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Summary

Expected values in a game of chance change with the step-by-step uatolding of the game. This unfold-
ing is govermed by a protocol, a set of rules that tell, at each step, what can happesn next. This paper
develops the idea of a protocol intuitively, historically and matbematically. Protocols are important
in statistics and in sabjective probability judgment becawse we can propery interpret new
information oaly whea we know the rules governimg its acquisition. With a protocol, the rale of
coaditioning can be treated a2s a theorem. Without a protocol, the use of this rule is questionable.
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1 Introduction

Mathematical probability began with the picture of games of chance. This picture is
based on the idea that gambles have fair prices, and it emphasizes that these fair prices
change with the step-by-step unfolding of the game. The unfolding is governed by a
protocol, a set of rules that tell, at each step, what can happen next.

During the nineteenth and early twentieth centuries, the idea of fair price lost its
dominant role in mathematical probability. In its place, two competing conceptions of
probability came to the fore: the conception of probability as relative frequency, and the
conception of probability as rational degree of belief. Under both these conceptions, the idea
of a protocol for changes in probability has tended to disappear. We do not seem to need a
protocol telling us how we may change the reference class for our relative frequencies or
the evidence for our rational degrees of belief.

The mid-twentieth century has seen a further conceptual evolution. Today, most
scholars who understand probability as degree of belicf have dropped the adjective
‘rational’. These scholars no longer hold, as Keynes did, that given evidence logically
determines a probability for a given proposition. Instead, they think of a person's
probability for a proposition as his personal degree of belief: personal in that it depends
on his idiosyncrasies as well as on his information. Since this personal degree of belief is
defined behavioristically, in terms of choices the person might make, this mid-twenticth
century cvolution can be seen as a partial return to the original picture of games of
chance. A probability is again a price for u gamble, a price a person considers fair
inasmuch as it is the price at which he will both buy and sell.

In this paper | argue that we need to complete this evolution back to the original
picture of games of chance by reintroducing the notion of a protocol. 1 argue that the
Bayesian picture of subjective probability, the picture created by Bruno de Finetti and
L.J. Savage, becomes, when it is fully developed, the picture of a person who not only has
prices for uncertain rewards but also has a protocol laying out the possibilities for what
new information or evidence he may acquire,

The de Finetti-Savage picture shows us a person who has a subjective probability
distribution Pr over a set of possibilities 2. When the person acquires new information, he
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recognizes that this information tells him that the truth is in a certain subset B of {2, and
he changes his probability for any given subset A of  from the unconditional probability
Pr|A] 10 the conditional probability Pr[A | B], where

Pr[ANB]
Pr(B)

As it is usually presented, this picture seems to suggest that the person may be totally
uninformed about what *new information’ may come along and hence may be prepared to
apply (1) 10 any subset B of ), at least any subset B such that Pr[B|> 0. Herc I argue
that this is wrong. The change represented by (1) is defensible and justifiable only on the
basis of a protocol that tells circumstances under which the information B will be
acquired. And any such protocol will justify (1) only for some subsets B of the full set of
possibilitics €).

This conclusion has important implications for subjective probability. It makes clear
how thoroughly the Bayesian theory assimilates practical problems to the picture of games
of chance, and it forces us to ask how this assimilation can be justified. How can a person
be expected to have a protocol for new information? If he cannot be expected to do so, do
we not need a new understanding of how the de Finetti-Savage picture is to be related to
practical probability judgment?

We do not always have protocols for new information in practical problems. This does
not mean that we must despair of subjective probability judgment in such problems; often
such judgment is necessary. But it does mean that the logic of subjective judgment is not
as clear and powerful in these problems as we might like. In particular, it means that it is
not normaltive 1o use the Bayesian theory in such problems. Alongside the Bayesian
theory, which draws an imperfect analogy between the practical problem and a game of
chance, we should consider other theories, which rely on analogies to other canonical
examples (Shafer, 1985; Shafer & Tversky, 1985).

In § 2 of the present paper, I discuss intuitively what a protocol is and why it is needed.
In & 3, I give a simple formalization of the notion of a protocol and use this formalization
to demonstrate how (1) can be justified when there is a protocol. This demonstration, it
warns out, dates back to the second edition of De Moivre's The Doctrine of Chances,
published in 1738, In § 4 1 discuss the practical and philosophical implications of the need
for protocols.

There are two appendices. Appendix 1 lays the foundations for a mathematical
treatment of probability and expectation with protocols. Appendix 2 relates the ideas
developed in the paper to de Finetti's treatment of conditional probability.

Pr(A|B]= (1)

2 Protocols for new information

When should you change your probability for A from Pr|A] to Pr(A|B]=
Pr{ANB|/Pr|B]? Everyone agrees that two conditions should be met. First, you must
have Pr|B|>0. Secondly, the fact of B’s happening must be the only thing you have
learncd. (This is the ‘principle of total evidence'.) The thesis of this paper is that a third
condition must be met: your learning about B's happening must be in accordance with a
protacol that told you the possibilities for what you would learn,

The purpose of this section is 10 convey an intuitive understanding of this need for a
protocol for new information. We begin by studying a puzzle that illustrates the need, We
then notice that this need is implicit in the principle of total cvidence.

Freund's puzzle of the two aces. This is one of many well-known puzzles that
illustrate the need for protocols in conditioning. It is presented here in a form close to the
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form in which it was presented by John I, Freund in The American Statistician in 1965,
The resolution given here is in agreement with Schrodinger (1947), Gridgeman (1963)
and Faber (1976).

I show you a deck containing only four cards: the ace and deuce of spades, and the ace
and deuce of hearts. I shuffle them, deal myself two of the cards, and look at them, taking
care that you do not see which they are. You realize that there are six equally likely
possibilities:

A spades and A hearts, A hearts and 2 spades,
A spades and 2 spades, A hearts and 2 hearts,
A spades and 2 hearts, 2 hearts and 2 spades.

If A denotes the event that I have two aces, B, denotes the event that | have at least one
ace, and B, denotes the event that 1 have the ace of spades, then your initial probabilities
are
Pr(B,]=% Pr[B,]=}, Pr[A]=Pr[ANB,|=Pr|ANB,|=1
Now I smile and say, ‘I have an ace’. The usual doctrine is that you should react to this
new information by conditioning on the event B|. Thus your new probability for A, the
cvent that | have two aces, is

PrlA|B,)s — ot = e

The information that 1 have at least one ace has increased your probability that | have
1wo.

Now I smile again and announce, *As a matter of fact, | have the ace of spades’. You
are supposed to condition again, this time on the event B,. obtaining the new probability
Pr[ANB,] 16 _

1
B,N =Pr[A|B,|= -,
Pr[A | B,NB,] r[A | Byl Pr(B,] 2 3

The more specific information that 1 have the ace of spades has increased even further
your probability that | have two aces.

Is this second change in your probability for A reasonable? Should my decision to
identify a suit make any difference?

You are puzzled about whether or not you should change your probability for A
because we had not agreed to a protocol for what information I would communicate.
Under some protocols, the change is reasonable; under others it is not, If it had been
agreed beforehand that 1 would tell whether or not | had at least one ace and then
whether or not 1 had the ace of spades, then the second step would involve relevant
information. (Had 1 said no, 1 do not have the ace of spades, then your probability for my
having two aces would have gone down to zero, and so it is reasonable that when [ say yes
this probability should go up.) On the other hand, if it had been agreed that I would first
tell whether or not 1 had at least one ace and then, if I did have one, that 1 would name
the suit of one [ had, then the second step would not involve relevant information.

What can you do when no protocol has been agreed to? You can, if you wish, refuse to
make any probability judgment at all, on the grounds that you have no way of knowing
what I am up to. Alternatively, you can rely on your own, purely subjective, protocol for
what information 1 might communicate. You can claim to have had prior probabilitics
concerning what, under different circumstances, I would say, and using these prior
probabilities you can calculate probabilitics conditional not only on the fact that | have
the ace of spades, but also on the fact that 1 have said so, with a smile.
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Note that the puzzle of the two aces appears, in various forms, in many books of
mathematical puzzles, including Ball (1911, p 32), Gamow & Stern (1958, pp. 37-42) and
Gardner (1959, pp.49-51). It has also been discussed by Schrodinger (1947) and
Gridgeman (1963). Freund's discussion of the puzzle in The American Statistician was
followed by a long series of letters 10 the editor of that journal (Freund, 1965). The
writers of these letters disagreed sharply about how to explain the puzzic. A similarly
confused controversy, inspired by the presentation of the puzzle by Copi (1968, p.433),
has appeared in Philosophy of Science: Rose (1972), Dale (1974), Faber (1976), Goldberg
(1976), Feller's puzzle of the two boys (Feller, 1950, Ch, 5, § 1) and Mosteller’s puzzle of
the three prisoners (Mosteller, 1965, problem 13), which turn on the same point, have
also inspired much comment, Bar-Hillel & Falk (1982) discuss these puzzles from a
psychological point of view. Similar puzzles arise in actual card games; see, for example,
Rubens (1976).

‘The principle of total evidence. The need for a protocol is implicit in the principle that
you should condition on everything you learn.

To see this, notice that when you learn something, you also learn that you have learned
it. (When I tell you I have the ace of spades, you learn not only that I have it, but also that
I told you so.) So the event B that specifies all the facts you learn must also specify the
fact that you learn these facts. Indeed, B is most succintly described as the event that the
totality of what you learn is such-and-such. (Once we have said you learned a fact, it adds
nothing to say it is a fact.) But when we say you should condition on B, we arc assuming B
is in your probability model, i.c. in the field of events to which you assign probabilities. So
it is implicit in the principle of total evidence that your probability model should include a
model for what you learn. It should give probabilities for the different possible ways your
learning may turn out. This amounts to giving a protocol for new information.

3 Justifying conditional probability

Woe can gain further insight into the nature of a protocol for new information by
considering what assumptions are needed in order to derive equation (1), the rule of
conditioning, as a theorem.

In this section | present two versions of an argument that does produce (1) as a
theorem. Both versions concern subjective probabilities. And both rely on the existence of
a protocol, a model for the way your learning may turn out. They differ in that the first
assumes that this protocol is objective and publicly known, while the second assumes only
that it gives your personal opinions about how your learning may turn out.

After presenting these two arguments, I briefly discuss the similar arguments given in
the cighteenth century by De Moivre and Bayes. | postpone to Appendix 2 discussion of
an argument by de Finetti which also seems similar but which does not rely on a protocol.

In order to avoid constant reference to the condition ‘Pr{B|> 0", I shall argue not for
(1), but for the nearly equivalent equation

Pr[ANB|=Pr[B|Pr[A|B], (2)

which necessarily holds if Pr|B|= 0. This equation is often called the rule of compound
probability,

An objective protocol. Suppose it is arranged and publicly known that (i) if B happens
its happening will be known immediately to you and others, and (ii) the fact of its
happening will be the only new information you will receive up to that point. Suppose,
further, that your probabilities, now and later, are interpreted as two-sided betting rates.
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When you announce a probability p for an event, you are offering to bet for or against the
event at odds p:(1-p).

Since B's happening is the only new fact you will learn by the time of its happening,
your total evidence at that time is well defined. So you can think about what your
probability for another cvent A will be right after B happens (if it happens). Let
Pr|A | B] denote the number you now think this probability will be.

Suppose you are required to annouce both Pr{A | B| and your present probabilities
PriANnB]and Pr[B]. Then following Teller (1973), we cun show that these probabilitics
must obey (2) or clse an opponent can construct from your offers to bet a ‘Dutch book’,
an arrangement whereby you are certain to suffer a net loss.

Suppose, indeed, that (2) does not hold. Consider the case where

Prl[ANB|>Pr[B]|Pr[A |B].
Suppose an opponent makes the following bets with you,

(i) He bets against A NB, with total stakes of $1. This means he will pay you
$(1-Pr[ANB]))if A and B both happen and otherwise will collect $Pr[A N B
from you.

(i) He bets on B, with total stakes of $Pr[A | B]|. This means he will collect
$(1-Pr(B])Pr[A|B] from you if B happens and otherwise will pay you
$Pr[B|Pr[A|B].

(iii) The third bet he makes only if B happens. If B does happen, he then bets on
A, at your new odds, with total stakes of $1. This means he will collect
$(1-Pr[A|B]) from you if A and B both happen, and he will pay you
$Pr[A | B]if B happens but A does not.

The amounts the opponent will collect are shown in Table 1. Negative entries are
payments he makes to you. As the totals of the three columns indicate, he will have a net
gain of $(Pr(ANB|-Pr[B|Pr(A | B]) no matter what happens. By assumption this net
gain is positive.

If Pr{ANB]<Pr[B|Pr[A|B], the opponent uses the same bets but switches sides,
thus reversing all the signs in Table 1.

Notice that the argument depends not only on the protocol for what you are going to
learn but also on the requirement that you announce beforchand and follow a plan for
changing your probabilities. An opponent cannot make a Dutch book against you if he
does not know how you are going to change your probabilities, but he can make a Dutch
book against you if you follow an announced policy that differs from the rule of
conditioning.

Table 1
The Duich-book argument
Opponent’s Opponent's gains
bets If A and B both happen If B happens but A does not If B does not happen
(i) Against -{(1-Pr[ANB)) PrlANH)| PriANB)
ANB
iy OnB (1-Pr{BhPr|A|B) A-Pr[H))Pr[A]B] -Pi[BIP{A | B
(iii) On A
(if B happens) 1-Pr(A|B| -PriA|B| -
Totals Pr[ANB)-Pr(BIPc|A|B] PelANB|-PrBIPt|A|B] PrlANB| Pr(B|Pr|A]H]|
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The crux of the argument is the fact that bets (i) and (ii) together amount to a bet on the
event A NB. If you announce Pr|B]:(1-Pr[B]) as your odds for betting for or against
B and you also announce Pr[A | B|:(1-Pr[A | B]) as the odds at which you will bet for
or against A once you have learned of B’s happening, then an opponent can arrange what
amounts 1o a bet on ANB at odds Pr(B|Pr{A [B]:(1-Pr[B|Pc|A | B]) by betting on
B at total stakes $Pr[A | B| and arranging to bet on A at total stakes $1 if and when you
lecarn B has happened. Hence you have in effect announced a probability of
Pr(B|Pr[A|B] for the event ANB.

A subjective protocol. Consider now the case of a purely subjective protocol. Suppose
this protocol says (i.c., you belicve) that if B happens its happening will be immediately
known to you and will be your only new information by that time. But this is not a matter
of public knowledge. There is not necessarily an opponent who knows or agrees that B
has this special property. Suppose again that there is a definite number, which we denote
by Pr|A | BJ. that you think will be your probability for A if and when B happens.

In this case we cannot raise the specter of an opponent who is allowed to exploit
Pr{ANB], Pr[B] and Pr|A | B] as offers to bet. We can, though, talk about what a
contract is worth to you. And we can relate your valuation of risky contracts to your
probabilities in the usual way: a contract that pays $1 if an event happens is worth $p to
you if your probability for the event is p.

Here is a more subtle point. Since you have opinions about what your new probabilities
will be once B happens, you may also have opinions about your valuations at that point.
And this, in turn, may say something about what certain contracts are worth to you now.
Let us assume that a contract that pays a thing T if B happens is worth $Pr[B v to you
now if you expect T to be worth $v to you once B has happened.

Now consider a nested contract: a contract that pays, if B happens, a contract that pays
$1 if A also happens. By the assumptions we have madc, this ncsted contract is worth
$Pr[B|Pr{A | B] to you now. But this nested contract boils down to a contract that pays
$1 if thc event ANB happens. So we have shown that Pr[B|Pr[A | B} is equal to
Pr|ANB].

It seems reasonable 1o say that we have just given two versions of the same argument.
In the case of the objective protocol, we combine bets you are willing to make to show
that you would pay (or accept) $Pr(B]Pr[A | B] for a bet that would return $1 if A and
B both happened. In the case of the purely subjective protocol, we combine your
valuations of risky contracts to show that a contract that will return $1 if A and B both
happen is worth $Pr[B|Pr{A | B] to you.

There is, in a sense, an escape clause in both versions. In the case of the objective
protocol, you might, when B happens, violate your announced policy and adopt a
probability for A that differs from Pr(ANBJ}/Pr(B]. In the case of the subjective
protocol, you might, when B happens, violate your own expectations and adopt a
probability for A that differs from Pr[A NB}/Pr[B]. We have shown not that you will
change your probabilities in conformity with the rule of conditioning, but merely that you
expect to do so.

De Moivre and Bayes. The cighteenth-century writers Abraham De Moivre and
Thomas Bayes gave their own versions of our argument for the rule of compound
probability.

De Moivre's argument first appears on pages 5-6 of the second edition of his book, The
Doctrine of Chances, published in 1738, (It is repeated unchanged in the third edition,
published posthumously in 1756.) He spells the argument out only for one particular
numerical example of independent events. But this is a matter of exposition; he clearly
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intends the reader to extend his argument 10 the general case, where the events may be
dependent. His argument is very similar to the sccond of our two versions, for it is based
on the assumption that an expectation, or a contract that returns a certain sum of money if
a specified event happens, has a definite value, proportional 10 the probability of the
event,

It would be misleading, however, to call De Moivre's argument subjective. He seems
not to have distinguished between objective and subjective protocols, or even bhetween
objective and subjective probabilities. He was directly concerned with games of chance,
where probabilities, values of expectations, and protocols are determined by publicly
known rules and hence are objective as well as subjective.

We find another version of De Moivre's argument in the proof of Proposition 3 of
Thomas Bayes’s famous essay on probability, which was published posthumously in 1764,
Bayes was also concerned with a question that had not occurred to De Moivre. He was
interested in the probability we should give to a one event given knowledge only of the
happening of a later event. Though Bayes did not explicitly distinguish objective and
subjective probabilities, his question clearly leads to such a distinction. If our knowledge
does not keep up with the objective unfolding of events, then there is a clear sense in
which our probabilities are only subjective. Indeed, we can imagine the existence, in the
same game of chance, of distinct objective and subjective protocols. The objective
protocol would govern the actual happening of events, and the subjective protocol would
govern our lcarning of them. De Moivre's argument could be applied to both protocols,
determining objective and subjective probabilities that diverge as events procecd. Bayes
did not, however, formulate the idea of a subjective protocol. Instead he attempted, in his
Proposition 5, to justify the rule of conditioning without a subjective protocol. This
attempt was nol successful (Shafer, 1982).

4 Should protocols be part of the theory of probability?

Freund’s puzzle shows that a protocol is sometimes needed to make conditioning on
new information legitimate. And we have seen that this legitimatization can be built into
the Bayesian theory of subjective probability. Should it be built in? Should we make the
role of protocols explicit and treat the rule of compound probability as a thcorem within
the theory? Or should we leave protocols outside the theory, in the realm of informal
judgment that governs our use of the theory?

Almost all twentieth-gentury writers on subjective probability have left protocols in the
realm of informal judgment. This is due, in part, to the influence of A.N. Kolmogorov’s
axiomatization of probability, in which (1), the rule of conditioning, is interpreted as a
definition of the conditional probability Pr{A | B], a definition that is equally meaningful
for all B such that Pr{B|>0. As soon as we call the rule of conditioning a definition, we
have pushed the question of when the rule should be used outside our theory,

Much is to be gained by bringing protocols back into the theory of subjective
probability. I do not mean to denigrate the historical importance of Kolmogorov's axioms
nor to deny that experienced and careful statisticians, working on specific concrete
problems, can make wise informal judgments about whether conditioning is justified. But
1 believe an explicit recognition of the need for protocols can bring many insights to those
who are less experienced or who undertake to think about subjective probability in
abstraction from specific problems.

Insights in applied statistics. Statistical theory has traditionally been based on the idea
of a planned experiment. The set of possible outcomes of the experiment, known in
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advance, is called the sample space. From the Bayesian viewpoint, the sample space
amounts to a protocol for new information. But because its role as a protocol is only
implicit, we can easily lose sight of this role when statistical ideas are applicd outside the
realm of planned experiments.

Pcople often fail to realize, for example, that the significance of a surprising fact
depends on the scarch that turned it up. Consider the three elderly people with cardiac
problems who died within a few hours of being vaccinated for swine flu in Pittsburgh in
1976. Many people were puzzled when statisticians said that the significance of these
deaths depended on something poorly known: how sharp an eye was being kept out for
such coincidences (Kac & Rubinow, 1977; Neustadt & Fineberg, 1982). Similar problems
arisc when the results of medical experiments are scrutinized for apparent effects for
subgroups of the population being studied (Tukey, 1977). It is also easy, both in
experiments and in surveys, to overlook the need for a protocol governing whether data
will be missing (Dawid & Dickey, 1977; Rubin, 1976, 1978.)

It is possible to deal with all these examples within a framework where the rule of
conditioning is called a definition. We simply insist, in each case, that the ‘correct sample
space’ be used; namely, a sample space that models the process of data acquisition. But
the inexperienced might be less easily confused about what the correct sample space was if
they were aware of the general need for protocols for new information,

Insights in the foundations of the Bayesian theory. As I stressed in the introduction, a
recognition of the need for protocols has important consequences for the de Finetti-
Savage picture of subjective probability. Most importantly, it undermines Savage’s claim
that the Bayesian theory is normative.

In The Foundations of Statistics (1954), Savage tried to convince us that we should want
our preferences to obey axioms that imply these preferences are ordered by expected
values like those in games of chance. He tried to convince us even that these axioms
express such basic canons of rationality that it is normative for us to make sure our
preferences do satisfy them. But Savage seems to have taken the rule of conditioning for
granicd. In order to justify conditioning, we must add to Savage's axioms the assumption
that we have a protocol for new information. And while we will want to have such a
protocol, it hardly scems normative for us to have it. We may, by an act of will, adjust our
preferences to make them obey Savage’s rules, but it may take more than an act of will to
find out in advance what the possibilities are for what we will learn.

The Bayesian claim to be normative must be abandoned. We must recognize that when
we make a Bayesian probability calculation we are only constructing an argument. We are
assessing the strength of our evidence in a particular problem by drawing an analogy with
the evidence we would have for a particular outcome in a particular game of chance. This
argument by analogy may be strong, but it is only an argument. One aspect of its strength
is the extent to which we can claim there is a protocol in our problem like the protocol
that would be present in the game of chance.

A recognition of the general need for protocols can also help clarify several other issues
that have arisen in philosophical discussions of the Bayesian theory.

Consider, for example, the recent discussions of conditioning by Paul Weirich (1983)
and Bas van Frassen (1983), These authors give examples where conditioning can lead to
contradictions when it is applied to a person's beliefs about his own future beliefs or
actions. Weirich uses such examples to argue that some events cannot represent all one
has learned and hence cannot be candidates for conditioning. This important insight is
bolstered by recognition of the need for a protocol, for it is clear that a given protocol can
justify conditioning on only some of the events in a field of events. (See the discussion of
exact events in Appendix 1.)
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Consider also the debate over the ‘likelihood principle’. According 10 this principle,
statistical inferences should depend only on the element of the sample space actually
observed. They should not depend on whole sample space. Though it was originally
thought of as a consequence of other more intuitively meaningful principles, the likeli-
hood principle has been presented in recent years as if it were self-evident; non-Bayesian
methods which do not obey it have been criticized because they ‘depend on what might
have been observed’. The force of this rhetoric is diminished when we recognize that
Bayesian conditioning, which does satisfy the likelithood principle, depends for its legiti-
macy on a protocol, i.c. on a specification of what might have been observed (Lindley,
1980).

Finally, consider the Bayesian criticism of Dempster’s rule of combination in the thecory
of belief functions. Several authors, for example, Seidenfeld (1981), have claimed that the
theory of belief functions is less flexible than the Bayesian theory because Dempster’s rule
is appropriate only for combining independent items of evidence, whereas Bayesian
probabilities can be conditioned on arbitrary new evidence. But when we recognize the
need for protocols in the Bayesian theory, we see that this theory has just as much need to
model the evidence as the theory of belief functions does.

An insight in mathematical probability. Almost all students of mathematical probability
are initially puzzled by the difference between Kolmogorov's treatment of conditional
probability in the discrete case and his treatment of it in the general case. In the discrete
case, we are allowed to condition on any event B such that Pr{B[> 0 using the definition
(1). But in the general case, where it is sometimes necessary to condition on events of
probability zero, we are told first that it is meaningful to consider an event B only when B
is thought of as an element of a partition of the sample space, and secondly that the
resulting conditional probabilities depend on the particular partition chosen. This puzzle-
ment is partially relieved when it is explained that continuous probability distributions are
only idealizations and must be discretized to correspond to reality; the partition serves
to indicate what discretization is intended. The cxample of conditioning a distribution
over a sphere on a particular longitude is often cited; in reality the longitude can only be
measured with error, and so the result of the conditioning should depend on how the
error varics with the latitude (Bertrand, 1889, pp.6-7; Borel, 1909, pp. 100-104;
Kolmogorov, 1933, pp. 44-45). But some puzzlement remains. If conditioning on an
isolated event is meaningful in the discrete case, why is it not meaningful in the general
case?

The answer, of course, is that conditioning on an isolated event is not meaningful even
in the discrete case. Conditioning is legitimate and meaningfu! only when there is a
protocol which specifies what else might have been observed and hence determines a
partition (or at least a system of partitions; see Appendix 1),

Do frequentists need protocols? Kolmogorov’s treatment of probability was inspired by a
frequentist rather than a subjective conception of probability. Do protocols have a role 1o
play in a frequentist theory of probability?

The answer seems to be positive if we agree that the frequentist view is based on the
idea of random sampling from a population. If, after we learn that our selection is in a
certain subset of the population, we want to think of ourselves as sampling at random
from that subset, then we need to be assured that our learning that it is in the subset does
not depend in any way on where in the subset it is.
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Appendix 1. The mathematics of protocols

In §3 we limited our attention to two events A and B and to a protocol for your
lcarning about the happening of B. It is also enlightening to think about more complete
protocols, protocols that specify the possibilities in a more extended learning process. This
appendix is devoted to a mathematical study of such protocols.

Here, as in § 3, we are interested in a protocol for your subjective learning process, not
a protocol that orders objective events that may or may not come to someone’s attention.
This protocol may be purely subjective, or it may be publicly agreed to and thus objective
as well. In-any case, an event in the protocol is always the event that you learn something.

We begin by developing the idea of a complete protocol in terms of a tree. We then
give a more abstract treatment.

Trees. Let 0 denote the set of possibilities for how your knowledge will grow during a
certain learning process. These possibilities can be represented graphically as different
ways of moving down an upside-down tree, as in Fig. 1. You begin at o, the initial node of
the tree, and move down step by step.

If the tree is finite, as in the figure, then cach path down the tree can be identified by its
terminal node. Thus we may think of €, the sct of all paths down the tree, as the set of all
terminal nodes.

An event is a subset of 2. An event A happens when you take a step down the tree that
forces your final path to be in A. In Fig. 1, for example, the event B = {b, ¢, d} happens as
you arrive at node n. Other events also happen at this point, e.g. {b, ¢, d, ¢, f, g}. But the
event B is of particular interest because it is more specific than the other events that
happen as you arrive at node n. It represents, as it were, everything that has happened
(i.c. everything you have learned) at that point. It is the most specific event that happens
as you arrive al node n because it consists of all the terminal nodes that lic below n.
(Notice also that B can happen only as you arrive at node n. Other events can happen in
several ways. The event {b, ¢, d, e, f, g}, for example, can happen as you arrive at node n
or as you arrive at node p.) Let us call an event that consists of all the terminal nodes
below a given node an exact event. It is ‘exactly’ what happens as you arrive at that node.

The concept of an exact event clarifies the assumptions about the event B that we made
in § 3. For within the framework of a complete protocol, those assumptions reduce to the

b c d

Figsre 1. A protocol represented by a tree,
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Consider also the debate over the ‘likelihood principle’. According to this principle,
statistical inferences should depend only on the clement of the sample space actually
observed. They should not depend on whole sample space. Though it was originally
thought of as a consequence of other more intuitively meaningful principles, the likeli-
hood principle has been presented in recent years as if it were self-evident; non-Bayesian
methods which do not obey it have been criticized because they ‘depend on what might
have been observed’. The force of this rhetoric is diminished when we recognize that
Bayesian conditioning, which does satisfy the likelihood principlie, depends for its legiti-
macy on a protocol, i.c. on a specification of what might have been observed (Lindicy,
1980).

Finally, consider the Bayesian criticism of Dempster’s rule of combination in the theory
of belief functions. Several authors, for example, Scidenfeld (1981), have claimed that the
theory of belief functions is less flexible than the Bayesian theory because Dempster’s rule
is appropriate only for combining independent items of evidence, whercas Bayesian
probabilities can be conditioned on arbitrary new evidence. But when we recognize the
need for protocols in the Bayesian theory, we see that this theory has just as much need to
model the evidence as the theory of belief functions does.

An insight in mathematical probability. Almost all students of mathematical probability
are initially puzzled by the difference between Kolmogorov's treatment of conditional
probability in the discrete case and his treatment of it in the general case. In the discrete
case, we are allowed to condition on any event B such that Pr{B|> 0 using the definition
(1). But in the general case, where it is sometimes necessary to condition on events of
probability zero, we are told first that it is meaningful to consider an event B only when B
is thought of as an element of a partition of the sample space, and secondly that the
resulting conditional probabilities depend on the particular partition chosen. This puzzic-
ment is partially relieved when it is explained that continuous probability distributions are
only idealizations and must be discretized to correspond to reality; the partition serves
to indicate what discretization is intended. The example of conditioning a distribution
over a sphere on a particular longitude is often cited; in reality the longitude can only be
measured with error, and so the result of the conditioning should depend on how the
error varies with the latitude (Bertrand, 1889, pp.6-7; Borel, 1909, pp. 100-104;
Kolmogorov, 1933, pp. 44-45). But some puzziement remains. If conditioning on an
isolated event is meaningful in the discrete case, why is it not meaningful in the general
case?

The answer, of course, is that conditioning on an isolated event is not mcaningful even
in the discrete case. Conditioning is legitimate and meaningful only when there is a
protocol which specifies what else might have been observed and hence determines a
partition (or at least a system of partitions; see Appendix 1).

Do frequentists need protocols? Kolmogorov's treatment of probability was inspired by a
frequentist rather than a subjective conception of probability. Do protocols have a role o
play in a frequentist theory of probability?

The answer seems to be positive if we agree that the frequentist view is based on the
idea of random sampling from a population. If, after we lcarn that our selection is in a
certain subset of the population, we want 1o think of oursclves as sampling at random
from that subset, then we need to be assured that our learning that it is in the subset does
not depend in any way on where in the subset it is.
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Appendix 1. The mathematics of protocols

In §3 we limited our attention to two events A and B and to a protoool for your
lcarning about the happening of B. It is also enlightening 1o think about more complete
protocols, protocols that specify the possibilities in a more extended learning process. This
appendix is devoted to a mathematical study of such protocols.

Here, as in § 3, we are interested in a protocol for your subjective learning process, not
a protocol that orders objective events that may or may not come to someone’s attention.
This protocol may be purely subjective, or it may be publicly agreed to and thus objective
as well. In any case, an event in the protocol is always the event that you learn something.

We begin by developing the idea of a complete protocol in terms of a tree. We then
give a more abstract treatment.

Trees. Let §) denote the set of possibilities for how your knowledge will grow during a
certain learning process. These possibilities can be represented graphically as different
ways of moving down an upside-down tree, as in Fig. 1. You begin at o, the initial node of
the tree, and move down step by step.

If the tree is finite, as in the figure, then each path down the tree can be identified by its
terminal node. Thus we may think of Q, the set of all paths down the tree, as the set of all
terminal nodes.

An event is a subset of ). An event A happens when you take a step down the tree that
forces your final path to be in A. In Fig. 1, for example, the event B = {b, ¢, d} happens as
you arrive at node n. Other events also happen at this point, e.g. {b, ¢, d, e, f, g}. But the
event B is of particular interest because it is more specific than the other events that
happen as you arrive at node n. It represents, as it were, everything that has happened
(i.e. everything you have learned) at that point. It is the most specific event that happens
as you arrive at node n becausc it consists of all the terminal nodes that lie below n.
{Notice also that B can happen only as you arrive at node n. Other events can happen in
several ways. The event {b, ¢, d, e, f, g}, for example, can happen as you arrive at node n
or as you arrive at node p.) Let us call an event that consists of all the terminal nodes
below a given node an exact event. It is ‘exactly’ what happens as you arrive at that node.

The concept of an exact event clarifies the assumptions about the event B that we made
in § 3. For within the framework of a complete protocol, those assumptions reduce to the

Figure 1. A protocol represented by a tree.
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assumption that B is exact. An event is exact if you expect that its happening. if and when
it happens, will represent all that you will have learned up to that point.

It is natural, in the context of a protocol defined by a tree, to identify your possible
future probabilities by referring to nodes of the tree rather than by referring to events that
have happened. In Fig. 1, for example, with B ={b, c,d}, we might use the symbol
Pr, |A|. rather than Pr[A | B| to denote the number you expect your probability for A to
be if and when you arrive at node n. If we similarly use the subscript o to denote your
probabilities at the initial node o, then the argument of § 3 will yield the conclusion

Pr,lANB|=Pr,[B|Pr, [A]

For details see Shafer (1982).

This argument justifies the rule of conditioning only in the case of exact events. But }he
question of conditioning on other events does not arise. You expect you will always find
yourself at a node, so you expect you will always want to condition on an exact event.

Notice that the complement of an exact event need not be exact. (In Fig. 1, for
example, {b, c, d} is exact, but its complement {a, ¢, f, g} is not.) Thus it is not nccessary
for the argument for conditioning on an event that there should be a single point in the
future where you expect to learn of the happening or failure of the event; compare
Skyrms (1980, p. 120.)

Axioms for expeciations. The structure of a tree can be described merely by specifying
the exact events. This suggests the following definition,

Definition. A protocol is a nonempty collection & of subsets of a nonempty set () such
that

(i) any two elements of & are either disjoint or nested, and ' )
(il) if we), Se, and w¢ S, then there is an element of & that contains @ and is

disjoint from S.

The elements of ¥ correspond to the exact events in a tree. Here let us call them
situations.

Let us call a bounded real-valued function X on {1 an expectation for the protocol if for
every o in ) there is a situation S containing w such that X is constant on S. (This means
that no matter what happens there will eventually be a situation where the value of X is
settled.) The expectations for a protocol form an algebra, which we denote by &. Let us
call a subset of {2 an event if its indicator (the function that is one on the event and zero
off the event) is an expectation. The events for a protocol form a field. Followi.ng de
Finetti (1972, p. xviii), we may allow any symbol that designates an event to also designate
its indicator. o

An evaluation for a protocol is a real-valued function E on ¥ x & that satisfies the
following axioms for all S in ¥ and all X, X,,..., X, in &.

Axiom A. If X(w)=c for all @ in S, then E[X |S]=c.

Axiom B. If for every clement @ of S there is a situation S’ such that we $'S S and
L ElX, | S1=c, then ¥, E[X, | S]= ¢, where the sums are over i = 1,...,n (and similarly
for =),

Axiom B is based on the idea that E[ X | S| is a fair price for X in the situation S.. Fair
prices should not allow a scheme of buying and sclling that guarantees a dc':ﬁnilf.: profit. If,
for example, E[ X | S|< ¢ and yet for every element w € S there is a situation S Sllch.lh‘al
weS' cS and E[X|S8'|®c, then a person in situation S can assure himself of the definite
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profit ¢ — E[X | §] by buying the expectation X at the price E[ X | S| and reselling it when
the price reaches c.

Axioms A and B imply the following axiom, which is familiar from the work of de
Finetti.

Axiom C. If ¥; Xi{(w)Zc for all we S, then ¥, E[ X, | S)=c, where the sums are over
i=1,..., n (and similarly for =).

As de Finetti has shown (de Finetti, 1974, pp. 74-75), Axiom C implies the usual
properties for E|.|S]:

inf X(w)< E[X | S]<sup X(w),
s

-es -e (Al)
ElaX|Sl=aE[X|S], E[X+Y|S]=E|X|S]+E[Y]|S]
In addition to these properties, Axiom B also implics that
E[S;X | S,]= E[S,| S|)E[X|S,] (A2)

whenever S,< §,.

) If A is an event, then the quantity E{A |S] may be called the probability of A in
situation S, and it may also be denoted by Pr[A | §]. The properties given in (Al) for
E|.|S] yield the usual rules for Pr|.|S]:

Pr(¢|Sl=0, Pr[S|S]=1, PrlAUB|S|=Pr{A|S]+Pr[B|S]|-Pr|ANB]|S]
And (A2) yields

Pr[ANS,|S,]|=Pr(S;|S,]Pr[A |S)
the rule of compound probability.

Suppose = is a partition of {} into situations; i.e., a subset of & whose elements are
pairwise disjoint and have {2 as their union. For each w in {1, let us denote by S, (w) the
element of = that contains w. And for each expectation X, let us denote by E_(X) the
cxpectation whosc value at w is E[X | S, (w)]. We see from (A1) that the operator E, () is

linear:
E, (aX)=aE,(X), (A3)
E.(X+Y)=E_(X)+E_(Y). (A4)
From (A3) and Axiom C we see that
E.(XY)=XE_(Y) (AS)
whenever X is constant on each situation in . And we see from Axiom B directly that
E,(E.(X))=E,(X) (A6)

whenever m; is a refinement of m,. This is a form of the rule of iterated expectation. For
related derivations of this rule, see Goldstein (1983) and Shafer (1983).

A law of large numbers. As an illustration of the potential of the framework we have
just laid out, let us prove a version of the law of large numbers,

Suppose a person intends to buy successively a sequence X, X,,... of uniformly
bounded expectations, selling each when he buys the next. He has definite intentions
about when he will buy each expectation. For simplicity, suppose {1 is a situation, the
person is initially in {), and he buys X, while still in (2. Then we may spell out his further
u.nentions by specifying a sequence ), w,, ... of successively finer partitions of {} into
situations; in the situations in m, he will sell X, and buy X, ,,.
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What can we say about the person’s average gain from the first n expectations? His gain
from X, is

G =E,(X)-E

A

(X))

here m, = {{2}. Using (A4), (A5) and (A6), we find that E[G, |{2]=0 and E[GG,|2]=0
for i#j. So the usual proof yields the law of large numbers for the G;: for every >0 and
€ >0, there exists N such that

Pr[EZG.|<8|Q]>l—e (AT)
i=-1

for all n>N.

We obtain an interesting special case of (A7) if we take the expectation X, to be an
event, say A, and if we assume that A, is always determined before the expectation is
sold. In this case,

Gl =Ai—Pri.,,[Ai]t

1 & 1 & 1
o Z G.=;‘;| A.—;ZPI’,,.,‘[A,].

(3]

So (A7) tells us that if a person intends to announce his subjective probabilities for a long
sequence of events, always waiting for one event to be determined before he gives his
probability for the next, then he expects T A/n, the proportion of the events that happen,
to be close to Y Pr, [Al/n, the average of the probabilities he announces. This is
Dawid’s calibration theorem (Dawid, 1982).

Conglomerability. Axiom B is related to the property of conglomerability, introduced by
de Finetti (1972, p. 177-178) and studied by Dubins (1975) and others. There are several
different ways of making the concept of conglomerability precise, but roughly speaking,
Axiom B says that the probability distribution Pr[.|S] must be conglomerative with
respect to every partition of S into situations.

Discussion of conglomerability has centered around the fact that a probability distribu-
tion cannot be expected to be conglomerative with respect to all partitions. If it is not
countably additive, it cannot even be expected to be conglomerative with respect to all
countable partitions. De Finetti has argued that the intuition that supports conglomerabil-
ity must therefore be given up. But once a protocol is brought into the picture, we see that
this intuition applies only to partitions into situations, not to all partitions. Axiom B
demands conglomerability only for partitions into situations.

Appeadix 2. De Finetti’s argument for the rule of compound probability

Since the 1930's Bruno de Finetti has expounded an approach to conditional probabil-
ity that dispenses with the idea of a protoco! but nonetheless treats the rule of compound
probability as a theorem.

Our argument in § 3 above was based on a protocol that says that if B happens you will
learn of its happening and nothing else. In the context of this protocol, we were able 10
derive the rule of compound probability with Pr[A | B) defined as the probability you
expect to have for A if and when you learn of B’s happening. De Finetti takes a different
tack. He defines Pr[A | B| as the price at which you will buy or sell a contract that pays
$1if A is true, with the understanding that the purchase will be cancelled unless B is true.
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This definition allows him to rcason as follows.

By paying $Pr[A N B|, you can by a contract that returns $1if A N H is true. But you
can obtain the same result by arranging to pay $Pr|A | B| in case B is true for a
contract that returns $1 if A is also true, and you can arrange to have this SPr[A | B)
if it is needed by paying now the amount $Pr{B|Pr[A | B|for a contract that returns
$Pr[A |BJif B is true. Hence Pr{ANB|=Pr[B|Pr|A|B).

This is a paraphrase of an argument given on p. 135 of de Finetti (1974). For more formal
proofs of the rule of compound probability from de Finetti's viewpoint, sec de Finetti
(1974, p. 136-139), de Finetti (1972, p. 15-16), or de Finetti (1980, p. 69).

One way to sce that there is a diflerence between de Finetti's argument and the
argument based on a protocol is to note that de Finetti’s argument applies to any pair of
events A and B. De Finetti repeatedly insists on this point; see, for example, de Finetti
(1972, p. 193). The argument based on a protocol is not so general. It applies only to
exact events, and as we saw in Appendix 1, not every event is exact for a given protocol.

By dispensing with protocols, de Finetti loses the logic that ties the argument to your
expectations about your future probabilities. If we consent to de Finetti's use of the
symbol ‘Pr|A | B]' 1o denote the price of a contract that returns $1 if A is true but whose
purchasc is cancelled if B is false, then we can agree with de Finetti that Pr{A | B|=
Pr|A N B/Pr|B]|. But this tells us nothing about what you expect your probability for A 10
be if you learn B. It is truc that learning B will make the simple contract that pays $1 if A
is true cquivalent for you to the conditional contract that pays $1 if A is true but is
cancelled unless B is true. But this only tells us that the prices of the two contracts should
be the same after you have learned B is true. It does not tell us that you should expect
their new common price 10 be Pr|ANB|/Pr|B|, the price you earlier assigned to the
conditional contract. To pretend that the price for this conditional contract should be
expected not to change, although the prices for other contracts do change, is to repeat the
fallacy in Bayes's argument for his fifth proposition. For further discussion of this point,
see Shafer (1981, pp. 33-38; 1982, pp. 1078-1080).

Because he refuses to bring the idea of protocols into the thecory of subjective
probability, de Finetti’s derivation of the rule of compound probability takes us no farther
than Kolmogorov's definition. It leaves the problem of judging when conditioning is
legitimate still entirely outside the theory of subjective probability.
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Résumé

Les valeurs des espérances dans un jeu de hasard se transforment avec le déroulement ('Iu jgu. Cc.démulem:m
st governé par un protocole, qui précise ce qui peut se passer & chaque pas. 1ci on étudie 1'idée d'un ;}r(}mcolc
des points de vue intuitifs, historiques, et hématiques. Les pr les sont d‘imporlanc.c dans la statistique et
dans 1'évaluation des probabilités subjectives parce que la signification d'un renscignement dépvfr)d des
oconditions qui gouvernent sa t ission. En pré d'un protocole, le conditionnement des probabilités est

bligatoirc; sans p I, ce conditionnement est douteux.
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Discussion of paper by G. Shafer

T.P. Speed

CSIRO Division of Mathematics and Statistics, G.P.O. Box 1965, Canberra, ACT 2601,
Australia

Glenn Shafer has presented us a compelling case for the reintroduction, formally or
informally, of protocols into clementary probability, so that our understanding of what we
are doing can return to the high level it attained in the mid-18th century. 1 can only
applaud his paper: it clarifics some well-known puzzles, it points out inadequacies in the
claim of Bayesians that their approach is normative without protocols, it offers insight into
Kolmogorov's definition of conditional probability given a partition or o-field, and it
connects nicely with existing work on selectively reported or missing data problems in
statistics.

For fans of puzzles such as those mentioned in § 2, I offer one more, the Monte (or
Monty) Hall Puzzle (Selvin, 1975a,b), which is similar to the three prisoner puzzle, but
with an extra twist.

I was disappointed not to see Glenn Shafer express the rule of compound probability
(2) as

Pr(A&B|C)=Pr(A|C)Pr(B|A&C).

In teaching 1 try to use this form to avoid problems resulting from the fact pointed out in
the paper, that the sample space, relative to which probabilities are unconditional, plays
only an implicit role in most discussions. Surely it is implicit features of the framework
with which most care is needed, and which should be avoided if at all possible. Is this not
Shafer's message?

A question which needs attention is the following: to what extent should teachers of
clementary probability incorporate protocols into their syllabuses? I would be as reluctant
to sce the formal apparatus of protocols with trees, exact events, situations, etc, put into a
first course, interesting though it is to the specialist, as 1 would to see the whole issue
ignored.

Let us hope that some suitable way can be found whereby the wisdom of de Moivre and
Bayes can, after more than two centuries, again be passed on to students of probability.
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[ Received February 1985]

Reply to Discussion
Glenn Shafer

It is a pleasure to respond to Terry Speed’s generous comments.
I heartily agree with Speed that we should not inflict protocols on beginning students.
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Nor should we inflict Kolmogorov's axioms on them. A student’s first encounter with
probability should be through problems (Freudenthal, 1970).

In Appendix I of Shafer (1982), 1 repeated John Maynard Keynes's statement that
Hugh McColl was the first to use an explicit notation for the probability of one
proposition relative to another. In private correspondence, Terry Speed has pointed out to
me that C.S. Peirce preceded McColl in this respect. In Peirce (1867) we find b, used to
denote the probability of b relative to a. Moreover, in Peirce (1878) we find a clear verbal
statement of the rule that Speed has repeated in modern notation: Pr(A & B |Cy=
Pr(A|C)Pr(B|A&C).

1 do not find symbols like b, or Pr(A | C) as autractive as Speed does. Yes, we do need
to emphasize that the probability of A depends on the protocol or sampling framework.
Yes, the symbol Pr{A | C) can be used to make this point; we explain that C represents
the sample space and hence, indirectly, all our assumptions about how the sampling is
done. But after the student forgets this explanation, the symbol Pr (A | C) will seem to put
A and C on equal footing; both are just sets, or events, or propositions. And then it is
casy to suppose, wrongly, that Pr(A | C) means something for any such pair.
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