A; of each @, and if Bel;(A)) turns out to be the total chance
that the i™ true message implies A,, then we at least break even in the
long run by betting on A, at the rate Bel,(A)).)

- When we construct a lower probability function P,, we are
judging our evidence to be like knowledge of a chance model where
betting on A at the rate P ,(A) would conform to a policy that at least
breaks even in the long run. (If, for i = 1,2,.. ., a chance distribution
P, over ©, is used to generate an independent outcome 6, € @,, and if
on each occasion we choose a subset A, of ©; and bet on it at a rate
P +i(A) < P,(A)), then we at least break even in the long run.)

Notice that we can make statements for belief functions and lower
probability functions that are identical on the surface. But in making
these statcments we have chance models and long-run policies in mind
that are quite different in the two cases. A belief function and a lower
probability function that are mathematically equivalent evoke the
same bets in our actual problem, but they refer these bets to
different chance models and embed them in different long-run poli-
cies.

Notice also that our statements about the long-run policies breaking
even in the chance models are not quite theorems. They can be turned
into theorems only by giving some mathematical form to the implicit
assumption that our choice of the A, is independent of the truth and
of the random action of the model.

In formulating the statements about the models, 1 have been carcful
to embed cach probability judgment in a sequence of judgments with
different chance models and even different frames. For the chance
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model and the frame are constructed to represent the evidence in the
problem at hand, and the next problem, and its evidence, will be
different, If we were to allow ourselves to envision repeated trials
using the same model (P, ), then we could make much stronger and
more mathematically precise statements for the Bayesian and lower
probability models. We could, for example, say the following:

~If a chance distribution P over @ is used to gencrate a sequence
0y, 0, ...,of independent outcomes, and on each occasion we bet on
A C O at the rate P(A), then we will break even in the long run. In
fact, we will break even even if we offer such bets for all A C @ and
let our opponents choose, on each occasion, which bets to accept.

But since P is a product of our particular problem, these strong
statements are utterly irrelevant.

In the case of the chance model for belief functions there is no
such temptation to talk about repctitions. For the belief function Bel
is determined, in the model, by the random choice of a code and
would vary even if the chance distribution for the code were kept
fixed.

To summarize: Constructive probability judgments can be related
to betting, but the relation is tenuous on two counts, It is tenuous
because we are only comparing our evidence to a chance model. And
it is tenuous because even in the model the bets can be justified only
when embedded in a particular long-run policy involving other
models.

The Dutch-Book Arguments

Williams must have a more intimate relation between probability and
betting in mind when he writes about the ‘‘betting interpretation™ of
Bayesian degrees of belief and of lower probabilities and pleads for a
similar “‘operational interpretation” for belief functions. But what
more intimate relation can there be if we insist on a constructive
understanding of probability judgment?

Williams' answer, apparently, is that our primary purpose in con-
structing probability judgments should be the setting of rates at which
we will offer bets in accordance with some betting scheme.

There is, Williams reminds us, a belting scheme that seems to force
a Bayesian structure on betting rates and another, looser one that
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scems to force the less restrictive structure of lower probability
functions on them,

- Suppose we must choose, for each subsct A of 6, a betting rate
P(A) and then offer to take cither side of a bet on A at odds
P(A):1 - P(A). Then an opponent can compile a book of bets from
our offers that assures a net gain from us (a “Dutch book™) if and only
if the function P fails to be an additive probability distribution.

- Suppose we must choose a betting rate p, for each A and then
offer to bet on A at the odds p,:1-p,. but we are not required to
offer to take the other side of the bet. Let P (A) denote the greatest
rate at which we have offered to bet on A —either explicitly or
because such a bet can be compounded from our other offers. Then a
Dutch book can be made against us if and only if P, fails to be a
lower probability function. (See Smith [1961] or Williams [1976].
Williams® proof of this result is especially elegant.)

But there does not seem to be a betting scheme in which the
avoidance of Dutch book yields precisely the class of belief func-
tions.

The Dutch-book arguments are intcresting, but it is hard to accept
the claim that the setting of betting rates in some particular betting
scheme is the primary purpose of probability judgment.

It is often argued in this connection that every choice or action is
like a bet and that probability judgments ultimately have no purpose
other than to guide future choice and action.

But how well do human choices and actions fit the picture of a bet?
How well, that is to say, do they fit the apparatus of *‘decision
theory,” where alternatives are weighed by the combination of prob-
abilities and utilities? I believe that they do not fit very well. One way
to understand why they do not fit is to recognize that utilities, like
probabilities, do not simply exist. They are constructed. And in the
case of utilities the construction is accomplished not so much by
reflective thought as by our choices and actions themselves. It is only
after a human being or a society of buman beings has established a
sclf-conception through crucial choices in a given domain that we can
speak in any detail about his or its preferences in that domain. (For a
review of some recent thinking about the inadequacy of decision
theory, see March [1978.)

Probability judgments should help guide our future choice and
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action, but it is also important to remember that the proximate
purpose of probability judgment is always understanding. Human
beings often seem to prize understanding for its own sake, and it is
not easy to argue that this is always mere appearance. For it is only
after we have gained understanding that we can formulate other
goals.

Sometimes we are told that the Bayesian theory is a theory about
the betting behavior of ideal rational agents, and that as such it is
“normative”-it provides us with a definition of rationality that is so
inherently attractive that we should try to conform to it, even if we
cannot fully succeed. But surely this line of thought begs all the
important questions. It is vacuous to call a mode of thinking or
behavior an ideal unless it is appropriate to our needs and capabilities.
And though the Bayesian theory is clearly a norm for behavior within
a particular betting scheme, this does not make it a useful norm in
ordinary thought and action,

I conclude that it is misleading to speak of a “bettling inter-
pretation” of probability. All three of our theories of probability
judgment praduce degreees of belief that can be used to set betting
rates without fear of Dutch book. But this is only a minor aspect of
their meaning.

Betting as a Tool in Probability Judgment

Another possible way of relating betting to probability might be to use
introspection about betting as a tool in constructing probability
judgments.

In the context of our three constructive theories, this would mean
using such introspection to help us compare our evidence to canonical
examples involving chance. We might try to locate the strength of our
evidence on the scale of chances by asking ourselves at what odds
our attitude towards a given bet would be comparable to our attitude
towards a fair bet (Bayesian theory), or perhaps at what odds our
attidude would be comparable to our attitude towards a bet we know
to be at least fair (theory of lower probability functions). This might
be more effective psychologically than trying to think about our
evidence in terms of frequencies or propensities. The prospect of
monetary loss or gain might concentrate our minds and thus permit a
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more honest and acute assessment of the strength of our evidence
than we could obtain by thinking about it directly.

Here we have a reasonably sharp empirical question. Does it help
people assess their evidence to think about betting? Or is it more
helpful to think about frequencies or propensities? This question has
not, perhaps. been investigated as dircctly as it might be. But the
many empirical studies that have been made in this area do not seem
to indicate that the betting metaphor is any more useful than the
frequency metaphor, say, as a psychological aid in constructing
degrees of belief.

1 do not personally find that talk about betting concentrates my
mind on my evidence; instead it tends to divert my mind to
extraneous questions: my attitude towards the monetary and social
consequences of winning or losing the bet, my assessment of the
knowledge and astuteness of my opponent, etc. I find it inherently
implausible, moreover, that I could better understand the strength of
my evidence by asking myself about my willingness to bet. In a
situation where 1 had somehow made a thorough and unimprovable
but not fully conscious analysis of my evidence, it might be sensible
for me to forget about the evidence and concentrate on my own
hidden attitudes. But so far as I know, | do not make such un-
conscious analyses of evidence.

Lower Expectations

A function X which assigns a real number X(8) to every 0 €6 can
be thought of as a gamble: if X(8)>0, then X(8) is the amount we
win: if X(8)<0, then —X(6) is the amount we lose. The idea of
buying a gamble generalizes the idea of betting, for betting the
amount p on A at the odds p:1 — p means paying p to buy the gamble

1 ifeeA
x("):{o ifOZ A

Let us consider how each of our three theories would price a gamble.

(1) Bayes. If the truth is generated by chance in accordance with the
chance distribution P, then the fair price for the gamble X is, of
course, its expectation with respect to P, Ep(X). Paying Ep(X) for X
is a policy that at least breaks even in the fong run.
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(2) Belief Functions. If we receive an infallible message that the truth
is in AC@, then we know the gamble X (@) is worth at least
inf{X(0){0 € A} to us. So if we receive a randomly coded message
and the chance of the message meaning A turns out to be m(A) for
cach A C @, then it is natural to price the gamble at the average value

(8) ﬁ%m=gwmAm%xmn
e

N
Let us call Bel(X) the lower expectation of X. It is a fair price to pay
for X in the sense that we will at least break even if we pay stuch

prices for gambles in a long run of independent randomly coded
messages.

(3) Lower probabilities. Suppose we know the truth is generated by
chance in accordance with some distribution in a class ®. Then we
know the expectation of X is at least

&) E«(X) = ,ig'f’ Er(X).

And we will at least break even in the long run if we follow the policy of
paying this price for X.

In §1 above I called (9) the lower expectation of X, Is it consistent to
call both (8) and (9) by the same name? As it turns out, it is; if

# ={P|P(A) = Bel(A) for all AC @},
then (8) and (9) will be equal. (See Huber [1973] and Shafer [1978b].)

3. CONDITIONING

The idea of conditioning has its origin in the theory of chance.
Conditioning occurs most naturally, perhaps, in the case of a game
of chance that unfolds step by step. When such a game has been only
partly played out (when only the first die has been thrown, say),
chance still has a role to play. And this role can be described by the
conditional chance distribution. Suppose, indeed, that X denotes the
set of complete outcomes for the game, and that the chance for each

outcome x is denoted p(x), so that the chance law P governing the
game is given by

P(A) =3 {p(x)|x € A}
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for all A C X. Say the partial playing out of the game determines only
that the eventual outcome will be in the subset Xy of X. Then the
conditional chances p'(x) governing the remainder of play are
obtained by reducing the p(x) for x& X, to zero and multiplying the
p(x) for x € X, by the factor P(Xe)'. And the conditional chance
distribution P(+|X,) is given by

(10)  P(A|Xo) =2 {p'(x)ix € A)

_P(ANXy
~ P(Xo)

for all AC X. We can see that this is the right way to define the
conditional chances by thinking about long-run frequencies: P(A|X,)
is simply the proportion of the games that reduce to X, during the first
stage of play that will go on to have their eventual outcome in A,

Conditioning can, of course, be applied in the case of any subset X,
of X, even if X, does not correspond to a partial completion of the
game. There are several ways of explaining what meaning condition-
ing might have in this more general case. One way is to turn our
attention from the chances to the degreces of belief they justify, If we
know the chance distribution P and have therefore adopted its values
as our degrees of belief concerning how the game will turn out, then
news that the outcome has fallen in X, will naturally lead us to revise
our beliefs by (10). Of all the games in which this news is true, we will
tell ourselves, P(AjXy) is the proportion in which the outcome is in A,
And so adopting P(A|Xq) as our new degree of belief seems reason-
able, provided there is no trickery involved in our having received the
news that the outcome is in X, - provided, in other words, that our
receipt of this news is not the result of some fiendish scheme to
mislead us.

Now suppose we represent ordinary evidence by counstructing
degrees of belief over a frame @ and then obtain new evidence whose
direct effect on O is to establish with certainty that the truth is in a
subset @,. How should we change our degrees of belief to take this
new evidence into account? Each of our constructive theories of
probability has its own way of translating the rule of conditioning for
chance distributions into an answer to this questions.
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(1) Bayes. In the Bayesian case we have constructed an additive
probability distribution P over @, with the understanding that our
evidence is comparable to knowledge that the truth is generated by P.
So we will simply adopt the conditional distribution P (- |@,) as our
new additive probability distribution.

(2) Belief functions. In the case of belief functions, the chance dis-
tribution in our model is a distribution for the random choice of a
code, and when we take the news that the truth is in 0, into account,
we have to condition this distribution on a subset of codes.

Say we have represented our old evidence by a belief function Bel,
corresponding to a randomly coded message with possible codes
Ci.....Cs, where code ¢; was used with chance p; and decoding by
code ¢; produces the message A; C ©. We can simply incorporate the
news that the truth is in @, into the messages, thus changing A; to
A; N Q. But we must also notice that the news may tell us something
about which code was used: if A, NO,=#, then code ¢; cannot be the
code that was used. So in addition to changing A; to A; N O, we must
also condition the chance distribtuion for the codes on the subset
{ci]Ai N Oy # B} of codes. This means we replace the p, by p;, where

0 if A‘n(")o—'ﬂ
pi= pi
2 {pllAI N 90#¢} if A| ﬂ(%#ﬂ.

These two changes (replacing p; with pj and A, with A, N 6y) give us a
new randomly coded message representing the total evidence. The
belief function Bel(- |@,) corresponding to this randomly coded message
has m-values

2 {p,IA[ neo= A}
m(Al®o) =S {pilA N By = A} =

E {pilAi N B, # A}
for all A##, and so

Bel(A|8,) = 3, {m(B|8)|B C A}

> {p|A N B, C A} - 2 {pi|lA: N 6, =@}

1-3 {p|A N6, =)
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_ Bel(A U 8,) - Bel(®,)
I = Bel(®)

for all A C @. This is the rule of conditioning for belief functions.

(3) Lower probabilities. Suppose we think the evidence bearing on a
frame @ is similar in strength to knowledge that the truth is generated
by chance in accordance with some distribution in a class #. Then we
can take new evidence that the truth is in O, into account by saying
that our total evidence is similar in strength to knowledge that the
truth is generated by chance in accordance with some distribution in
the class @' obtained by conditioning on @, each element of % that
can be so conditioned. In particular, we replace our lower probability
P, by P, where

Pi(A) = inf{P(A|®y)|P € P; P(8,) >0},

and we replace our lower conditional probability function P (-] ) by
P(A|B) = inf{P(A|B N )P € P; P(B N O, >0}

= P (A|B NG,

Notice that P i(A|B) is undefined if P4 (B N @) =1, in which case
P;(BIG()) =1,

The Role of Conditioning

It should be emphasized that the decision to use the rule of con-
ditioning in one of our constructive theories is itself a constructive
judgment. We condition on B, as | have said, when the direct effect of
new evidence on our frame @ is to establish that the truth is in B. But
whether this is the direct effect of the new evidence is a matter of
judgment, not of fact. “The direct effect of the new evidence™ is an
idea that has reality only within our language of probability judgment.
We learn the meaning of this idea by example. just as we learn the
meaning of other elements of a language, and our application of the
idea to particular evidence is, like other probability judgments, a
comparison of that evidence with other examples.

The decision to condition is just one place where the idea of “the
direct effect of given evidence” comes into play in the theory of
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belief functions. It also comes into play when we represent an item of
evidence by a simple support function; in this case we must judge
that the item's only direct effect on @ is to support a given subset.
And, as we shall see in §4 below, this is merely a special case of the
judgment that the direct effect of given evidence on @ is discerned by
a given subalgebra.

The theory of belief functions is so concerned to identify the direct
effect of given evidence because it often works with limited items of
evidence. As I pointed out in §1 above, the fundamental strategy of
the theory is to make judgments based on different items of evidence
and then to combine these judgments. Conditioning is merely one
example of such decomposition and recombination, and it is unusual
only in that the message of one of the items of evidence is conclusive.

Theories which compare evidence to knowledge that the truth is
generated by chance do not depend so extensively on the decom-
position of evidence. Our theory of lower probabilities, for example,
breaks the overall task of judgment down by distinguishing different
questions, not by distinguishing different items of evidence bearing on
those questions. We construct a lower probability function from
many judgments of the form “our evidence is like knowing the
chance of A to be greater than p,” but it is “A™ and “p" that vary
from judgment to judgment, not the evidence; all the judgments are
supposed to be based on the total evidence. In this theory. as in the
Bayesian theory, it is only in the case of conditioning that we
decompose our evidence, and so it is only in the case of conditioning
that we are concerned with identifying the direct effect of a limited
item of evidence.

How important is conditioning? Some Bayesians have given it a
central role in their theory, perhaps because it is the only way their
theory decomposes evidence and is hence the only way they can
formally combine “new™ evidence with old. (See, for example, de
Finetti [1974], p. 141.) But I am inclined to think of conditioning as a
tool we will not use very often in a constructive theory, It will happen
fairly often, no doubt. that we can formulate a frame and distinguish
cvidence whose direct effect is to establish that the truth is in a
certain subset. But how often will this frame be the same as the one
we have used or want to use in assessing the balance of our evidence?
New evidence that we actually obtain after constructing numerical
probability judgments over a frame @ will seldom affect © so simply.

PV
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And 1 also find it doubtful whether the assessment of a body of
cvidence already obtained will very often be best accomplished by
singling out a part that establishes a subset B of a frame 0, using the
rest to construct degrees of belief over all of @, and then conditioning
on B. It will usually, I think, be more sensible and efficient to treat
knowledge of B as just another element of our background know-
ledge and to concentrate our probability judgments on matters that
we really find uncertain. For a discussion of this poeint in the context
of a detailed example, see Shafer [1981].

One aspect of a decision to use conditioning in our constructive
theories is the implicit judgment that the news that the truth is in B
has not been sclected from the many things we might be told just
because it will interact with other evidence in such a way as to
mislead us. This judgment can be transiated into statements about the
chance models used by the theories. In the Bayesian theory and the
other theories that think of the truth as being generated by chance,
the judgment comes down to saying that our new evidence is like
learning the truth is in B by means of some mechanism that selects
this message to send us without regard to the chances by which the
truth was generated. In the theory of belief functions, the judgment
comes down to saying that the selection of the message was without
regard either to how the random coding of previous messages was set
up or to how that random coding turned out. Notice that these
statements assure, within the chance models, that betting in accord
with the new degrees of belief remains a policy that at least breaks
cven in the long run.

A Comparison of Two Rules

The theory of belief functions and our theory of lower probabilities
have very different rules of conditioning - rules that can give very
different resulls even when applied to the same degrees of belicf, We
can gain insight into the difference between the two theories by
studying a simple example of this divergence.

Let us first consider how the theory of belief functions conditions a
simple support function. Suppose A, is a proper non-empty subset of
O and we represent strong but inconclusive evidence that the truth is
in A, by the simple support function
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0 MAZA
an Bel(A)=1.95 if ACA#0O
1 ifA=0

This belief function has m-values m(A ) = -95, m(8) = 05, and m(A) =
0 for all other A. In adopting it we are likening our evidence to a message
that probably means A(chance -95) but might possibly (chance -05)
mean nothing. Now suppose we obtain new evidence whose direct effect
on O is to establish that the truth is in A,, where A; is some other subset
of @ such that A, A, # @. Then we condition Bel on A,, obtaining

0 fANALZA
(12)  Bel(A|A)=1{-95 if AAINA,CADBA,,
I ifA,CA ’

the news that the truth is in A, changes the message that it is probably
in A, into the more specific message that it is probably in A\ N A,

Let us make the story more concrete. Suppose a burglar is traced to
a rooming house, in such a way as to make it highly probable that he
is actually one of the roomers, though it is believed that he keeps his
tools and loot elsewhere. A police detective searches the rooming
house and interviews the five roomers, but on this first examination
finds nothing that either exonerates or further incriminates any of
them. At this point the detective might formulate a frame @ which
includes, for each roomer i, a subset B, corresponding to the pos-
sibility that roomer i is the burglar. (See Figure 1.) And he might
adopt (11) as a representation of his evidence, where A, is the union
of the B;’s.

Fig. 1.
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Suppose now that roomers 4 and 5 produce airtight alibis, con-
clusively establishing that ncither is the burglar. Such alibis, in order
to be convincing, would have to involve great detail, and this detail
would inevitably provide less conclusive evidence about other ques-
tions. But we may suppose that these other questions are not germance
to the investigation and therefore nced not be introduced into the
frame ©. Thus the detective may judge that the only direct effect of
this new evidence on 6 is to climinate B, and B« from consideration.
In this case he will want to condition (11) on the set A,= BsU B;,
which corresponds to the burglar being someone other than roomer 4
or roomer 5. The set A\N A;= B, U B,U B, corresponds to the bur-
glar being one of the first three roomers. And according to the new
belief function (12). the suspicion against the rooming house now
points to these three.

Here is another way the story might go. Suppose the new evidence,
instead of consisting of alibis, is evidence from the scene of the crime
establishing that the burglar has blood type O. In this casc the
detective might introduce the question of the burglar’s blood type into
our frame @, so that there is a subset A, of @ corresponding to its
being type O. (This set A, is pictured in Figure 2; since we do not yet
know the roomers’ blood types, A, intersects with each B;) And he
will then condition (11) on A, The resulting belief function (12)
awards degree of belicf. ‘95 to A, N A,, which corresponds o the
proposition that the burglar is one of the roomers and has blood type
0. Under these circumstances the detective's next step will no doubt
be to find out the blood type of each of the roomers and to condition
(12) on this further information. I will refrain from illustrating this

Fig. 2.
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further conditioning graphically, because a very complicated picture
arises when we introduce distinctions about each roomer’s blood type
into O, But the final result is obvious: if none of the roomers have
type O blood then the suspicion against them is dispelled; otherwise it
is focused on those that do.

One might challenge the adequacy of (11) and (12) as an analysis of
this detective story on the grounds that there is probably other
evidence that it does not take into account. Surely the detective
acquired some hints and hunches in the course of interviewing the
roomers. And might he not have some prior inclination to expect type
O blood, given its high frequency in the population? The answer to this
challenge is that the theory of belief functions can always accomodate
further evidence, provided its relevance is identified and its value is ass-
essed. The detective can decide he has further evidence worth introduc-
ing into the analysis, or he can decide he does not.

Let us now consider how to analyze the detective story using our
theory of lower probabilities.

The most obvious approach is to liken the initial evidence in favour
of A, to knowledge that the truth is generated by chance and that the
chance of A, is at least -95. This means representing the evidence by
the class # = {P|P(A,) = -95} or by the lower probability function

0 HAZA
(13) P.(A)= 195 if AAICA#0
1 ifA=0 '

which is mathematically identical to the belief function (11). Butif we
condition ? on a subset A, that intersects both A, and A, then we
will obtain the new lower probability function

(14) , _ [0 if A;ZA
Pi(A)= {I if A,CA"
which indicates no particular support at all for A, N A,. In fact, (14)
seems to ignore the initial evidence. It is presumably the lower
probability function we would adopt if we had only the new evidence
establishing A,.

It will be agreed, 1 think that (14) is unsatisfactory. How is it to be
avoided?
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The natural move is to challenge the adequacy of the class @ =
{P|P(A )= 95} as a representation of our initial evidence. There is,
one might argue, more to be said on the basis of the initial evidence
than that the chance of A, is at least 95. In order to prepare for
conditioning on the alibis of the two roomers for example, we might
decide that the five roomers have equal chances of being the burglar,
thus narrowing the class @ down to the class

P ={P|P(A)=-95; P(B)) = P(B;) = P(B3) = P(B))
= P(Bs)}.

This already awards a lower probability of -57 to B, U B,U B;. And
when we conditon ®, on A, = B4U B;, we obtain

P = PIP(A) = 1, P(A\N A) =22 ~ 92 P(B) = P(B))
= P(R),

which awards a lower probability of 92 to AN A, = B;UB,UB,;.
This is nearly as great as the degree of belief -95 awarded by the
belief function (12). Notice, though, that this analysis is sensitive to
the number of roomers and the proportion with alibis in a way that
the analysis using belief functions is not. If four out of the five
roomers have alibis, then the final lower probability for the remaining

one would be only %%z -79; if there were 20 and 19 were similarly

exonerated, then the final lower probability for the remaining one
would be %z -49. And these figures could easily be altered if we
claimed that our initial evidence justified unequal prior chances for the
roomers.

The initial class @ can also be adapted to give sensible results when
conditioned on the burglar’s blood type. In this case the natural move
is to narrow # down to

P, ={P|P(A))=95; P(A;N A) = P(A)IP (A}

We require, that is to say, that A, and A, be independent. This is
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reasonable: once we have decided to think of the truth as random, it
is natural to think of the random determination of the burglar’s blood
type as stochastically independent of the random determination of
whether he is one of the roomers. Conditioning ®; on A, yiclds

@1 ={P|P(A)) = I; P(A; N Ay =95},

which gives a lower probability function mathematically identical to
the belief function (12). :

This last analysis can be extended to an analysis incorporating
further conditioning on the roomers’ blood types that will continue to
agree with the analysis using belief functions. Here is the set-up. Let
T denote the burglar’s blood type, let T, denote the i*™ roomer’s blood
type, and set

0 if the burglar is not one of the roomers
X=1. . . ath
i if the burglar is the i" roomer.

(Notice that T =T, when X =i. And "X # 0" is equivalent to A,)
Replace the initial class P by the class @y consisting of all P such
that P(A) =95, (X, T\,..., Ts) are jointly independent with respect
to P, all the T; have the same marginal distribution, and T has this
same distribution conditional on X =0. We may take the burglar's
and the roomers’ blood types into account by conditioning @, on the
values of T and the T, and if there is a subset of roomers whose
blood type agrees with the burglar's they will inherit the full -95
suspicion against the rooming house.

To summarize: A basic idea of the theory of belief functions is the
idea of evidence whose only direct effect on the frame @ is to support
a subset A,, and an implicit aspect of this idea is that when this
evidence is combined with further evidence whose only direct effect
on O is to establish a compatible subset A,, the support for A, is
inherited by A, N A,. The theory of lower probabilities does not have
a fully equivalent idea. New evidence establishing A; may cause prior
support for a subset A, to be inherited by A, N A, in the theory of
lower probabilities, but whether this happens will depend, as in the
Bayesian theory, on various “prior probabilities."

Indeed, the similarity between our theory of lower probabilities and the
Bayesian theory in their dependence on prior probabilities is striking.
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Our theory of lower probabilities does not, apparently, always get us
away from the Bayesian bemusement over how to assess prior
probabilities when the evidence is weak. In the case of our five
roomers there was a natural symmetry on which to pin “equal prior
probabilities,” +but one could easily construct similar examples where
there are no obvious symmetries or else competing ones, so that the
prior probabilities needed in order to get sensible answers from
conditioning secem much more arbitrary. This makes us wonder just
how much is gained in the generalization from the Bayesian theory to
the theory of lower probabilities.

However we answer this question, the drastically different results
we get by conditioning (11) and (13) should bring home to us that a
belief function can have quite a different meaning from a mathema-
tically identical lower probability function. Saying our evidence is like
a message that probably means A, but might mean nothing is quite
different from saying it is like knowing that the truth is generated by
chance and that the chance of A, is great. So we must decide, when
we make a probability judgment, just which formulation fits the
significance of our evidence. We cannot simply make a vague judg-
ment that the evidence supports A, express it numerically by (11),
and then interpret (11) indifferently either as a belief function or as a
lower probability function.

Conditional Bets

Consider again two proper subsets A, and A, of @ such that A, # A,
and A, N A; #fl. Following de Finetti, let us call a gamble of the form

(15) I-p fOEANA,

X@®={ —p if 0EANA,
0 if 0€ A, )

where 0<p <1, a “bet on A, conditional on A;." The idea behind
this name is that if we agree to this gamble (i.e., buy it for the price
zero), then we will be betting on A, at odds p:1 —p and total stakes
p + (1 = p) =1, with the understanding that the bet will be called off if
the truth turns out, when it is revealed, not to be in A,.

In our constructive thecories of probability judgment, our attitude
towards a gamble depends, in the tenuous way discussed in §2 above,
on the gamble's expectation or lower expectation. This is true in
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particular of a conditional bet. If the expectation or lower expectation
of the conditional bet is nonnegative, then the bet conforms, in the
chance model we have used to represent our evidence, to a policy that at
least breaks even in the long run.

Qur attitude towards any gamble will, in general, change as we
acquire new evidence. And in the theory of belief functions, our
attitude towards a conditional bet can change dramatically when we
obtain new evidence establishing the condition of the bet. Suppose,
for example, that we have represented our evidence about © by the
belief function (11). Then our lower expectation for the the con-
ditional bet (15) is

iy
Bel(X) = -95Linf X (8)]+ -05[inf X (0)]
BEA, L1=0)
=—05p

Since this is negative, the theory gives no sanction to the bet. But if
we obtain new evidence establishing A, and change our belief func-
tion to (12), then the lower expectation changes to

S~
Bel(X|A;) =95 inf X(0)1+ -05[inf X(8)]
BEAINA, (=X
=-95(1 —p) +-05(—p).

If p <95, then this will be positive and so the theory will sanction the
bet as reasonable policy. It is easy to see intuitively why our attitude
towards the bet changes in this way. The bet is essentially a bet on
AN A,;, and the original evidence, while supporting A, does not
provide any particular support for A, N A, until it is conjoined with
the evidence establishing A,.

Neither the Bayesian theory nor the theory of lower probabilities,
in contrast, ever changes its willingness to sanction a conditional bet
because of new evidence whose direct effect is to establish the bet’s
condition. Indeed, when we condition a Bayesian probability dis-
tribution P on A,, the expectation of (15) changes only from Ep(X) to
Ep(X).

P(Ay)°

it cannot change in sign. And when we condition a class @ of
distribution on A,, the lower expectation of (15) changes only from

E (X) =inf{Ep(X)|P € P)

Er(X]Ay) =
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to

Ep(X)
P(A)

and while this may be a change from zero to a positive quantity it
cannot be a change from a negative to a non-ncgative quantity or
vice-versa.

This-contrast can also be expressed in terms of maximum rates for
conditional bets. The maximum rate for betting on A, conditional on
A, is defined as follows:

Ex(X|As) = inf{ IP € ®; P(A)>0),

—-1In the case of a Bayesian probability distribution P such that
P(A) >0, itis

sup{p|Ep(X) =0},

where X, which depends on p, is the conditional bet (15).
—In the case of a belief function Bel such that Bel(A)) <1, it is

~~
sup{p|Bel(X) = 0).

—In the case of a class @ of distributions such that p(A;) <1 (i.e.,
P(A,)>0 for some P € P), it is

sup{p|E «(X) = 0} = sup{p|Ep(X) =0 for all P € P}.

These definitions all say the same thing: the maximum rate is defined
except when we are certain the truth is not in A, (in which case the
conditional bet is of no interest), and it is defined to be the greatest
value p for which the bet is sanctioned. In general, a bet on A,
conditional on A, is sanctioned in one of the constructive theories
only if the bet's value for p is less than or equal to this maximum
rate. Thus the contrast between belief functions and the other two
theories can be expressed by saying that the maximum rate for
betting on A, conditional on A, may change when one conditions on
A, in the theory of belief functions, but not in the other theories.

The picture becomes clearer, perhaps, then we notice that in the
Bayesian theory the maximum rate for betting on A, conditional on
A. happens to be equal to the conditional probability P(A,|A,). This is
because Ep(X) =0 if and only if

P(A, 0 A)(1—p)+ P(A, N A)(—p) =0,
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or

P(AINA) _
< P(Az) - P(A|IA1)'

Bear in mind that though this maximum rate might be called a
“conditional betting rate”, it is the bet that is conditional; the rate
itself is “unconditional” in the sense that it is our rate prior to
obtaining new evidence and ‘“conditioning” on A,. But when we
obtain this new evidence the conditional bet becomes, for practical
purposes, unconditional - for we know its condition is satisfied. Thus
our new maximum rate for the conditional bet will be the same as our
new maximum rate for an unconditional bet on A,-i.e., our new
degree of belief in A,. But this new degree of belief is P(A|A;). This
is how it happens that our maximum rate for this particular con-
ditional bet is unchanged.

The same thing happens in our theory of lower probabilities: the
maximum rate for betting on A, conditional on A, happens to be
equal to P ,(A)|A;), and hence remains unchanged when we condition
on A,. But in the theory of belief functions this does not happen: our
“prior” maximum rate for betting on A, conditional on A, is usually

not equal to Bel(A,|A;), our “posterior’” maximum rate for betting on
Ar

The Dynamic Assumption of the Betting Theories

In this essay | have insisted on understanding both the Bayesian
theory and the theory of lower probabilities as constructive theories. |
have assumed that the degrees of belief given by both theories are the
result of comparing one's evidence to knowledge about chances
governing the truth. And | have used this assumption to derive the
theories’ methods for pricing gambles and their rules of conditioning.

In the literature that treats probability theory as a theory about the
gambling behavior of “idealized rational agents,” on the other hand,
there is no possibility of appealing to chance models to derive rules of
conditioning. And thus these rules for changing degrees of belief or
betting rates become, to use Ian Hacking’s eloquent phrase, dynamic
assumptions.’ And one faces the problem of making these assump-
tions plausible,

Here is how de Finetti tries to make the Bayesian rule of con-

-
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ditioning plausible. He begins by defining a Bayesian’s *“‘conditional
probability of A given B,” denoted P(A|B), as his rate for betting “'on
A conditional on B — his rate for betting, that is to say, on A with the
understanding that the bet will be called off unless B is true. (See de
Tinetti [1964), p. 109, [1972], p. 82, [1974], p. 135.) He then proceeds
to interpret P(A|B) as the probability of A conditional on B in the
usual sense - i.e., as the Bayesian's degree of belief or betting rate for
A after he has obtained new evidence establishing B. (See de Finetti
[1964], p. 119, {1972], p. 210, [1974], p. 141).

What are we to make of this procedure? It obviously takes for
granted that one's betting rate for a conditional bet should be un-
changed when new evidence is obtained whose direct effect is to
establish the truth of the bet's condition. Let us call this de Finetti’s
principle. 1 have been unable to find a critical discussion of this
principle in de Finetti's writing. He seems to consider the principle
too self-evident to require such a discussion.

As one who finds the theory of belief functions, which does not
obey de Finetti's principle, self-consistent and appealing, 1 find the
idea that de Finetti’s principle is self-evident baffling. 1 see the
correctness of the principle when betting rates are based on know-
ledge of chances governing the truth. I am willing to accept the
principle as part of a theory that compares our evidence to knowledge
of chances. But I do not see that it is inherent to the idea of betting
per se. It is clear enough that a bettor should change his betting rates
when he learns that B is true, and that his new rate for an un-
conditional bet on A should be the same as his new rate for a bet on
A conditional on B. Moreover, these new rates should be the same as
the new rate for a bet on A conditional on any B' such that
B C B'C ©. All these bets are equivalent for someone who knows
that the truth is in B. But why should the new rates for all these bets
be the same as the old rate for the bet conditional onr B? Why should
this particular rate remain unchanged while the others change?

De Finetti’s principle can similarly serve as the dynamic assump-
tion of a betting theory of lower probabilities. Smith [1961] seems to
use it in this way, for he gives the name ‘“‘lower conditional prob-
ability™ to a bettor's maximum rate for a bet on A which is to be
called off unless B is true (p. 6) and then takes it for granted that this
should become his betting rate for an unconditional bet on A when he
obtains new evidence cstablishing B. Williams [1975]) similarly
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identifies lower conditional probabilities as betting rates for con-
ditional bets but does not discuss changes in betting rates resulting
from new evidence.

Williams® Argument on Conditional Bets

On p. 381 of his review, Williams discusses the pricing of conditional
bets in the theory of belief functions. He casts his argument in terms
of a numerical example, but we can easily recast it in general terms. It
begins, essentially, with the following fact: offers to bet on A, at rate
p and on A, conditional on A, at rate q entail an offer to bet on
AN A, at rate pq. (Proof: If the bet on A, has total stakes q, then it
is the gamble

_f[-p)g fOEA,
X'(O)"{(—n)q if 62 Ay

If the conditional bet has unit stakes, then it is the gamble

l"q ifOEAlﬂA;
(16) XA0)={ —-q fOEANA,
0 if 02 A, ’

Taking both these gambles means taking the gamble

_ l—pq ifﬂEA.ﬂA;
Xi(8) + X(6) = {—pq if O AN A,
which is merely a bet on A; N A, at the rate pq.)

Suppose we price gambles using a belief function Bel, so that
Bel(A;) and Bel(A, N A,) are the greatest rates at which we will bet on
A, and AN A,, respectively. If q is a rate at which we bet on A,
conditional on A,, then our willingness to bet on A, at the rate Bel(A,)
implies, by the itialicized sentence, a willingness (o bet on A, N A, at
the rate Bel(A;)g. So the assertion that Bel(A, N A,) is the greatest
rate at which we will bet on A; N A, will be valid only if

an Bel(A, N Ay = Bel(Ax)q
Williams asks, in effect, whether the pricing of conditional gambles in

the theory of belief functions guarantees that (17) will be true.
In fact, the theory of belief functions does guarantee (17). For it
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sanctions the conditional bet (16) only if (16) has a non-nepative lower
expectation - i.e., only if

(1- @)%, (m(ANAC AN Ay}
=g 2 {m(AANA N A, #§),
which implies
(1=-@)X{m(AJAC AN AY
=q 2 {M(ANAC Ay AC A N A,
or
(1 - q)Bel(A, N Ay) = q(Bel(A) - Bel(A, N Ay)),

which is equivalent to (17).

There is, of course, a more general issue here. The question is
whether interpreting Bel(A), for each A C @, as the greatest rate at
which a bet on A is sanctioned is consistent with sanctioning every
gamble with non-negative lower expectation. We easily see thatabet on
A atrate p has non-negative lower expectation if and only if p < Bel(A).
But perhaps it is possible, in some cases, to build up abet on A atarate
higher than Bel( A) by compounding other sanctioned gambles. Infact, it
is not possible, One way to verify this is to check dircctly that the lower
expectation ﬁaobcys ﬁe\l(x. + X,) ?—ﬁe\l(x.) + ﬁa(x,) and ﬁ?l(aX) =
a ﬁ;:\[(X) for a=0. Another way is to apply the general theory
developed by Smith and Wiiliams.

The relation (17) would be a problem for belief functions if we
interpreted the conditional degree of belicf Bel(A,|A;) as a sanctioned
rate for a bet on A, conditional on A,. For then (17) would imply

(18) Bel(A, N A,) = Bel(A,) Bel(A )| Ay),

and, as Williams shows using a numerical example, this relation can
easily be violated by belief function.

Unfortunately, Williams finds the identification of conditional
degrees of belief with betting rates for conditional bets so compelling
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that he takes the failure of (18) to be a shortcoming of the theory of
belief functions. He concedes (p. 381) that one might say that
“Bel(A|B) as defined by Shafer should be interpreted as the largest
rate at which the subject would be prepared to bet on A if B were
discovered to be true (whatever this means), whereas the inter-
pretation given is in terms of the subject’s prior readiness to accept
conditional bets.” But he evidently finds this too bizare to take
seriously, for he concludes (p. 387) that the theory’s rule of con-
ditioning “excludes the possibility of interpreting degrees of belief in
terms of acceptable betting rates.”

I have, I hope, adequately explained why the theory of belief
functions does not identify conditional degrees of belief with betting
rates for conditional bets. And I think we may conclude from the
example provided by the theory of belief functions that such an
identification is not inherent in the idea of betting itself. So if we apply to
Williams' ideas on lower probabilities the same standards of justification
that he has applied to the rules for belief functions, we must ask him to
justify this identification. Perhaps the best justification is the one I have
developed in this essay: the identification holds if our model for
evidence is partial knowledge of chances governing the truth.

4. MINIMAL EXTENSION

A lower probability function defined only on a restricted class of
subsets of a frame © can always be extended in a minimal way to a
lower probability function defined on all subsets of ©. Belief func-
tions can be extended in a similar way provided that the restricted
class is closed under intersections but not, in general, otherwise. And
this, Williams argues, makes it “difficult, in certain cases, to find a
belief function which might adequately express a subject’s opinions.”

Here, as clsewhere in his review, it is not clear whether Williams is
taking a constructive point of view. His talk about “expressing a
subject’s opinion” could be construed to mean that we are concer-
ned not so much with constructive probability judgment as with the
task of eliciting opinions already determined. I shall, however, res-
pond to Williams’ criticism within the constructive framework of this
essay.
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Minimal Extension for Belief Functions

Consider a detective who is trying to find out who stabbed a man to
death. Many questions will engage his interest: the circumstances of
the killing, the circumstances of the victim, etc. But few of his
sources of evidence will bear directly on more than a few of these
questions. A medical specialist might, for example, give evidence that
bears directly only on the time of death and the nature of the struggle.
Evidence that bears on the time of death may, of course, ultimately
point to the killer, but only indirectly, through its interaction with other
evidence.

It may be the case, as I supgested in §3 above, that the idea of
“direct effect of evidence™ cannot be reduced to simpler ideas and so
must be learned by example. Be this as it may, it is a clear and
commonplace idea, and one that is fundamental in the theory of belief
functions, The use of the idea is quite simple. When we judge that
given evidence bears directly only on certain questions, we formulate
a frame that deals only with these questions and then construct a
belief function Bel over this frame to represent the evidence. We then
think of this frame as a coarsening of a finer frame @ that takes into
account the other questions with which we are concerned. (See
Chapter 6 of A Mathematical Theory of Evidence.) Or, to use a more
familiar vocabulary, we think of the subsets of the first frame as
forming a subalgebra @ of the algebra of all subsets of the finer frame
®. And we adopt the belief function Bel over ®, where

(19)  Bel(A) = sup{Bel(B)|B € B, B C A}

for each A C ©. The belief function Bel is called the minimal (or
vacuous, or canonical) extension of Bel; it gives each element of %
the same degree of belief as Bel does, and it gives the other subsets
the smallest degrees of belief consistent with these. (Sce §7.3 of A
Mathematical Theory of Evidence.)

The subalgebra of @ may be more or less detailed. The detective
and medical specialist, for example, may judge that the direct
significance of certain medical evidence is exhausted by saying that it
is highly probable that death took place between § and 10 hours ago.
Or they may think this evidence also provides some support for a
more exact time of death, Or they may think it provides both this and
also some indication of the nature of the struggle. In the first case
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they might set B = {@l, B, B, ®}, where B, corresponds to the death
taking place between 5 and 10 hours ago, set Bel(#) = Bel(B,) = 0,
Bel(Bo) = -95, and Bel(8) = 1, and thus obtain for Bel a simple support
function focused on B, But in the other cases B will be more
detailed and Bel will be more complicated.

The idea of minimal extension can be generalized to the case where
the initial belief function Bel is defined not on a subalgebra but
merely on a collection € of subsets of @ that is closed under
intersections. (A function on such a collection is called a belief
function if there is at least one way to extend it to a belief function
over 8.) As it turns out, there always exists in this general case a
belief function Bel over @ that extends such a belief function Bel
(i.e., agrees with it on %) and gives all subsets of O the smallest
degrees of belief given to them by any belief function that extends
Bel. To put it another way, the function Bel defined by

20) Bel(A) = inf{Bel'(A)|Bel’ is an cxtension of Bel}

for all AC® is a_belief function. If € is not an algebra, then the
formula (19) for Bel may not be valid, but a more complicated
formula can be given. (See Shafer [1979b].)

The notion of minimal extension breaks down for belief functions if
the collection € on which Bel is initially defined is not even closed
under intersections. For in this case there may not be a single
extension of Bel which assigns smallest degree of belief to all subsets
of ©. To put it another way, the function Bel given by (20) may fail to
be a belief function. The practical implication of this is that prob-
ability judgments based on a single item of evidence should include
direct judgments about AN B whenever they include direct judg-
ments about A and about B. I, for example, our medical specialist
judges given evidence to indicate both that the death occured within
the last ten hours and that the victim resisted, then his numerical
judgments should include not only judgments about the support for
each of these propositions but also a judgment about the support for
their conjunction, If the specialist judges that the support for the two
propositions comes from intuitively independent items of evidence or
aspects of the evidence, then he can use Dempster’s rule to determine
the degree of support for the conjunction, but otherwise he must
make a direct judgment,

In practice, the theory of belief functions applies minimal extension

CONSTRUCTIVE PROBARILITY 4

mainly to the case where initial judgments determine a belief function
on a subalgebra. For the intuitive judgment that given evidence bears
directly only on certain questions seems to translate naturally into the
idea that it bears directly only on a subalgebra. And most of the
theory's relevant tools (assessment relative to a single dichotomy,
consonant assessment, discounting of frequencics) are readily under-
stood as tools for constructing belief functions on subalgebras. The
generalization to the case of a collection of subsets closed only under
intersection seems to be of interest only as a technical tool in a
theoretical context. (See Shafer [1978b]).)

Minimal Extension for Lower Probabilities

As Williams points out, minimal extension can be applied to lower
probabilities defined on an arbitrary collection &. Suppose, indeed,
that we make direct judgments that give us lower probabilities P ,(A)
for A in such a collection € and then make the judgment that those
lower probabilitics exhaust the impact of the evidence. If we have
arranged the judgments P ,(A) for A € & so that there is at least one
extension to a lower probability function over @ (i.e., so that there is at
least one lower probability function P, defined for all subsets of ® such
that P 4(A) = P 4(A) for all A € &; this may be a difficult condition to
check), then there exists a minimal extension — a lower probability
function F: defined for all A C ® and awarding all subsets the least
values awarded by any P, that extends P,. In other words,

PuA) = inf{P 4(A)|P & is an extension of P}

defines a lower probability function. This is obviously the same
concept of minimal cxtension as the one used by the theory of belief
functions. The only difference is that it works for all €, not just for &
that are closed under intersections.

The matter can be put most concisely by saying that there always
exists a minimum clement in the class of those lower probability
functions assigning given values to given subsets. Notice, however,
that there are many other properties such that there does not exist a
minimum element in the class of lower probability functions having
the property. If, for example, & = {— 1,0, 1}, then there is no minimum
element in the class of lower probability functions having lower
expectation zero. Thus even lower probability functions are limited in
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this respect. One cannot specify arbitrary propertics for a lower
probability function, decide that these specifications exhaust the
impact of the evidence, and then adopt the minimum lower prob-
ability function having the propertics.

Williams’ notion of minimal extension finds a place in the general
conslructive theory of lower probabilities that 1 developed in §1
above, but only as a rather special case. For in that theory we make
judgments that impose a rather wide variety of constraints on a
supposed chance distribution P before judging that we have exhaus-
ted the impact of the evidence and proceeding to derive a lower
probability function P, from the class @ of distributions satisfying
the constraints. And only if the constraints are all of the particular
form “P(A)>c¢” can we think of each judgment as establishing a
particular value P ,(A).

Williams® Example

The tool of minimal extension is more widely available for lower
probabilities than for belief functions. But what significance does this
have? It seems to me that it has little immediate significance, and that
its ultimate significance can only emerge from comparing the two
theories as a whole in the context of actual examples. Discussing the
guestion in isolation is rather like comparing two tool boxes on the
basis of the weight of their hammers without regard for the different
roles the two hammers play.

Williams does give an example to support his belief that minimal
extension for arbitrary € is nceded. He writes as follows:

... suppose there is evidence relating to the unknown outcomes of two tosses of a coin
giving rise, for each toss, to a belief function

Bcl({H))=§l

Bel({T) =0.

The upper and lower probabilities of heads, on cither toss are therefore Vand 1,
respectively. Now consider which belicf function might be chosen to express the
impact of the evidence on the sct of possible joint outcomes {HH, HT, TH, TT). We
must have

® Bel({HH, HT) = Bel({HH, HT)) =

N —
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(6) Bel({TH, TTH = Bel{HT, TT) =0

since the arguments in (5) are respectively the events ‘heads on the first toss' and
‘heads on the second toss®, whilst the arguments in (6) refer correspondingly to tails.
Furthermore. one can imagine situations in which it would seem reasonable to say that
no more support accrues to the remaining scts of possibitities than is required by (5)
and (6). That is to say, we should look for a minimum clement in the set of belief
functions satisfying these conditions . ...

But, as Mr. Williams points out, there is no minimum in the class of
belief functions over @ ={HH. HT, TH, TT} satisfying (5) and (6).
(Here we have, in effcet, ¥ ={@, {HH, HT}, {HH, TH}, {TH, TT},
{HT, TT}, O}, and this is not closed under intersection. We have made
judgments about the degree of support for {HH, HT} and about the
degree of support for {HHH, TH}, but not about the degree of support
for (HH}={HH,HT}N{HH, TH}.)

What are we 10 make of this example? Does it demonstrate that the
wider availability of minimal extension can enable a theory of lower
probabilities to do better than the theory of belief functions? No. The
deficiency of the example in this respect is its abstract starting point.
To compare theories fairly we need to compare complete analyses
analyses beginning with a full intuitive account of one’s evidence and
then building up the formal judgments step by step. Williams begins
with the assumption that his evidence is best represented by the
judgments (5) and (6) and the further judgment that € exhausts the
impact of the evidence, and this assumption begs the real questions.
If we do begin with an intuitive account of the evidence, then it may
emerge that these judgments provide one sensible analysis, but it is
unlikely that they will provide the only one. It is quite possible that
there will be sensible analyses using belief functions that take quite
different tacks. We might even choose to make a direct judgment
about {HH}.

The only gesture Williams makes towards giving an intuitive basis
to his example is the following:

... Suppose the evidence to consist of the outcome of a single toss of the coin. 1t is
hard to see how this could provide evidence for or against any particular correlation . . .

And this, to my mind, says nothing about the real evidence. It scems
to indicate that we have dreamed up a statistical model as one
approach to analyzing the evidence, Apparently we are regarding two
possible events (here called coin tosses) as repeatable experiments,
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with some joint chance distribution governing the pair of outcomes
(X1, X,), say. And apparently our statistical model consists of those
chance laws with have identical marginals for X, and X, We are to
observe another toss independent of (X, X;) but governed by the
same marginal and to infer what we can about the joint distribution
and hence about how (X,, X,) will turn out. This is a parametric
statistical problem. But where does it come from? What is the
evidence for the model? A sensible analysis using belief functions
would require answers to these questions.

S. THE INDEPENDENCE OF EVIDENCE

Both the Bayesian theory and the theory of belief functions have a
concept of independence for evidence. Both recognize different items
of evidence as intuitively independent and model this intuitive in-
dependence in terms of stochastic independence. But since the two
theories use the picture of chance in different ways, their concepts of
independence are different.

In the theory of belief functions we liken evidence to a message
whose meaning is random, or to a randomly valid argument-one
whose validity depends on chance. We call different items of evi-
dence intuitively independent when they can be likened to stochas-
tically independent randomly valid arguments,

In the Bayesian theory, on the other hand, we liken our evidence to
knowledge that the truth is generated by certain chances. Thus we do
not, in general, think of the evidence itself as random. If, however,
we single out a few items of our evidence, imagine that we have not
yet obtained these items of evidence, and include the question of
whether we will obtain them among the questions about which we arc
making probability judgments, then whether or not these items will
occur becomes part of the truth which we are modeling as random,
and so it becomes possible to think of these items of evidence as
stochastically independent.

The two theorics’ concepts of independence have much in com-
mon. In many cases, the two theories can agree on calling certain
items of evidence independent. And in both theorics independence is
relative to a given frame of discernment. In the theory of belicf
functions, this is expressed by saying that different arguments should
be treated as independent only relative to a frame that discerns the
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interactions of their conclusions, while in the Bayesian theory it is
expressed by saying that different items of cvidence may be in-
dependent only conditionally given certain hypotheses. '

We should not be misled, however, into thinking that the two
concepts of independence are practically identical -that the two
theories will always agree on whether given items of evidence are
independent.! The fact is that they will often disagrec. As we shall see
in this section, the theory of belief functions may allow us to discern
independent items of evidence in situations where the Bayesian
theory suggests dependent items of evidence or even suggests that we
need not distinguish separate items of evidence at all.

Confusion between the two theories' concepts of independence can
be held responsible for the suggestion, made by Williams in his
review, that the theory of belief functions cannot do as well as the
Bayesian theory in taking dependencies in evidence into account. One
goal of this section is to understand the thinking behind this claim and
to explain why it is wrong.

Independence in the Theory of Belief Functions

The concurrence of many independent arguments can justify a high
degree of belief. And it is natural to account for this by reasoning
about chances. There may be a substantial chance, we tell oursclves,
for any single one of the arguments to be invalid, but there is a much
smaller chance that they should all be invalid. If p; is the chance that
the ith argument is invalid, and the arguments are independent, then
the chance that they are all invalid is the product of the p.

This is a sensible account, but it must be rightly understood. When
we say that the chance of an argument’s validity is p,, we do not mean
that the argument is literally a repeatable experiment, sometimes
valid, sometimes not, and that we know the chance p; in the way we
might know the chance of heads when tossing a well-studied coin. We
mean rather that we judge the force of the argument to be comparable
to the force of such a randomly valid argument. And when we say
that the arguments are independent, we do not mean that their
validities are titerally stochastically independent random events. We
mean rather that we judge the arguments to be independent in an
intuitive sense that is well-represented by stochastic independence®-
i.c.. that we judge the uncertainties in the arguments to be sufficiently



48 GILENN SHAFER

unrelated that the combination of the arguments should have the
force of the concurrence of two stochastically independent randomly
valid arguments.

Dempster’s rule of combination is merely an extension of this
simple idea of combining the force of independent arguments by
multiplication. As I explained in §1 above, the rule pools two bodies
of evidence by treating the two randomly coded messages represent-
ing them as stochastically independent. When one uses the rule, one
is making a judgment that the two bodies of evidence are sufficiently
unrelated that pooling them is like pooling stochastically independent
randomly coded messages.

Consider a simple example from A Mathematical Theory of Evi-
dence. A detective investigating a burglary turns up one argument
indicating that the burglar was lefthanded and another argument
indicating that the burglary was an inside job. Suppose these two
arguments are intuitively independent, in the sensc that they involve
different uncertainties and that the evaluation of each depends on a
different small world of experience. Say the argument for the burglar
being left-handed is based on smudges on the door of the safe, and
thus depends for its evaluation on the detective's experience and
insight into the question of how safes are forced open, whereas the
argument for the burglary being an inside job is based on the
detective's understanding of the possibilities for entering the building.
It might, in such a case, be quite reasonable for the detective to treat
the two arguments as if they were stochastically independent ran-
domly coded messages. It is not that his train of thought in forming
each argument is an independent chance process and that he knows
the chance that each process has to produce a valid result; it is just
that he can evaluate his confidence in each argument by comparing it
with the scale of randomly coded messages and he can judge that
there is no important common element in the uncertainties in the two
arguments.

We might, of course, challenge the detective’s judgment. We might
discover a soft spot which is common to both arguments and which
the detective failed to notice - perhaps he is too readily ruling out
some hypothesis that could explain both the smudge on the safe door
and an unnoticed entry into the building. But the possibility of
challenge is not peculiar to judgments of independence. Every prob-
ability judgment is open to challenge.
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One point that emerges from this example is that the idea of
independence applies not to isolated facts or propositions but to
whole small worlds of experiecnce and human interaction with
experience. When we explain what arguments we are combining, it is
natural to identify each by a proposition: Argument | = “there were
smudges on the door of the safe™; Argument 2 = *“the building was
being watched.” But these propositions are only tags. We are really
combining whole “‘bodies of cvidence - whole bodies of concrete
experience and interactive human evaluation of that experience.

It is inherent in the idea of analyzing our evidence into independent
arguments that the force of each argument is evaluated in abstraction
from the other arguments. Each argument is evaluated, that is to say,
in abstraction from the other evidence bearing on its conclusions. But
when we combine arguments we must take the interaction of the
conclusions into account-we must take into account whether the
arguments concur, what they support when they are combined, and
whether they conflict, either in pairs or in more complicated inter-
actions. Since conflict modifies our evaluation of the weight of the
arguments (through the renormalizing constant K in (3)) even when
the conflict is not on a point of substantive interest to us, we must
take all conflict in conclusions into account. So we should apply
Dempster’s rule to belief functions representing different arguments
only if the frame @ over which these belief functions are defined is
fine enough to take all conflict and other relevant interaction into
account.

So we have two requirements for the use of Dempster's rule of
combination: (i) The bodies of evidence must be entirely distinct. The
uncertainties in the arguments being combined, that is to say. must be
independent when the arguments are viewed abstractly —i.e., before
the interactions of their conclusions are taken into account. (ii) The
frame ® must be fine enough to discern all relevant interaction of the
conclusions.

Is There an Objective Criterion for Independence?

Peter Williams is not satisfied with the preceding explanation of the
conditions for the legitimate use of Dempster’s rule of combination. It
is not clear, he tells us,

that this formulation is sufficient to distinguish unambiguously between permissible and
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impermissible applications of the rule. To begin with, the identity criteria for bodies of
evidence are unclear if these cannot be expressed as propositions. Indeed, even if they
can be, do two propositions which are not logically equivalent, but are nonetheless
equivalent by virtue of natural laws, express ‘entirely distinct bodies of evidence'? Or
again, suppose that two bodies of evidence are distinct, taken as wholes, but nonethe-
less partly overlap . ... [Hjow is one to extract the common part, given that bodics of
evidence nre not necessarily expressible as propositions?

In this passage Williams secms to be demanding some objective
criterion for deciding when two bodies of evidence are independent
and, more generally, some mechanical way of analyzing evidence into
distinct or independent items. Do these demands make sense?

It seems to me that the idea of an objective criterion for the
independence of evidence -the idea of a criterion exterior to the
judgment - is a chimera. The judgment that two bodies of evidence
are independent is a probability judgment, and the appropriateness of
probability judgments can never be justified on the basis of criteria
that do not themselves demand the application of judgment.

The analysis of evidence into distinct and independent arguments
is, moreover, always a constructive act of judgment. Williams is quite
right to suggest that there is no unambiguous formula telling us how
to do it. It is usually the most creative and the most difficult part of
our cffort to understand a problem.

There is, in short, no royal road. The analysis of evidence is
difficult, and foolish mistakes are always possible. As James Bernoulli
put it, “many things will happen which can cause one to err
frequently and shamefully unless one proceeds cautiously in discern-
ing arguments. For sometimes arguments can seem distinct which are
in fact one and the same argument. Or, vice versa, those which are
distinct can seem identical ...” (See p. 337 of Shafer [1978a]).

As Williams® comments indicate, one concomitant of the desire for
a mechanical approach to the analysis of cvidence is a desire to
express evidence as sentences or as propositions. If we could trans-
late all our evidence into statements of fact, then we could, it would
seem, give rules for mechanically analyzing this evidence using sym-
bolic logic together with background knowledge encoded as prior
probabilities. But we cannot usually translate our evidence into state-
ments of fact.

We can always describe our evidence, the reader may protest. This
is true. But the description will usually have to include not only
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statements of fact but also statements of probability judgment. . How
might the detective describe the evidence that convinces him that a
person cannot enter the building without being scen by the watch-
man? The evidence consists, in a very real sense, of mental experi-
ments that the detective carried out on the scene. He tried everything
he could think of, and nothing seemed plausible. Perhaps he can
describe some of this mental experimentation - at least if you allow
him to draw pictures. But how can he reduce his conviction that a
certain trick will not work to statements of fact? How can he
formulate statements of fact to express his degree of conviction that
he has tricd everything? In the end he will simply have to supplement
his statements of fact with probability judgments.’

Independence in the Bayesian Theory

The Bayesian theory can combine intuitively independent items of
evidence, but it does not do so, as the theory of belief functions does,
by regarding each as an independent argument. Instead it asks us to
think of the occurrence of each item of evidence as a random event
and to assess the probabilities of these events under various hypo-
theses. And it asks us to to model the intuitive independence of the
different items of evidence by stochastic independence, conditional
on the various hypotheses, of the events that these items of evidence
will occur.

The idea is that we should single out certain items of evidence and
then imagine ourselves assessing, before these items of evidence
occur, both the probabilities of the hypotheses on which we want to
bring these items of evidence to bear and also the probability that
these items of evidence will occur, given each of the hypotheses.
Suppose, for example, that we are considering an exhaustive list of
mutually exclusive hypotheses H,,....H, and we single out two
items of evidence E, and E,. Then our task is to use “old evidence™
(evidence other than the occurrence of E, and E;) to construct
Bayesian probabilities P(H,) and P(E, and E;|H,). And if we judge E,
and E, to be like independent random events given H, —if, that is to
say, our old evidence together with knowledge of H; can be com-
pared to knowledge that E, and E; arc stochastically independent -
then we can construct P(E, and E,|H,) by making separatc prob-
ability judgments P(E\|H,) and P(E;|H)) and then setting
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2n P(E, and E)|H;) = P(E(|H;)P(E)|H)).

Notice that making all these probability judgments amounts to con-
structing a Bayesian probability distribution P over a certain frame of
discernment ©. We can suppose, indeed that the H; and F,; are
subsets of this frame, and that the 4k subsets H, N E, N E;, HINE, N
E,, HHNE NE; and H;NE,NE, are disjoint and each contain
exactly one element.

The point of constructing this probability distribution P is that we
may then take the “new evidence”

E| and Ez=E|nE;

into account by conditioning. We can calculate, in particular, the
probability

iP(Ha)P(EdHa)P(EzIHa)
;. P(H))P(E\|H))P (E)|H))

(22) P(H.|E|OE1)=

our probability for H; based on the total evidence. Formula (22) is
known as Bayes' Theorem.

Consider, for example, the detective who has evidence that the
burglar was lefthanded and evidence that the burglary was an inside
job. Give names to these two items of evidence —say E, and E,. The
propositions of substantive interest are

I = an insider was involved in the burglary,

and

L = the safe was opened by a left-hander,

and so the hypotheses are Hy=INL, H,=INL, Hy=TNL, and
H,=TNL. And formula (22) provides a way of constructing prob-
ability judgments concerning the H; using the total evidence.

We must always ask, of course, whether the independent judgment
(21) is reasonable. Is it reasonable to think of the evidence E,
involving the smudge on the safe and the evidence E, involving
access to the building as random events that are stochastically in-
dependent given the H;?

A more fundamental question is whether it is reasonable or helpful
to think of E, and E,; as random events at all. In our belief-function
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analysis we regarded E, and E, as arguments involving independent
uncertainties. Here the perspective is different. Here we think of E,
and F, not as arguments but as facts. And we transfer all the
uncertainties to the hypothetical question of whether these facts
would have occurred, given each of the hypotheses. But does this
make sense? Can we, for example, intelligibly translate the question
of how strongly E,, the detective’s study of access to the building
supports I into the question of how likely his study would have been
to turn out as it did, given that I is true and given that it is false?

In my opinion, we often cannot intelligibly translate our under-
standing of the significance of given evidence into answers to the
question of how likely that evidence would be to occur. And this, |
believe, is the fundamental objection to the version of the Bayesian
theory that would have us assess all new evidence using Bayes’
theorem. For a detailed discussion, see Shafer [1981].

It should be noted, in any case, that the Bayesian theory, like the
theory of belief functions, has no objective criterion for in-
dependence. In both theories the judgment that two items of evidence
should be treated as independent is itself a probability judgment.?

Dependent Evidence?

Bayesian assessment of two items of new evidence does not neces-
sarily require a judgment that the items are conditionally independent.
Even if E, and E, are judged dependent, we can still construct the
probability judgment P(E; N E,|H)) through the formula

P(E| n Ez'H,) = P(E]lH,)P(EzlE] U H{).

where P(E,|E, N H;) is a judgment as to how likely F, would be to
occur based on the old evidence together with knowledge that E, has
occured and that H, is true. And thus we can still use Bayes’ theorem,
in the form

l‘F’(H‘)P(E.[!‘h)l’(EzlEl N H)
z‘ P(H)P(E\H)P(EJ|E, N H))
-

P(HJ{E\NEy) =

So if we do use the Bayesian idea of assessing new evidence in terms
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of its likelihood to occur, it is not very important whether two items
of evidence are independent or not.

The independence of different items of evidence is much more
important in the theory of belief functions. For Demster's rule of
combination can be used to combine arguments only if those
arguments are judged independent.

There seems to be a paradox here. The Bayesian theory can be
understood as a special case of the theory of belief functions, and
then Bayesian conditioning is seen as a special case of Dempster’s
rule of combination. (See p. 20 of A Mathematical Theory of Evi-
dence.) But how can Bayesian conditioning be a special case of
Dempster's rule if it can be used with dependent evidence and
Dempster's rule cannot be?

The paradox is quickly resolved when we remaind ourselves that
“independence” does not have the same meaning in the two theories.
The fact is that two items of evidence that are taken into account by
conditioning are necessarily independent in the sense of the theory of
belief functions, even though they may be either independent or
dependent in the sense of the Bayesian theory.

Let us recall the relation between conditioning and Dempster’s rule.
We explained conditioning in §3 above by saying that we condition a
belief function Bel on a subset E, of its frame © in order to take into
account new evidence whose direct effect on the frame @ is to
establish for certain that the truth is in E,. But we can also treat such
new evidence as an argument for E, whose validity is certain and
represent it by a belief function Bel; with m-values m(E)) = | and
m,(A) =0 for all other AC 6. And it is because combining Bel with
Bel, by Dempster's rule gives the same result as conditioning Bel on
E, that we say that conditioning is a special case of Dempster’s rule.

Now consider a second item of new evidence whose direct effect
on O is to establish for certain that the truth is in E;C ®. This
evidence can be represented by a belief function Bel; with m-values
my(Ey) = 1 and my(A) = 0 for all other A C . Are the uncertainties in
the two new items of evidence independent? Yes, for there are no
uncertainties: we are modeling each item of evidence as a randomly
valid argument in which the chance of validity is one, and so stochas-
tic independence is automatic and it is legitimate to combine Bel, and
Bel, by Dempster's rule. When we do combine Bel; and Bel,, we obtain
a belief function Bel, @ Bel; that gives E, N E; the m-value one, and
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combining Bel with Bel, @ Bel, by Dempster’s rule amounts to
conditioning Bel on E,NE,.

One way of putting the matter is to say that the only decom-
positions of evidence recognized by the Bayesian theory arc decom-
positions into items of evidence that are, from the point of view of
the theory of belief functions, independent. The Bayesian theory
permits the combination of evidence only through conditioning, and
this means that only one of the bodies of evidence being combined,
the “old evidence,” can involve uncertainties. The other items of
evidence must amount to certainties relative to the frame © and
hence will be trivially independent of each other and of the old
evidence.

When we assign names (“E," and “E;") to new items of evidence
and incorporate them into our frame of discernment, we are, in effect,
reducing them from uncertain arguments to facts. We are stripping
them of their uncertaintics and putting all these uncertainties into
what we call the “old evidence,” the evidence on which the prob-
ability distribution P over the frame © must be based.

From the point of view of the theory of belief functions, the
concentration of all our uncertainties in the **old evidence™ does not,
of course, solve the problem of probability judgment. Nor does it
necessarily exhaust our interest in the combination of evidence. For
we face a new problem of assessment of evidence, the problem of
constructing a Bayesian probability distribution P (or, more
gencrally, a belicf function Bel) over the frame © based on this old
evidence. And one way of doing this may be to decompose the old
evidence into independent items that can be recombined by Dempster's
ruie.

It may deepen our understanding of the differences between the
Bayesian and belief-function concepts of independence to recognize
that Bayesian dependence of E, and E, may be compatible with
belief-function independence not only of the items of evidence pro-
vided by the occurrence of E, and E; but also of the components of
the old evidence that bear on E, and E,. It is possible, that is to say,
for the combination of belief functions representing intuitively in-
dependent components of the old evidence to produce a belief func-
tion over ® which happens to be Bayesian and in terms of which F,
and E, are dependent in the Bayesian sense. In fact, any Bayesian
probability distribution P over © can, in theory, be produced by such
a combination of belief functions.
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Sorting out the Uncertainties

The preceding comments should not be construed as a denial of the
practical problems that dependent arguments cause in the theory of
belief functions. In many problems it will be easy to analyze the
evidence into dependent arguments and more difficult to analyze it
into independent arguments.

How do we go about analyzing our evidence into independent
arguments? How, to put it another way, do we sort our evidence into
arguments that involve distinct uncertainties? Perhaps there is no
general answer to this question. But we can gain some insight by
thinking about examples.

Suppose we are charged with deciding whether an aerial sprayer
has allowed insecticide to drift onto the property of a neighboring
landowner. Two arguments are presented by the prosecution: (1) The
homeowner testifies that spray billowed across the road from the field
being sprayed and settled onto her house and that this drift was
significant enough to cause her and her family to suffer from headaches
and burning eyes and lips. (2) A government bee inspector testifies that
he found dead honey bees lying around the homeowner's beehive, that in
his judgment they were killed by insecticide, and that the availability of
flowering plants indicates that the bees must have been on the
homeowner's property rather than on the ficld being sprayed when they
were exposed.

Both items of evidence seem to directly support the charge of
ncgligence. But one can argue that they involve overlapping un-
certainties. The main uncertainties are distinct. The main uncertainty
in the first item of evidence is how precise and reliable the
homeowner is—how well she remembers and how much she exag-
gerates. The main uncertainty in the second item of evidence is the
reliablity of the bee inspector’s judgment. But supposc the
homeowner, out of pure malice, made up the story about drift and
poisoned the bees herself. This possibility constitutes, it would seem,
an uncertainty common to both items of evidence. And so if we take
the possibility scriously we must count the two items as dependent.

There is, however, an obvious way of getting this common un-
certainty out of the two items of evidence: incorporate it jnto the
frame of discernment. We might, for example, consider a frame of
discernment @ consisting of three possibilities;
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0,: The sprayer was not negligent; the homeowner was inaccurate,
and the bee inspector was mistaken.

0;: The sprayer was not negligent; the homeowner is lying, and she
poisoned the bees herself.

0y: The sprayer was negligent.

Relative to this frame of discernment we might describe our two
items of evidence a little differently. The first item is our evidence
for the reliability and probity of the homeowner (we have
listened to her testify, etc.), and it supports 8, to some extent, and
{0,, 8} to a stronger extent. The second item is our evidence from the
bee inspector, and it supports {6, 6:). Notice that though the two
items no longer both directly support negligence (8,), they still inter-
act to support it. And they can now be regarded as independent
arguments.

This example illustrates a reasonably general idea: often two
arguments which seem dependent because of common uncertainties
can be understood as independent once the common uncertainties are
incorporated into the frame of discernment as explicit possibilities.
This idea is the basis for saying that Dempster’s rule should be used
only when the frame “discerns the relevant interaction™ of the
different arguments.

The task of sorting our uncertainties into distinct arguments is not
always so easy, of course. But I would argue that a theory that directs
us to this task is grappling with the real problems in the assessment of
evidence.

University of Kansas
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NOTES

' This is not to say that we are dealing with a random mechanism that produces the
message A with chance nm(A). It is just that m(A) is the sum of the chances for those
codes that decode our encoded message to A.
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Let us denote by C the set of codes that decode our encoded message to A, If
we had not yet seen the encoded message, it would certainly be natural to adopt
m(A) as our degree of belief that the code used is in C. The suggestion here is that
it is still natural to do so in the situation where we have seen the encoded message
and thus know that the code used being in C is equivalent to A being the true
message.

A similar tack is often taken by non-Rayesian statisticians when they make prob-
ability judgments based on probability sampling or on randomization. Here, as in those
cases, one might refuse to adopt the supgested degrees of belief and adopt instead a
parametric model. In this case the model would have the true message as its parameter
and the encoded message as its observable given each value of the parameter. In the
absence of other evidence about the true message, this model does not seem very
useful. (Cf. Kempthorne, [1975].)

! De Finetti [1974] assumes that P(A|B) is defined for an additive probability dis-
tribution even if P(B)=0, and Williams [1975] accordingly supposes that P (A|B) is
always defined. But it is not necessary to explore these subtleties in the present
discussion.

' See Hacking [1967]. In this paper Hacking complains about the lack of any
justification for the rule of conditioning in the Bayesinn literature. The literature on
lower probabilities is equally lacking. Since Hacking wrote, Teller [1973] has given n
Dutch-book argument for the Bayesian rule of conditioning, but this argument depends
on the Bayesian rule of additivity and also on the assumption that we know before
obtaining the new evidence that the subset established by it will be an element of a
certain partition. See also Freedman and Purves [1969). »

“ In Shafer [1981] I suggested, wrongly, that there was such a practical identity,

* This rule was discussed by James Bernoulli in his Ars Conjectandi, published
posthumously in 1713, Bernoulli also gave several other rules for combining prob-
abilities based on independent arguments. Since most of these rules are special cases of
Dempster’s rule of combination, Bernoulli can be regarded as the founder of the theory
of belief functions., Though Bernoulli's account of the combination of arguments was
popular during the 17th century, it was eventually displaced by the Bayesian account
developed by Condorget and Laplace. See pp. 345-349 of Shafer [1978a) and pp.
465-469 of Pearson [1978].

* We should bear in mind that chance is never an objective fact but is always an
abstract picture that we impose on nature to aid our understanding. Stochastic
independence, in particular, is an abstract concept that we use to model situations
where we have first perceived a causal or intuitive independence.

" In another passage, Williams coments on my insistence on the “hazy and non-
propositional nature of evidence.” While standing by the claim that evidence cannot
usually be reduced to statements of fact, | would like to withdraw any suggestion (see,
for example, p. 120 of A Mathematical Theory of Evidence) that evidence is *vague” or
“hazy.” These epithets are themselves vague, and no useful idea is conveyed when
they are applied to evidence. (Cl. Austin [1962]), p. 125-127.)

* Seidenfeld [1981] seems to think otherwise. The Bayesian theory, he writes, “pro-
vides the machinery for deciding whether the data are mutually independent.” What
machinery?
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