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Pascal’s and Huygens’s game-theoretic 
foundations for probability

Glenn Shafer

Blaise Pascal and Christiaan Huygens developed game-theoretic founda-
tions for the calculus of chances – foundations that replaced appeals to
frequency with arguments based on a game’s temporal structure. Pascal
argued for equal division when chances are equal. Huygens extended the
argument by considering strategies for a player who can make any bet with
any opponent so long as its terms are equal.

These game-theoretic foundations were disregarded by Pascal’s and
Huygens’s 18th century successors, who found the already established
foundation of equally frequent chances more conceptually relevant and
mathematically fruitful. But the game-theoretic foundations can be devel-
oped in ways that merit attention in the 21st century.

1. The calculus of chances before Pascal and Fermat

We are often told that probability theory began with an exchange of letters
in 1654 between Blaise Pascal (1623-1662) and Pierre Fermat (1607-
1665). As Florence Nightingale David put it,

The name of Blaise Pascal is always linked with that of Fermat as one of

the “joint discoverers” of the probability calculus.1

1 [1], p. 75.
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We can trace this attribution back to Laplace, who told his students at the
École Normale in 1795 that probability theory

owes its birth to two French geometers of the 17th century.2

Laplace repeated these words in 1812, in the first edition of his Théorie
analytique,3 but he tempered them two years later in the history of proba-
bility theory with which he concluded his Essai philosophique:

For quite a long time, people have ascertained the ratios of favourable to

unfavourable chances in the simplest games; stakes and bets were fixed by

these ratios. But before Pascal and Fermat, no one gave principles and

methods for reducing the matter to calculation, and no one had solved prob-

lems of this type that were even a little complicated. So we should attribute

to these two great geometers the first elements of the science of probabili-

ties …4

Many of Laplace’s successors have found the nuances unnecessary.
Lacroix, for example, began his 1816 probability textbook with this
unqualified attribution:

The probability calculus, invented by Pascal and Fermat, has never since

ceased exciting the interest and exercising the wisdom of their most illus-

trious successors …5

Similar unqualified statements by mathematicians and historians of math-
ematics abound, throughout the 19th and 20th centuries and up to the present
day. But Laplace was surely correct when he conceded that people had
been counting chances and using the counts to fix stakes and bets long
before Pascal and Fermat.

Counting chances

People have been making finely balanced dice for millennia, and they have
probably been counting the chances for throws of these dice for just as

2 Apparently not published at the time, Laplace’s lecture was reproduced on pp. 146-177 of Volume
XIV of his complete works [2]. The words translated here come at the end of the lecture. Except
when otherwise noted, all translations are mine.

3 [3], p. 3.
4 [4], p. 89.
5 [5], p. iii.
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long. But the earliest documentary evidence for such counting appears to
be the Latin poem De Vetula, probably written around 1250 by a teacher of
the quadrivium (arithmetic, geometry, astronomy, and music) at the
University of Paris.6

A long poem, touching on philosophical, religious, and scientific topics, De
Vetula begins by warning its readers against the temptations of erotic love
and gambling. In the case of gambling, the author warns that a gambler
faces ruin even if he knows how to count chances, then proceeds to count
them anyway for the sum of the points on three dice. There are 216
chances, he explains, all of equal force and frequency. But the sum of the
points can range from 3 to 18, and these 16 possibilities have unequal force
and frequency. There are 108 chances that the sum will be between 3 and
10, distributed unequally:

There are another 108 chances that the sum will be between 11 and 18,
distributed similarly:

David Bellhouse has called De Vetula a “medieval bestseller”. It was often
quoted. Nearly 60 manuscript copies survive. The first printed edition
appeared in about 1475. Not everyone who reproduced it understood how
the author counted chances. But some did, including the editors of editions
printed in 1479, 1534, and 1662.

There are at least two other surviving documents in which mathematicians
counted the chances for dice before 1654: a book by Cardano, who died in
1576, and a letter by Galileo, who died in 1642. Neither appeared in print
in its author’s lifetime. Cardano’s Liber de Ludo Aleae was published in his
collected works in 1663,7 and Galileo’s letter appeared in his collected
works in 1718.8 Both Cardano and Galileo counted the chances for the sum

6 [6], [7], [8], [9].

Sum of points 3 4 5 6 7 8 9 10 Total

# of chances 1 3 6 10 15 21 25 27 108

Sum of points 18 17 16 15 14 13 12 11 Total

# of chances 1 3 6 10 15 21 25 27 108

7 Geralamo Cardano, Liber de Ludo Aleae, in [10], volume 1, pp. 262-276. English translation in
[11], pp. 182-241.

8 [12], pp. 591-594. English translation [1], pp. 192-195.
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of points on three dice. As Bellhouse has pointed out, Cardano’s presenta-
tion suggests that he may have been influenced directly by De Vetula,
whereas Galileo obtains the counts in a different way.9

As mathematics developed, mathematicians’ ability to count chances
improved. Galileo mentions that the number of equally frequent chances is
multiplied by 6 every time a die is added to the throw. There are 216 equal
chances in the case of three dice because 6 × 6 × 6 = 216. The author of De
Vetula had not mentioned this.

Fixing stakes and bets

The whole point of counting chances is to use them to fix stakes and bets.
The author of De Vetula does not bother to explain how this is done, but
readers adept in mathematics would have known what to do: use the rule of
three.

The universities of medieval Europe prepared young men for careers in the
priesthood, law and medicine. To learn practical mathematics, you went
elsewhere – to teachers who prepared young men to work in trade. We
know what these teachers taught, because countless of their manuals –
commercial arithmetics, we call them – have survived. This being a lecture
in honour of George Sarton, I pause to recall Sarton’s interest in these
manuals. As he pointed out in 1933, they were being written in both Arabic
and in Spanish in Spain in the 11th century.10 They spread throughout
Europe as trade developed.11

The rule of three was the main tool of the commercial arithmetics. After
learning how to add, subtract, divide and multiply, merchants and their
clerks need to understand proportions. If you buy 15 bushels of wheat for
10 shillings, what price should you charge someone else for 3 bushels? For
us, this is a matter of algebra: 15/3 = 10/x, and so x = 2 shillings. But al-
Khwarizmi’s 9th-century algebra was all in words, and the medieval
commercial arithmetics still had only words. Algebra with symbols
emerged only in the Renaissance. It was largely developed by the authors
of commercial arithmetics – the Italian abacus masters and the German

9 [13].
10 [14], [15].
11 See for example [16].
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reckoning masters. But even in the 19th century, commercial arithmetics
emphasized the non-symbolic rule of three, deploying it in problem after
problem in which you find an unknown fourth number in a proportion from
three that are known, problems about trading in goods, dividing profits,
changing currencies, pricing alloys, etc., etc. Occasionally, for fun, an
author might throw in a problem about a game.

Here are two questions that could have been answered by anyone who was
adept at the rule of three and could count the chances for three dice.

Q1. Three dice are to be thrown repeatedly until either a 9 or a 15 appears.
Player A bets on 9 and Player B bets on 15. Player A puts 5 shillings
on the table. How much should Player B put on the table?

Q2. What should Player A pay in order to win 80 shillings if he throws an
11 on a single throw of three dice?

Permitting ourselves a bit of algebra rather than trying to imitate a 13th-
century abacus teacher’s use of the rule of three, we can answer these ques-
tions as follows.

A1. To answer Q1, we recall that there are 25 chances of throwing a 9 and
only 10 chances of throwing a 15. The chances have equal frequency.
So Player B wins 10 times for every 25 times Player A wins. Player A
has put 5 shillings on the table for Player B to win. If we write x for
the amount Player B puts on the table, then Player B wins 10 × 5 shil-
lings every time Player A wins 25 × x. This is fair if x = 2 shillings.

A2. To answer Q2, suppose Player B is the counterparty. Player A gives x
to Player B, and Player B gives back 80 shillings if Player A throws
an 11. Player A has 27 chances of getting the 80 shillings. Player B
has 216 chances of getting x. So Player A gets 27 × 80 shillings every
time Player B gets 216 × x, and this is fair if x = 10 shillings.

These answers deploy the notions of frequency and fairness. Frequency
was basic to everyone’s understanding of chances for dice. Fairness comes
along with the rule of three. Commercial arithmetics always sought the fair
price. What actually happens is another matter; the merchant will surely
ask for a bit more.

Laplace’s assertion that no one before Pascal and Fermat gave principles
and methods for calculating stakes and bets seems to be correct so far as the
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surviving public record is concerned. But we do find explicit arguments for
proportionality in Cardano’s 16th-century Liber de Ludo Aleae. Concerning
bets on a throw of two dice, where there are 36 equally frequent chances,
Cardano writes as follows:

If, therefore, someone should say, “I want an ace, a deuce, or a trey,” you

know that there are 27 favourable throws, and since the circuit is 36, the rest

of the throws in which these points will not turn up will be 9; the odds will

therefore be 3 to 1. Therefore, in 4 throws, if fortune be equal, an ace,

deuce, or trey will turn up 3 times and only one throw will be without any

of them; if, therefore, the player who wants an ace, deuce, or trey were to

wager three ducats and the other player one, then the former would win

three times and would gain three ducats, and the other once and would win

three ducats; therefore in the circuit of 4 throws they would always be

equal. So this is the rationale of contending on equal terms; if, therefore,

one of them were to wager more, he would strive under an unfair condition

and with loss; but if less, then with gain. Similarly, if the 4 be included,

there will be 32 favourable throws, and the number of remaining throws

will be only 4. Therefore, the player will place a stake eight times as great

as his opponent, because the proportion 32 to 4 is eightfold, and similarly

for the other cases …12

The qualification “if fortune be equal” is important here. As Bellhouse has
emphasized, Cardano’s discourse emphasized fairness, not exact predic-
tion.13

2. The division problem

Among the documents that Pascal left behind was a memorandum in Latin
dated 1654, setting out his agenda for mathematical research and listing
treatises he plans to complete.14 It is addressed to an informal academy of
Paris mathematicians, a group whose regular meetings Pascal was
attending. By all accounts, this group descended from the equally informal
scientific academy that Marin Mersenne had organized in 1635. Pascal’s

12 Pp. 200-201 of [11].
13 [13].
14 Mesnard provides the Latin text, a commentary, and a translation into French on pp. 1021-1035 of

Volume II of [17].
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father Etienne Pascal had been part of Mersenne’s circle, and Blaise had
first become known as a mathematician after his father brought him into the
circle as a teenager. We do not know exactly when in 1654 Pascal wrote
the memorandum, but Jean Mesnard, the most assiduous of his many biog-
raphers, has argued persuasively that it was written before Pascal’s corre-
spondence with Fermat. In the memorandum, Pascal describes one of the
topics on which he plans to write as follows:

A field of research that is completely new and concerns a matter that is

completely unexplored, namely structure of chances in games subject to

chance, what we call in French faire les partys des jeux, where the uncer-

tainty of fate is so well overcome by the rigor of calculation that each of two

players can see themselves assigned exactly what they have coming. This

must be sought all the more vigorously by reasoning, because there is so

much less possibility to find it by experience. In fact, the uncertain outcome

of a random event should be attributed more to the chance of contingency

than to the necessity of nature. This is why the question has remained unset-

tled. But now, even if it has been a rebel to experience, it could not escape

from the empire of reason. We have reduced it to an art with so much

surety, thanks to mathematics, that having gained part of mathematics’

certitude, it can now advance audaciously and, by virtue of the union thus

achieved between mathematical demonstrations and the uncertainty of

chance, and by the reconciling of these apparent opposites, it can take both

names and lay claim to the surprising title Geometry of Chance.

This paragraph’s sense of excitement is palpable; Pascal believes that he
has solved a problem others had tried and failed to solve. This problem is
new as a field of mathematical research but so familiar to his countrymen
that it has a French name. The French noun parti, here spelled party, can
be translated as share or as division into shares, and so we can translate
faire les partys des jeux as divide into shares in games.

Departing from established usage, I will call the problem of how to faire
les partys the division problem. Since the early 18th century, it has usually
been called le problème des partis in French and the problem of points in
English. But these names can be a source of confusion when we try to
understand what Pascal actually wrote in his letters to Fermat.
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Pascal’s solution of the division problem

We learn more about what Pascal meant by faire les partys in the first five
pages of another short document that he left behind, printed but not
published and bearing the title Usage du triangle arithmétique pour
detérminer les parties qu’on doit faire entre deux jouers qui jouent en
plusieurs parties.15 This title can be translated as Using the arithmetic
triangle to determine the divisions one should make between two players
who play in several rounds. Here I will refer to it simply as Pascal’s Usage.

By “play in several rounds”, Pascal meant that the stakes are won by the
first player who wins a specified number of rounds. If the players agree to
stop when neither has yet won the specified number, how should the stakes
be divided?

Pascal reasons backwards from situations where the appropriate division is
clear. Suppose, for example, that Players A and B have each put 32 pistoles
on the table. Player A is one round short of winning the entire stakes, and
Player B is two rounds short. If the players were to play one more round,
the division would be clear:

 If Player A wins the round, he gets all 64 pistoles.

 If Player B wins the round, the two players are even, both being one
round short of winning. So they should split the 64 pistoles evenly,
each getting back the 32 pistoles he put up.

Player A is thus certain of getting at least 32 pistoles and has an equal
chance of getting the other 32. Pascal argues that he can therefore claim the
first 32 and half of the second 32, for a total of 48, leaving 16 for Player B.

Having found what each player is entitled to when Player A is one round
short and Player B is two rounds short, we can then find what each is enti-
tled to when Player A is one round short and Player B is three rounds short.
In this case, another round would either give all 64 pistoles to Player A or
put the players in the situation just analysed (Player A one round short and
Player B two rounds short), where Player A is entitled to 48 pistoles. So
Player A is entitled to (1) the 48 he will have in either case, and (2) half the
remaining 16, for a total of 56, leaving only 8 for Player B.

15 The treatise is reproduced in Volume II of [17] and in other editions of Pascal’s works.
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As Pascal explains in great detail, at this level of formality, we can reason
backwards in this way to find the entitlements of the two players no matter
how many how rounds each lacks. He then mentions that there are also two
other ways of solving the problem: using combinations and using the arith-
metic triangle. He then proceeds to explain how the arithmetic triangle
enables us to obtain the answers more quickly.

We know, from Pascal’s letter to Fermat dated 29 July 1654, that Pascal
mastered this use of the arithmetic triangle only after that date. But from
the claim he made in his earlier memorandum to his Paris colleagues, we
may assume that he had discovered his method of backward recursion
before beginning his correspondence with Fermat. Having understood how
he could use the arithmetic triangle in the course of the correspondence, he
folded his proposed Geometry of Chance into his Usage.16

Published antecedents

There is a slight but interesting difference between the way Pascal
describes the division problem to his Paris colleagues and Fermat and the
way he describes it later, in his Usage. In the memorandum, he writes about
games subject to chance. In the letter of 29 July to Fermat, he writes about
the two players having an equal chance (le hasard est égal). Here he could
be talking not only about dice games but also about ball games and other
competitions that involve both skill and chance. Such games are subject to
chance, and when players play on equal terms it is not unusual to say that
each has the same chance as the other, even if they do not have the same
skill. It is also not unusual for players who disagree about who is more
skilful to think it fair that they should bet on even terms. But in his Usage,
Pascal specifies that he is considering games of pure chance.

This difference is of some significance, because previous solutions of the
division problem, in handwritten commercial arithmetics and in printed

16 This speculation rests on Mesnard’s conclusion that Pascal wrote his memorandum before his
correspondence with Fermat. A. W. F. Edwards has challenged this conclusion on the grounds that
Pascal solved the division problem only after his letter of 29 July; see [18], p. 86, reprinted in
[19]. This overlooks the fact that the argument in the first five pages of Pascal’s Usage fully
solves the problem. The letter of 29 July shows Pascal struggling to obtain the more efficient and
elegant solution that he later obtains using the arithmetic triangle, but it does not refute the
hypothesis that he had already solved the problem.
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books beginning with Pacioli’s Summa at the end of the 15th century, had
considered games where skill enters – ball games and archery competi-
tions. Perhaps the authors also had dice games in mind, not mentioning
them in order to avoid any hint of impiety, but in any case they apparently
thought that their arguments applied to games where skill also enters. Their
solutions of the division problem usually involved some application of the
rule of three. The rule of three can be applied in various ways (in particular,
do we consider the number of rounds won or the number lacking?), and so
different authors obtained different answers. None of them obtained
Pascal’s answer, and historians of probability usually express this by
saying that their answers were all wrong.17 But it is also reasonable to
conclude, with Tartaglia, that there is no single right answer.

It is also reasonable to conjecture that Pascal was aware of some of the
previous efforts to solve the division problem. Would Mersenne not have
known about the published work of Pacioli, Cardano, and Tartaglia?
Pascal’s comment about the question remaining unsettled may be a refer-
ence to their disagreements.

Unpublished antecedents

Although none of the previously published treatments of the division
problem obtained Pascal’s solution, we have learned in recent decades that
two unpublished manuscripts by Italian abacus masters, both writing
around 1400, did obtain his solution. The first, a fragment noticed in the
National Central Library of Florence in 1985 by Laura Toti Rigatelli and
subsequently studied by several authors, used an intricate argument to
arrive at Pascal’s answer for the case where one player is one round short
and the other is two rounds short. The second, a commercial arithmetic
noticed in the Vatican Apostolic Library in 2003 by Raffaella Franci,
develops Pascal’s method fully, even for more than two players. Both of
these manuscripts have been discussed thoroughly by Norbert Meusnier.18

The author of the Vatican commercial arithmetic cautions his students not
to divulge his method for solving the division problem but to study it and

17 See for example [20], pp. 34-36.
18 [21]. As Meusnier notes, the Florence manuscript is concerned with games of chess, supporting

the hypothesis that the division problem dates back at least to Arabic sources.
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stand ready to use it, perhaps to dazzle town leaders or merchants who
might employ them to teach. This evidence of a secret tradition centuries
before Pascal raises tantalizing but unanswerable questions. How widely
was the division problem discussed by teachers of commercial arithmetic
in Pascal’s time? Had the Vatican manuscript’s method survived in an oral
tradition? As Ivo Schneider has noted, commercial arithmetic did consti-
tute an oral tradition.19

Pascal was not one to cite predecessors. As A. W. F. Edwards has noted,

Pascal was … a little forgetful about his sources. Practically everything in

the Traité except the solution of the important “Problem of Points” will

have been known to Mersenne’s circle by 1637. It seems likely that Pascal

absorbed most of this as a young man, and then, more than a decade later,

his correspondence with Fermat stimulated him to compose the Traité,

which he did in the space of a few weeks. The evidence is that, with the

passage of time, he had lost most of the details whilst retaining the outline.

Just as a lecturer often lectures best when, after careful preparation, he

forgets his lecture notes, so Pascal poured forth his mature view of the

Arithmetical Triangle and its uses, uncluttered with peripheral detail.20

It is conceivable, if unlikely, that Pascal’s solution of the division problem
is also something that he had picked up in his youth and then forgotten. All
we can say with confidence is that Pascal believed in 1654 that it was his
own new discovery.

3. Pascal’s game-theoretic foundation

In his memorandum to his Paris colleagues, Pascal was concerned with the
problem of dividing stakes between two players. This question comes up in
his letters to Fermat, but the questions he has posed to Fermat appear to
involve a more subtle kind of division, which for clarity I will call appor-
tionment rather than division. How do we apportion a player’s gains to the
successive rounds of a multi-round game?

Pascal repeatedly mentions that he and Fermat have different methods for
solving questions of apportionment. Fermat was using the venerable

19 [22], pp. 269-279.
20 [19], p. 58.
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method of counting chances, which he wielded with a mathematical power
unmatched by any predecessor. Pascal was using backward recursion.

In a game involving multiple rounds or multiple dice, the chances we count
can also be called combinations (combinaisons in French), as each chance
tells how all the rounds or dice come out. Pascal sometimes called Fermat’s
method the method of combinations. In his first surviving letter, dated 29
July, he mentions that he too had first used combinations but claims that his
own method is quicker, at least in some cases. In his second surviving
letter, dated 24 August, he makes a more aggressive case for his own
method, claiming that it is

 more universal, applicable to any kind of apportionment under any
imaginable conditions, and

 more fundamental, carrying its demonstration in itself.

As the correspondence continues, Fermat appears to convince Pascal that
the method of combinations is also universal and computationally efficient.
On 27 October 1654, in his final letter to Fermat that year, Pascal writes,

I admire your method for apportionment, all the more because I understand

it quite well. It is entirely yours, having nothing in common with mine, and

arrives easily at the same end.

But Pascal does not retract the claim that his method is more fundamental,
and from a philosophical point of view, this is the most interesting aspect
of his contribution. He vindicates the claim he made in his memorandum
by giving an argument for his method of backward recursion that relies on
reason alone, not on experience. Because backward recursion arrives at the
same end as the established method of combinations, this is also a justifi-
cation of that established method.

Because Pascal’s method reasons about the play of the game rather than
about frequencies, we may call it game-theoretic.

Enter the Chevalier de Méré

The legend of Pascal’s and Fermat’s invention of probability was embel-
lished in 1837 by Siméon-Denis Poisson, who began his book on proba-
bility with this sentence:
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A problem about games of chance proposed to an austere Jansenist by a

man of the world was the origin of the calculus of probabilities.21

Jansen was a Dutch theologian, and Pascal was the Jansenist. The man of
the world was Antoine Gombaud, the Chevalier de Méré. Many authors
have concluded that Gombaud introduced Pascal to the problem of division
we discussed earlier. It is also possible, and perhaps more likely, that
Gombaud’s only posed some particular questions about apportionment.

By the early 1650s, Pascal was a close friend of the wealthy and powerful
Duke of Roannez. Gombaud, a nobleman of modest means, was occasion-
ally part of the Duke’s entourage. At the age of 61 (in 1668, after Pascal’s
death), he began to publish his letters and essays and became well known
as a stylist and moralist, participating in the 17th-century French debate
concerning what it means to be an honourable man (honnête homme). He
made a great virtue of having good manners and pleasing others. He prac-
ticed these virtues, and he claimed to have taught Pascal to enjoy himself.
He also claimed credit for mathematical discoveries concerning chance. It
is possible, though perhaps unlikely, that Gombaud introduced Pascal to
the whole topic of calculating chances.

At the beginning of his letter of 29 July, Pascal mentions that he and Fermat
had been discussing two questions of apportionment that Gombaud had
proposed: apportionment for dice (les partis des dés), and apportionment
for rounds (les partis des parties). Fermat, he acknowledges, has answered
the questions using combinations, but at this point Pascal thinks his own
method is quicker. What were the questions? How were they related to
what I have been calling the division problem, the problem of how to faire
les partys that Pascal discussed in his memorandum to the Paris mathema-
ticians and solved in the first five pages of his Usage? And how are they
solved by Fermat’s method and by Pascal’s method?

In the second section of his letter of 29 July, Pascal explains how to faire
les partys in the case where two players play to win three rounds, but he
does not stop there. After explaining how to find the value to a player of
each possible position (as he also did in his Usage), he then finds, by
subtraction, how this value changes when the player wins a round.
Gombaud’s question about apportionment for rounds, it seems, concerned

21 [23]
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not the value of a position in the game but the value of a round in the game.
How much of his opponent’s money does a player gain by winning the
round? To use the language of later centuries, the question is not about
expectations but about changes in expectations.

What exactly was Gombaud’s other question, the question about apportion-
ment for dice? Not having the previous letters between Pascal and Fermat,
we cannot be certain. But we do have an undated fragment of one previous
letter from Fermat, and it suggests some possibilities. In this fragment,
Fermat says that Pascal has asked about a player who has undertaken to get
a six in 8 throws and has already lost the first three. How much should he
be compensated for not making his next throw? The answer depends on
whether the compensation is taken out of the stake on the table, or whether
that stake will all remain for him to try to win with one of his remaining
throws. But Pascal must have made a slip, because the answer he gave
Fermat, 125/1296 of the stake, is not correct in either case. Fermat finds a
rather different question that does have 125/1296 as its correct answer.

Carrying its demonstration in itself

Whereas Fermat delighted in solving problems, Pascal was more interested
in getting to the bottom of things. What are the true principles? What is the
real starting point?

On the first two pages his Usage, Pascal explains that his method is based
on two fundamental principles. First, a player should take any portion of
the stakes that will be his regardless of whether he wins or loses. Second,
if the game is one of pure chance, there is as much chance for the one player
as the other to win a certain sum, and they want to stop playing, then they
should divide the sum equally.

Pascal makes his assertion that his method is more fundamental than the
method of combinations in his letter of 24 August, in the course of
explaining how he had defended Fermat’s use of the method of combina-
tions to his Paris colleague Gilles de Roberval, a teacher of mathematics at
the Collège royal. To understand Roberval’s objection to Fermat’s method,
consider again the classic case where Player A is one round short of
winning and Player B is two rounds short. If they are playing for 64
pistoles, as in Pascal’s presentation of the problem in his letter of 29 July,
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then we can use diagrams to picture Player A’s possible gains and Pascal’s
argument:22

As indicated in the diagram to the left, Player A wins the 64 pistoles if he
wins the first round; otherwise they play a second round and Player A may
win either 64 or 0. As indicated in the diagram to the right, Pascal
concluded that Player A’s position is worth 32 pistoles right after he loses
the first round and therefore 48 pistoles at the outset. Fermat solved the
problem in a different way; he supposed that two rounds are played no
matter how the first comes out, so that the four equally frequent chances are

Player A wins the first round, Player A wins the second round;
Player A wins the first round, Player B wins the second round;
Player B wins the first round, Player A wins the second round;
Player B wins the first round, Player B wins the second round.

Because Player A wins the 64 pistoles in three out of the four equally
frequent chances, he is entitled to three-fourths of the 64 pistoles at the
outset. Pascal reports to Fermat that Roberval objected to the fiction that
the players would play two rounds no matter how the first came out. He
then reports what he said to Roberval, including the following:

I responded to him that I relied not so much on this method of combina-

tions, which was not really appropriate for the problem, as on my other

universal method, which misses nothing and carries its demonstration in

itself, and which finds precisely the same division as the method of combi-

nations …

In other words, the method of combinations is correct only because its
results agree with Pascal’s method of backward recursion.

22 Pascal did not draw any such diagram; historically the first appearance of such a diagram seems to
be in an unpublished note written by Huygens in 1676. See pp. 151-155 of Volume XIV of [24]
and pp. 380-384 of [25].
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The method of combinations does not carry its demonstration in itself,
because its counting of chances relies on experience. To see the full force
of Pascal’s argument, we need to notice that the appeal to experience
becomes less and less convincing as the number of rounds becomes greater
and greater. Do we really have enough experience to know that the 610

ways 10 throws of a die can come out have equal frequency?

4. Huygens’s game-theoretic foundation

Although neither Pascal nor Fermat published their work on games of
chance, the problems they had discussed soon became widely known
through the work of Christiaan Huygens (1629-1695). Son of the promi-
nent Dutch diplomat and poet Constantijn Huygens, Christiaan Huygens
was steeped in French culture, but his first visit to Paris was delayed by the
turmoil of the times until 1655. During that visit, he learned something
about Pascal’s and Fermat’s ideas from their Parisian colleagues.

From what he heard in Paris, Huygens saw an opportunity to apply the new
understanding of algebra that he had learned from Descartes through his
teacher Francis van Schooten, and this led him to write an account of calcu-
lation in games of chance that Van Schooten could publish as an appendix
to his forthcoming textbook on algebra. He drafted it in Dutch in 1656. Van
Schooten translated it into Latin for the Latin version of his textbook,
which appeared in 1657. The Dutch version appeared in 1660.23

By casting the matter in terms of algebra, Huygens deepened Pascal’s foun-
dational argument, making it more game-theoretic. Instead of relying on
the principle that chance gives contending players equal claims, Huygens’s
argument relies merely on the players’ willingness to contend on equal
terms.

What did Huygens learn in Paris?

What did Huygens learn from the Paris mathematicians about the problems
Pascal and Fermat had discussed? In an insightful article published in

23 Discussion between Huygens and Van Schooten concerning the translation is preserved in letters
published in [26].
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1982,24 Ernest Coumet called attention to three letters written by Huygens
that cast light on this question. In a letter to Van Schooten dated 20 April
1656, Huygens wrote:

Here is what you wanted concerning games of chance … You can judge the

difficulty of this material from the fact, among others, that Pascal, a young

man with the most penetrating mind, said that he had never encountered

anything so obscure, and that nothing had ever required more effort from

him. For his part, he certainly went deeply into the questions I consider, or

most of them, as did Fermat. But what principles did they rely on? I think

no one yet knows.

On May 6, Huygens wrote again to Van Schooten:

It would be appropriate to put at the beginning, as a preface, a letter from

me giving some explanations about the material itself and who first under-

took to study it, along with what I learned in France about Pascal’s discov-

eries in this domain. Very little I suppose, but just the same I don’t think I

can conceal it.

Then on July 21, Huygens wrote to the English mathematician John Wallis:

I have recently used demonstrations of this type [by algebra] in a treatise on

the use of calculation in matters of chance, which Van Schooten proposed

to publish with his own work, now being published. I came by the opportu-

nity in France, where mathematicians had asked me questions like this: In

how many throws can one expect to get a six with a die like those now

usually used? Or to get a double six with two dice? And many more of the

same type, for whose solution it was not at all easy to find the first princi-

ples.

The tone of these passages suggests that calculation in games of chance
was not a surprising topic for mathematicians in the 1650s. Huygens did
not learn much that was new in Paris. We also see that Huygens, like
Pascal, was a seeker after first principles.

We may surmise that the Paris mathematicians who posed the questions to
Huygens could answer some or all of them, and that they remembered that
Pascal had a way of justifying the answers that went deeper than counting

24 [27], reprinted on pp. 437-452 of [28].
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chances, but that they had never fully understood Pascal’s arguments.
Perhaps Pascal never fully explained everything he could do with his two
principles.

From April 1656 to March 1657, Huygens corresponded with Pierre
Carcavy and the Paris mathematicians Roberval and Claude Mylon. The
correspondence with Carcavy put him in indirect touch with Pascal and
Fermat, who both provided additional questions that he added to his treatise
with answers but without solutions. Coumet saw in this correspondence a
further attempt on Huygens’s part to learn Pascal’s and Fermat’s first prin-
ciples, ultimately unsuccessful because he did not ask his questions
directly, not wanting to reveal how much or little he himself already under-
stood.

Huygens’s preface did acknowledge that renowned French mathematicians
had worked on his topic. He added that

though they have tried to solve many a difficult question by corresponding

with each other, they have concealed their own mode of invention. I, there-

fore, was obliged to examine everything from the beginning to the end and

am not yet sure that the point whence we started was the same.

This passage can be taken as a claim by Huygens he did not learn anything
from the Parisians about how to faire les partys, but Huygens’s letters to
Van Schooten and Wallis support the skepticism about such a claim that
has been expressed by Coumet, Edwards, and Schneider. Coumet asks
whether we may be misunderstanding Huygens’s words. Did his 17th
century audience read “mode of invention” (manier van uytvinding) as
merely a way of finding an answer or, as the sentence following it might
suggest, something deeper?

We may also ask whether Huygens was really unaware of what the authors
of commercial arithmetic had said about how to faire les partys, Ivo
Schneider argues that the form of De Ratiocinniis (formal propositions,
with full explanations, followed by problems with numerical answers but
no explanations) suggests familiarity with the work of the reckoning
masters.25

25 [29], p. 182.
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The first sentence of De Ratiocinniis, in its Latin version at least, suggests
that the treatise is concerned with games that depend only on chance. Here
is the sentence in Latin:

Etsi lusionum, quas sola sors moderator, incerti solent ese eventos, attamen

in his, quanto quis ad vincendum quam perdendum propior sit, certam

Semper habet determinatiionem.

Here it is in Dutch:

Al-hoewel in de spelen, daer alleen het geval plaets heeft, de uytkomsten

onseecker zijn, soo heeft nochtans de kansse, die yemandt heeft om te

winnen of te verliesen, haere seeckere bepaling.

The editors of Huygens’s complete works translate this somewhat archaic
Dutch into French in a way that makes it agree with the Latin:

Quoique dans les jeux de hasard pur les résultats soient incertains, la chance

qu’un joueur a de gagner ou de perdre a cependant une valeur déterminée.26

The French is easily translated into English:

Although outcomes in games of pure chance are uncertain, the chance a

player has to win or lose nevertheless has a definite value.

To the extent that he was concerned with games of pure chance, Huygens
was following Pascal. But whereas Pascal emphasized that he was consid-
ering only games of pure chance in order to justify his second principle,
Huygens makes an argument that applies equally well to the mixed games
that had been considered by authors in the tradition of the commercial
arithmetics.

Using algebra

Huygens invented his own first principles, and they went deeper than
Pascal’s. A concise and insightful explanation of Huygens’s principles was
provided by Hans Freudenthal in 1980.27 Here is Freudenthal’s translation
from the Dutch of Huygens’s first proposition.

26 [24], p. 60.
27 [30]
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PROPOSITION I. If I have the same chance to get a or b it is worth as much

to me as (a + b)/2.

In order not only to prove but also to discover this rule, I put x for what the

chance is worth to me. Hence having x I must be able to arrive at the same

chance by an equitable game. Let it be the game which I play against anoth-

er with stake x, where the other is also staking x; and let it be agreed that the

one who wins shall give a to the one who loses. This game is equitable, and

it appears that by this I have an equal chance to win a, that is, even if I lose

the game, or 2x – a if I win, because then I get the stakes 2x from which I

must give the other a. Suppose that 2x – a were as much as b, then I would

have the same chance for a and b. So I put 2x – a = b, and it follows that x

= (a + b)/2 for the value of my chance. The proof of this is easy, because

having (a + b)/2, I can venture against another who will also stake (a + b)/

2, with the stipulation that the one who wins the game shall give a to the

other. Therefore I will have an equal chance to get a, that is to say if I lose,

or b if I win, because then I take a + b, which is the stake, and from this I

give him a.

Huygens begins with the principle of fairness that the players must be
treated the same. If two players both put up (a + b)/2, and the winner gets
a and the loser gets b, then the two players are being treated the same.

Huygens’s proof of his first proposition is a nice illustration of the new role
of algebra in the 17th century. As Fermat had learned from Vieta and Van
Schooten had learned from Descartes, you can use algebraic equations to
discover solutions to geometric or physical problems, but to achieve
certainty you must translate this discovery into a proof in the style of the
Euclid and the other ancients.28 In Huygens’s proposition, as in geometry,
the synthetic proof has a constructive character. It says that (a + b)/2 is the
right value because I can use this amount to reconstruct my position. In the
contemporary language of finance, it is the cost of hedging the position.29

From his first proposition, Huygens moved quickly to his third proposition:

PROPOSITION III. If the number of chances I have for a is p, and the

number of chances I have b is q, then assuming that every chance can

happen as easily, it is worth to me as much as (pa + qb)/(p + q).

28 [31,32]
29 [33]
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Here is the synthetic version of Huygens’s proof: a fair arrangement where
I risk (pa + qb)/(p + q) to get p chances for a and q chances for b. Consider
a game where I and p + q – 1 other players each have an equal chance of
winning. Each player puts up (pa + qb)/(p + q) and the winner takes it all;
this is evidently fair. I make a fair side bet with each of q of my opponents:
if one of us wins, he will give the other b. I also make a fair side bet with
each of my remaining p – 1 opponents: if one of us wins, he will give the
other a. If one of the q opponents wins, I end up with b. If one of the p – 1
opponents wins, I end up with a. If I win, I get the (pa + qb)/(p + q) put up
by each other p + q players, myself included, but I pay b to q opponents and
a to p – 1 opponents, netting

(p + q) (pa + qb)/(p + q) – qb – (p – 1)a = a.

So I have p chances for a and q chances for b.

Here Huygens has done something left undone by Pascal. He has derived
from first principles a general rule for calculating from equally possible
chances how stakes should be fixed. In the writings Pascal left behind, we
see this done only for the case where there are only two equal chances;
Pascal called this a “lemma” in his Usage.

Ivo Schneider has raised an objection to Huygens’s argument. Huygens’s
fundamental principle is that players should be treated alike. But here one
player gets to set the bets. He arranges side bets with many players, and as
a result his position is different from that of the others.30 As this objection
illustrates, Huygens’s notion of fairness is not defined with mathematical
precision. We cannot say that Huygens has a game-theoretic foundation
that meets the standards of rigor of modern game theory, in which the rules
of play are clearly specified.

Huygens also uses algebra in his last proposition, which I paraphrase as
follows:

PROPOSITION XIV. Player A and Player B take turns throwing two dice.

Player A wins if he throws 7 points before Player B throws 6 points. If

Player B throws first, what is the ratio of their chances?

Whenever it is Player A’s turn to throw, he has 6 chances out of 36 to win
on that throw; whenever it is Player B’s turn, he has 5 chances out of 36 to

30 [29].
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win on that throw. Huygens wrote a for the stakes for which they are
playing; let us simplify by setting a = 1. Huygens wrote x for the value of
Player A’s chance at the outset and y for the value of his chance if and when
he gets to throw again, after Player B has lost his first throw. At the outset,
Player B has 5 chances to win and 31 chances to put Player A in the position
where the value of his chance is y. So

x = (5/36) × 0 + (31/36) × y.

If Player B loses his first throw, then Player A has 6 chances of winning on
his first throw and 5 chances of returning to x. So

y = (6/36) × 1 + (30/36) × x.

Solving the two equations, we find that x = 30/61. So the ratio of Player A’s
chance to Player B’s is 30 to 31.

This argument may have seemed a little intricate at the time, but it is an
impressive advance on what medieval mathematicians could do. Player A
first throws two dice, and if he loses Player B throws two dice again. So
solving the problem by the rule of three requires somehow considering the
1296 chances for the result of throwing four dice.

5. Back to frequency

Laplace got it right in 1814. The calculus of games of chance, in a mathe-
matically rudimentary form, goes back centuries if not millennia before
Pascal and Fermat. Born from the experience of dice players, this calculus
had always been a calculus of frequencies. So it is not surprising that
Pascal’s and Huygens’s game-theoretic foundations quickly disappeared,
pushed aside with little ado by the deeply entrenched concept of equally
frequent chances.

Huygens’s immediate successors in the development of the calculus of
probability were Montmort, De Moivre, and Bernoulli. Each, in his own
way, favoured and developed Fermat’s method of combinations, not
because it was Fermat’s method, but because it was everyone’s method.
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Montmort

Pierre Rémond de Monmort (1678-1719) published his own book on
games of chance in French in 1708.31 Montmort explains that he learned
the elements of the subject from Pascal’s Usage, but he relies primarily on
the method of combinations. He ignores Pascal’s and Huygens’s founda-
tional arguments, returning to the rule of three to argue that if a player has
m chances out of m + n to get A, his expectation (sort) is mA/(m + n).32

Accused by De Moivre of following Huygens (because he had used some
algebra), he denied having learned anything important from Huygens,
dismissing what he called Huygens’s “lemma” as mere common sense.33

(Here he was probably referring to Huygens’s Proposition III, perhaps also
confusing it with Pascal’s lemma.)

De Moivre

Abraham De Moivre (1667-1754) published a far-reaching article in Latin
in 1711.34 He began with two principles. First, if two players contend for
the sum a, and p out of p + q chances favor the event that the first player
wins, then his expectation is worth pa/(p + q). Second, multiplication is
used to find the numbers of chances for events that have no dependence on
each other. These are essentially the medieval principles, updated by
explicit reference to multiplication and to the concept of an event. De
Moivre later explained that he had learned the elements from Huygens, but
that he was determined to use combinations rather than Huygens’s (alge-
braic) method.

Bernoulli

Jacob Bernoulli (1655-1705) worked on probability well before Montmort
and De Moivre, but his book on the topic was published after his death, in
1713.35 The book begins by reproducing Huygens’s treatise with commen-

31 [34,35]
32 [34], pp. 3-4; [35], pp. 75-76.
33 [35], p. xxx.
34 [36,37]. See also [38,39].
35 [40,41]
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tary. But Bernoulli then turns to the method of combinations. His commen-
tary on Huygens’s first three propositions suggests that he does not find
Huygens’s constructive argument necessary. He suggests that it can be
replaced by reasoning that is “more popular” and “more adapted to
common comprehension”, using merely the assumption that two players
together are sure to win the entire stakes and should be treated equally. He
then notes that Huygens’s rules are analogous to the rules for mixtures used
in business mathematics.36

6. Conclusion

George Sarton saw the history as essential to a scientist’s understanding of
his subject. As he once wrote,

to understand and to appraise at its just value what one possesses, it is well

to know what the people possessed who came before us; this is as true in

the domain of science as it is in daily life. It is his historical knowledge that

discloses to the scientist his precise attitude toward the problems with

which he has to grapple, and that enables him to dominate them.37

Marie-France Bru and Bernard Bru have made the same point with these
words:

To penetrate to the reasons of things, look at how they have gradually been

revealed in the course of time, in their progression and in their ruptures …38

Since the time of Laplace, successive students of probability have pursued
this historical method in their quest for a clearer understanding of proba-
bility. Here are some thoughts about how the preceding perspectives on
Pascal, Fermat, and Huygens can help us with contemporary puzzlements.

Conceptual revolution?

The legend of Pascal and Fermat was embellished yet further in the 1970s,
when philosophers and historians reviewed the history of science in search
for examples of conceptual change. Most famously, Ian Hacking argued

36 [41], pp. 134, 138.
37 Quoted by Stadler [42], p. 74.
38 [8], p. 287.
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that the correspondence between Pascal and Fermat marked the emergence
of a dual concept of probability, combining belief and frequency. In 1975,
Hacking wrote:

Probability, as we now conceive it, came into being about 1660. It was

essentially dual, on the one hand having to do with degrees of belief, on the

other, with devices tending to produce stable long-run frequencies.39

This thesis of a conceptual revolution for probability has been widely
repeated and further embellished, in both scholarly and popular contexts.
Here, for example, is an assessment offered by Keith Devlin, a widely read
writer on mathematics:

The Pascal-Fermat correspondence showed that it is possible to use mathe-

matics to see into the future.40

The history recounted in this article suggests a greater conceptual conti-
nuity. In the case of dice at least, Pascal and Fermat connected frequency
with betting on the future in the same way as the author of De Vetula had
400 years earlier, and we have every reason to suppose that dice players
had been making the same connection for millennia.

The advances that we see in Pascal’s and Fermat’s reasoning, then in
Huygens’s treatise and the following work by Montmort, De Moivre, and
Bernoulli, are primarily advances in mathematics, not conceptual changes.
These scholars’ increasing facility with numbers made it possible for the
first time to fix stakes and bets in games that were, as Laplace put it, even
a little complicated. Perhaps Pascal’s and Fermat’s most important contri-
bution was to offer to Huygens the more difficult problems that he stated at
the end of his treatise, with answers but without explanations. Montmort,
De Moivre, and Bernoulli all began their work on probability by solving
these problems.

The arguments advanced by Pascal and Huygens did contain the seeds of a
conceptual revolution, one that retained the role of fairness but replaced
frequency with reasoning about the structure of the game. But this was an
aborted revolution, because the connection between frequency and betting
was so firmly entrenched.

39 [43], p. vi.
40 [44], p. 164.
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The most important conceptual development spurred by Pascal and
Huygens was the ambition that their mathematical successes awoke, in
Bernoulli and his 18th century successors, to extend their calculations from
games of chance to other problems of uncertainty, thus making the calculus
of chances a calculus of probability. But this is another story.

Modernizing the game-theoretic foundation

In the 20th century, mathematical probability became pure mathematics.
Attribution of meaning to its terms is now an exercise undertaken after the
theory is first developed by pure reason, without any intrusion of ideas
about fairness or frequency.

The pure mathematics of probability can be developed either measure-
theoretically or game-theoretically. The measure-theoretic development is
an abstract generalization of the counting of chances; probabilities and the
corresponding expected values being taken as given.41 The game-theoretic
development is an abstract generalization of Huygens’s picture of a player
who is allowed to construct betting strategies.42 In both developments,
frequencies enter the picture through Bernoulli’s theorem and its many
generalizations. In the measure-theoretic development, these theorems say
that basic probabilities (which play the role of the classical equal chances)
will be approximated by frequencies with high probability. In the game-
theoretic development, they say that the player has a strategy that multi-
plies the capital he risks by a large factor if the approximation fails. The
measure-theoretic development can then be connected with frequencies in
the world through the presumption that easily specified events with high
probability will happen, while the game-theoretic development makes the
same connection through the presumption that simple betting strategies
will not succeed.

The modern game-theoretic formulation begins with a game in the sense of
modern game theory, defining players, rules for play, and a rule for who
wins. This takes us away from Huygens’s and Pascal’s notion of fairness
as symmetric treatment of players. As Schneider’s objection to Huygens

41 Usually cited in this connection is Andrei Kolmogorov’s Grundbegriffe der Wahrscheinlichkeits-
rechnung, [45]. See also [46].

42 See [47].
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shows, the notion of a strategy for betting fits awkwardly with such
symmetry. The game we need has instead one player who gives odds or
prices, another who is allowed to choose how to gamble at those odds or
prices and can therefore construct strategies, and another who decides
outcomes.43
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