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ABSTRACT

This article discusses the interaction cf
hierarchical evidence within the theory
of belief functions and sketches a compu-
tationally efficient algorithm for the
exact implementation of Dempster's rule
in the case of hierarchical evidence.

1. INTRODUCTION

Gordon and Shortliffel'2 have argued that
the evidence available in medical diag-
nosis and similar problems often bears
most directly on hypotheses that can be
arranged in a hierarchical or tree-like
structure. Different items of evidence
may bear on different hypotheses in the
tree, but each item directly supports or
impugns just one of the hypotheses. When
the evidence is described within the

theory of belief functions (Shafer3'4),
this means that each item of evidence is
represented by a simple support function
that is focused on a hypothesis in the
tree or on the complement of a hypothesis
in the tree.

In general, a belief-function treatment
of a problem involves representing dif-
ferent items of evidence by separate
belief functions and then combining these
belief functions. If the different items
of evidence are independent, then the
combination can be carried out by a gen-
eral rule, Dempster's rule of combina-
tion. (For discussions of the problem of
combining dependent evidence within the
theory of belief functions, see

Shafer®:®.) The implementation of
Dempster's rule is sometimes impractical
because of its computational complexity,
and Gordon and Shortliffe have expressed
a concern that it may be impractical in
the case of hierarchical evidence. 1In
this article I show that this is not the
case.

The exposition in this article is rela-
tively general and abstract. The tech-
nique described here is applicable not
just to the case where the belief func-
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tions being combined are simple support
functions for or against nodes in the
tree of hypotheses but also to the more
general case where each belief function
is carried by the field of subsets gen-
erated by the daughters of a particular
node. For more details on the technique,
especially as it applies to the problem
considered by Gordon and Shortliffe, see

Shafer and Logan7.

Readers will need to turn to the refer-
ences for expositions of the theory of
belief functions and information about
the theory's intuitive interpretation.
This article does begin, however, with a
relatively self-contained treatment of
those mathematical aspects of the theory
relevant to the technique presented here.

2. THE MATHEMATICS OF BELIEF FUNCTIONS

Suppose © denotes a set of possible an-

swers to some question, one and only one
of which is correct. We call 6 a frame

of discernment. A function Bel that

assigns a degree of belief Bel(A) to
every subset A of © is called a belief
function if there is a random non-empty
subset S of @ such that Bel(A) =

pr{S ¢ Al for all A.
The information in a belief function Bel

can also be expressed in terms of the
plausibility function Pl, given by PL(A)

=1 - Bel(R) = PrlS NA# @]

Bel froT Pl, we use the relation Bel(a) =
1 - P1(A).

TO recover

In this article we assume that the frame
of discernment 6 is finite. In this case
the information in Bel or Pl is also
contained in the commonality function Q,
defined by Q{(A) = pr{S DAJ for every

subset A of ©. Indeed, S‘nafer3 shows
that

o) = 7 (-1 ey g s ca) (1)



and

pL(a) = J ((-1)1B1*amy)s £ 8 ca) (2

for every non-empty subset A of ©. (Here
|B] denotes the number of elements in the
set B. Formulas (1) and (2) do not give
values for Q(@) or PL(@), but we know
that Q(¢) = 1 and PL(#) = O for any be-
lief function.)

2.1 Dempster's Rule
Consider two random non-empty subsets §;

Suppose S, and §, are probabi-

and §2.

listically independent, and suppose
Pr(s; N s, # ¥J > 0. Let S be a random

non-empty subset that has the probability
distribution of §; M S, conditional on

s, s, # §. 1f Bel, and Bel, are the
belief functions corresponding to §; and
S5, then we denote the belief function
corresponding to § by Bel; & Bel,, and we
call Bel, & Bel, the orthogonal sum of

Bel,; and Bel,. The rule for forming

Bel; & Bel, is called Dempster's rule of

combination.

The formation of orthogonal sums by
Dempster's rule corresponds to the multi-
plication of commonality functions.
Indeed, if the commonality functions for
BRel,, Bel,, and Bel, & Bel, are denoted

by Q,, Q,, and Q, respectively, then

Q(A) = K Ql(A)QZ(A)’

-1

where K does not depend on A; K

pris; N S, # §1. (See Shafer>.)

We o . Find the value of K from the
values w: Q; and Qp if we substitute K

Ql(B)OZ(B) for Q(B) and © for A in (2).

Since P1(0) = 1, this gives

|B]+1

k=7 (-1 0, (B)Q,(B)|¢ # B C ol.

(3)

(The formulas all generalize in the ob-
vious way to the case where more than two
belief functions are combined: replace
Q,(8)0,(8) by 0;(B)...0 (B).)

The multiplication of commonality func-
tions can be used to implement Dempster's
rule numerically. Unfortunately, the
computations involved may become prohibi-
tively complex when © is large. If the
belief functions being combined have a
fairly simple structure, then it may be
easy to obtain their commonality func-
tions, and multiplying these functions
may also be easy. But translating the
result back into a plausibility or belief
function requires summations like those
in (2) and (3), where the number of terms
increases exponentially with the size of
the frame. Hence it is important to
exploit any special structure in the
belief functions being combined that may
help us reduce the computational burden.

2,2. Focal Elements and Simple Support
Functions

A subset S of 0 is called a focal element

of Bel if Pr[S = S] is positive.

The simplest belief function is the be-
lief function whose only focal element is
the whole frame ©; in this case

Pr[(s = 0] = 1. This belief function is

called the vacuous belief function. If
Bel is the vacuous belief function, then
Bel @ Bel' = Bel' for any other belief
function Bel'.

A belief function is called a simple
support function if it has at most one

focal element not equal to the whole
frame 0. If a simple support function
does have a focal element not equal to ©
(i.e., if it is not vacuous), then this
focal element is called the focus of the
simple support function.

In general, combination by Dempster's
rule involves the intersection of focal
elements. The focal elements for

Bel, ® ... @ Beln will consist of all

non-empty intersections of the form
sy ... N S, where S; is a focal ele-

ment of Beli. Therefore, the orthogonal

sum of simple support functions with a
common focus will be another simple sup-
port function with that focus.

2.3. Partitions

One case where the computational complex-
ity of Dempster's rudle can be reduced is
the case where the belief functions being
combined are carried by a partition P of
the frame ©. The complexity can be re-
duced in this case because P, which has
fewer elements than @, can in effect be
used in the place of © when the computa-
tions are carried out.
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Given a partition P of O, we denote by P
the set consisting of all unions of ele-

ments of P.

We say that a belief function Bel over ©
is carried by P if the random subset S
corresponding to Bel satisfies Pr(S ¢ P*]
= 1. It is evident that if Bel, and Bel,
are both carried by P, then Bel; @ Bel,
will also be carried by P.

When Bel is carried by P we can replace
(1) and (2) by analogous formulas that

*
only involve elements of P :

Q(a) = P .
) {(-1)lBI +1Pl(B)|B e P, ¢ #BCAj
(4)

and

PL(A) = .
y (-0 "B omye e P g £ B C A
(5)

*
for every non-empty element A of P .
(Here |B| denotes the number of elements
of P contained in B.)
If the belief functions Bel; and Bel, are

both carried by P, then their combination
by Dempster's rule can be carried out as
if P were the frame on which they are
defined. We use (4) to calculate Q;(A)

and Q,(A) for A in P*. Then we multiply
Q; (a) and Q,(A) to obtain Q(A), and then
we find P1{(A) by (5).

2.4. Coarsenings
Given a random subset S and a partition

P, let §p denote the random subset that
is always equal to the smallest element
of P* that contains S. If Bel is the
belief function corresponding to S, then
we let Belp denote the belief function
corresponding to §p. Belp is the unique
belief function that agrees with Bel on

P* and is carried by P. We call Belp the
coarsening of Bel to P.

Suppose we want to combine two belief
functions Bel, and Bel,. And suppose we

are tempted to do so using (4), and (5),
even though Bell and Be12 are not carried

by the partition P. We know that we will
not get the right answer; we will get
Bel) , @ Bel, p instead of Bel;, & Bel,.

But suppose we are not interested in the
whole belief function Bel, & Bel,. Sup-

pose we are interested only in the values
of Bel, 9 Bel, on P*. We will get these
values right if and only if

sfnsf= s, Nsy? (6)

This is equivalent to the condition that
SN P# ¢ and S, N P # ¢ together imply

Sy N S, NP # ¢ whenever P e P, S, is a
focal element of Bel), and S, is a focal
element of Bel,. In this case we say that
P discerns the interaction between Bel,
and Bel, that is relevant to itself.
Notice that if one of the pair Bel, and
Bel, is carried by P, then P will neces-
sarily discern the interaction between
Bel, and Bel, that is relevant to itself.

It might be thought that if P discerns
the interaction relevant to itself and P
is finer than P, then P' will also dis-
cern the interaction relevant to itself.
But this is not necessarily true: P' will
discern the interaction relevant to P,
but it may not discern the interaction
relevant to P'. Figure 1 illustrates
this point. 1If our two belief functions
are simple support functions with foci Sy

and S,, respectively, then the partition
{Py, P, U P3} discerns the interaction

relevant to itself, but the partition
(P, Py, Py} does not. Figure 2 illus-

trates the opposite situation;

Pyl Py Py Pyl Pal Py

G

Figure 2
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Nm Hm

Figure 1
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relevant to itself, but (Py, P, {J Py}

Py, P3} discerns the interaction

does not.

3. THE INTERACTION OF
HIERARCHICAL EVIDENCE

Consider a finite tree T, with branches
running downwards as in Figure 3. Let us
assume, in order to avoid trivialities,
that each non-terminal node in T has more
than one daughter. Let 0 denote the set
of all terminal nodes in T, and let 8
denote the set of all non-terminal nodes.
The elements of 8 can be identified with
subsets of ©; a node B in B represents
the subset of 6 consisting of the term-
inal nodes that lie below B. The node B
in Figure 3, for example, represents the
subset {a,b} of @ = {a,b,c,d,e,£f}. The
topmost node represents the whole set

6. If T has more than two terminal
nodes, then there will be non-empty sub-
sets of 6 that are not represented by
nodes. In Figure 3, for example, the
subset {b,c,} is not represented by a
node.,

For each element B of B, let PB denote

the partition of 0 consisting of the
daughters of B together with the comple-
ment B.

Now suppose 0 is a frame of discernment.
In other words, the terminal nodes of T
correspond to the possible answers to a
certain question. 1In this case, the
‘elements of 8 are hypotheses -- state-
ments that say something about which
answer is correct.

Suppose we have some evidence about which
element of © is correct. In order to
describe the import of this evidence, we
might need to refer to subsets of 6 that
are not represented by nodes in the tree.
In the case of Figure 3, for example, we
might need to mention that one particular
item of our evidence has the effect of

a b c

directly supporting the subset {b,c)} of
8. We are interested, however in situa-
tions in which the structure of our evi-
dence is closely related to the structure
of the tree T. We are interested in
situations where each item of our evi-
dence can be represented by a belief
function, and where for each of these
belief functions there is a node B in B
such that the belief function is carried
by Py. (This is more general than the

situation described by Gordon and Short-
liffe, where each item of evidence is
represented by a simple belief function
focused on a node or its complement.)
Our problem is to find a computationally
feasible implementation of Dempster's
rule for these situations.

Let us assume that each node B is B8 has a
fairly small number of daughters. Under
this assumption, it will not be difficult
to combine two belief functions that are
both carried by the same partition Py,

for then we will, in effect, be working
in the small frame defined by this parti-
tion. The computational problems arise
when the different belief functions we
want to combine are carried by different
Pg- We will solve these problems by

showing how this combination can be re-
duced to a series of calculations, each
one of which is performed within a par-
ticular Py-

Let us assume, without loss of general-
ity, that our problem is to combine a

collection {BelB}BeB’ where BelB is car-
ried by F. (If we begin with more than
one belief function carried by a partic-
ular 7, we can immediately combine them

by Dempster's rule in order to get a
single belief function carried by that
%. If the belief functions we want to

combine do not initially include a belief
function carried by a particular P, we

may take Belp to be vacuous for that

B.) For each B in B, let us set

Belg = ® {Bel |C ¢ B:; C B} (7)
and

+
Bely = 6 {Bel,|C ¢ 8 C $ B}.

If all B's daughters are terminal nodes,
then Belg = Belp. The belief function we

want to calculate is Belé,
For each B in B,

the orthogonal
sum of all the BelB.




Bel! = Bel} @ Bel] (8)
A computationally feasible method of
calculating Bel; will be described in the
next section. This method does not en-
able us to calculate Bel;(B) for every
subset B of G. But it does allow us to
calculate Bel (B) for every B in

U{'b |c e 8}, and these will often be the
subsets of @ that are of most interest to
us.

The method described in the next section
is based on the following lemmas. For
proofs of these lemmas, see Shafer and

Logan.7

Lemma l. Suppose p is a partition of ¢,

and suppose B is in both B and p. Then
M =

(BelB)p = (Bel )(B B}°

Lemma 2. Suppose P is a partition of 0,

and suppose B is in B, and suppose B is

. oo + _
in p. Then (BelB)P = (BelB){B,B}’

Lemma 3. Suppose P is a partition of 0.
Then p discerns the interaction relevant
to itself among the belief functions in

{Belng e 8N Pl

Lemma 4. Suppose B is an element of 8.
Then Py discerns the interaction relevant

to itself between Bel+ and Belg.

B

THE COMBINATION OF
HIERARCHICAL EVIDENCE

4.

The combination of the belief functions
{Bel }B - proceeds in two stages. In the

first stage we calculate (Bel for all

')
B lh
B in B, beginning with those B farthest

down the tree and then moving up. In the
second stage we move back down the tree,
calculating (Bel*)

0 Ps
At the outset,

as we go.

+
Stage 1. we know {BelB}P

for the nodes B in B that are farthest
down in the tree. These nodes are those
whose daughters are all terminal nodes,

Bel* = Bel

B In order to
calculatlng {Bel }P

and for them,

move up the tree,

20

for each B as we go, there-

to be able to calculate (Bel;}P

we only need,
fore,

for a given node B when we already have
this information for B's daughters.

Consider, then, any node B in B, and

suppose we already have in hand (Belé)P

for each daughter C of B that is also in
B. By (9),

+ +
Bel, = Belp @ ( ? {Belc]CEB7
C is a daughter of B}).
(2)
By Lemma 3, Py discerns the interaction

relevant to itself among the belief func-
tions on the right-hand side of (9), and
therefore

(Belg)P = Bel, ® (@ {(Bel

[CeB:
B P

B}).
(10)

C is a daughter of

+ _ + _
But by Lemma 1 (Belc)pB = (BelBC){C,C)'
So (10) becomes

Bel @ ( @ {(Belg){c'a}me&

C is a daughter of B}).
(11)

+
(Bel.) =
B F%

Formula (11) provides a computationally

feasible way of finding (Bel* once we

)
B Py

know (Belé)P for the daughters C of B.

The calculation is actually quite simple.
We do not need all the information in

+
(Bel.)

C IE
boils down to the
Bell ().
bine BelB and the

; we only need (Bel ){C C} which

two numbers Belc(c) and
Formula (11) tells us to com-
(Bel ){C ¢y using the
partition Py as our frame.

We can use (1l1) to move all the way up
the tree, to the topmost node 9. We will

then have calculated (Bel*) In other

words, we will have calculated Bel (A)

for all A in P . But we want to know



+ . *
Bele(A) for A in the other Py as well.

We now need to see how we can move back
down the tree, finding as we go the val-

ues of Belé(A) for A in the other p;_
Stage 2. The general problem in moving
back down the tree is to calculate

(Belé)p for each non-terminal daughter C
c

of B after we have already calculated

+
(Bel )p .
© B

Bel+

o
By (8), Bel o = c

@ Belé. Applying

Lemmas 2 and 4 to this relation, we ob-

tain

(Bel’) (Bel'), @ (Bell),. =.. (12)
e FE c % c’(c,C}

we found (Belé)p on our way up the tree.
C

So we can use (12) to calculate (Belé)p
(o4

if we can first find (Bel') To

. c’{c,Cy’
find (Belc){c,é}' note that (12) implies
that
¢ _ - ' _ + -
(nelo)(c,c) (Belc)(c,c} o (Belc)(clc}.
(13)

This is because (C,C} carries
t

(Belc) {C,E)'

carries a belief function, it discerns

the interaction relevant to itself be-
tween it and any other belief function.

We already know (Bel‘)

and whenever a partition

and

. o’ {c,C}
(Belc){c,5}7 they are merely coarsenings
+ :
of (Bele) p » which we have just calcu-

B
lated, and (Belé) p: which we found on
[o4

our way up the tree.
to find (Belé)

So we can use (13)
.81’ (?1v1de the common-
ality function for (Bele)

+
for (Belc)

{c,&} by that

(c,é}‘)

4. CONCLUSION

The preceding section shows that combina-
tion of hierarchical evidence by
Dempster's rule can be reduced to a ser-
ies of combinations involving frames
roughly equal in size to the size of the
sibs in the tree. The extent to which

this reduces the complexity of the compu-
tation will depend, of course, on the
size of these sibs and on other details
of the implementation.

Shafer and Logan7 show that in the spe-
cial case where each item of evidence is
represented by a belief functions focused
on a node or its complement further sim-
plification is possible, resulting in an
implementation that is remarkably fast.
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