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This article provides a historical and conceptual perspective on the contrast between the
Bayesian and belief function approaches to the probabilistic combination of cvidence. It
emphasizes the simplest example of non-Bayesian belief-function combination of evi-
dence, which was developed by Hooper in the 1680s.

1. INTRODUCTION

The theory of belief functions. also called the Dempster—Shafer theory, has
attracted a great deal of attention in artificial intelligence during the past several
years (see Gordon and Shortliffe’ and Yager?). This theory is based on mathe-
matical probability, but it uses mathematical probability in a more general way
than the better known Bayesian theory does.

Unfortunately, many proponents of the Bayesian theory see their approach
as the only legitimate way to use mathematical probability in the assessment and
combination of evidence. They are therefore highly critical of the theory of belief
functions, even though this theory is a generalization of the Bayesian theory.
Some (e.g., Cheeseman®) go so far as to characterize the theory of belief functions
as ad hoc and essentially nonprobabilistic.

This article attempts to give a broader historical and conceptual perspective
on the relation between the belief-function and the Bayesian theories. On the
historical side, we will see that the belief-function approach to the probabilistic
combination of evidence is actually much older than the Bayesian approach; the
basic non-Bayesian belief-function idea appeared in the 1680s in the work of
George Hooper, whereas the Bayesian approach first appeared with Bayes's
original paper in the 1760s and was well understood only after Laplace rediscov-
ered it in the 1780s. On the conceptual side, we will see that non-Bayesian
belief-function combination of evidence cannot be properly understood if it is
seen in Bayesian terms.

We begin by studying the simple rules for the combination of evidence
developed by Hooper and contrasting them with corresponding Bayesian rules
later developed by Laplace. We then turn to the generalization of Hooper’s rules
developed by Lambert in the 1760s. After that we study and criticize recent
Swedish attempts (Gérdenfors, Hansson, and Sahlin®) to interpret Hooper’s and
Lambert’s rules in Bayesian terms. Finally, we explain how Dempster further
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generalized Lambert’s rule to a general rule for combining belief functions, and
we extend our criticism of Bayesian interpretations of Hooper's and Lambert's
rules to recent attempts to give Bayesian interpretations of Dempster’s rule.

Ii. HOOPER

In 1699, George Hooper, who later became Bishop of Bath and Wells,
published an article in the Philosophical Transaction of the Royal Society® entitled
A Calculation of the Credibility of Human Testimony.” * In this article, Hooper
formulated two rules relating the credibility of reports to the credibility of the
reporters who make them.

These two rules are quite simple. The rule for successive testimony says that if
a report has been relayed to us through a chain of »n reporters, each having a
degree of credibility p, then the credibility of the report is p”. The rule for
concurrent testimony says that if a report is concurrently attested to by n reporters.
each with credibility p. then the credibility of the report is 1—-(1—p)". (Here
0=<p=1.) Thus the credibility of a report is weakened by transmission through a
chain of reporters but strengthened by the concurrence of reporters.

Hooper’s explanations of these rules were reminiscent of Pascal’s arguments
about equity in games of chance. But it is easy to motivate the rules in modern
terms. We simply think of the performance of the reporters as random. There is a
chance p that a given reporter will report faithfully and accurately. The perfor-
mance of one reporter is independent of the performance of another. In the case
of a chain of reporters, we can be confident of the report finally transmitted to us
only if all the reporters in the chain have reported faithfully and accurately, and
the chance of this is p”. In the case of concurrent reporters, we can be confident of
the report they concur in if at least one has reported faithfully and accurately. and
the chance of this is 1—-(1-p)".

The applicability of Hooper's rules to actual testimony is. of course, very
limited. In order to use the rule for successive testimony, we must know the length
and nature of the chain of testimony, something we are unlikely to be certain
about if we cannot fully credit our sources. And both rules depend on an unlikely
independence in the motives and abilities of different reporters. The rules illus-
trate, nonetheless, important general aspects of the evaluation of evidence. The
rule for successive testimony illustrates how the weight of an argument is dimin-
ished when it involves many uncertainties. And the rule for concurrent testimony
illustrates how high probability results from the concurrence of independent
arguments,

*Hooper had already published the main ideas of this article in 1689, in a passage in
his tract refuting the infallibility of the pope. The 1699 article was anonymous, and until
recently its authorship was unknown to students of the history or probability, even though
it was pubhshed in his collected works in 17577 and again in 1855. (In the 1855 edition,® the
1689 tract is on pp. 33—156 of Vol. 1, and the 1699 article follows on pp. 157— 162. The
relevant passages in the tract are on pp. 40-49.) Brown Grier® is responsible for calling
Hooper’s authorship to the attention of historians of probability.
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Hooper’s rules were repeated in many 18th century books and articles on
probability.* We may assume that the authors of these works repeated the rules
because of the general insights they offered. not because of any illusions about
their literal applicability to problems of testimony.

A. Interpreting the Rule for Successive Testimony

Suppose a report comes to us through a chain of 12 witnesses, each with
credibility 100/106. Then the credibility of the report will be (100/106)'? = 5.
Hooper expressed this by saying that it will be ““an equal Lay whether the report
be true or no.”

This simple betting interpretation is open to two related objections. First,
there might be other evidence for or against the report that might affect our
willingness to bet on it. Secondly, the report might be true in spite of a failure of
integrity on the part of one or more of the reporters, so that our willingness to bet
at even odds that at least one reporter failed in his duty should not imply an equal
willingness to bet that the report is false.

These points are brought out more strongly if we lengthen the chain so as to
make the credibility smaller. With a chain of 100 reporters, for example, we have a
credibility of the final report of (100/106)'™ = .003. This calculation should
convince us that such a long chain of testimony is useless as cvidence, but it may
fail to persuade us to bet 997 to 3 against the truth of the report.

Contrary to Hooper’s own assertion, then, the credibility p” mentioned in
Hooper’s rule should not be thought of as fair odds for betting for or against the
report. Instead it should be thought of as the probability given to the report by the
testimony alone.

As | have already suggested, Hooper's rule for successive testimony can be
thought of as a general rule for combining uncertainties in an argument. If an
argument has n steps, and each has a chance p of being right, then the whole
argument has a chance p" of being right. (More generally. if the ith step has chance
pi of being right. then the whole argument has a chance p, . . . p,, of being right.)
Here, perhaps, we should not call p” the probability of the argument’s conclusion.
Instead. we should call it the probability provided the conclusion by the argument
alone. or more simply, the probability of the argument.

B. Interpreting the Rule for Concurrent Testimony

Suppose two witnesses act independently and each witness has a 3/4 chance
of testifying faithfully and accurately. Then there is a chance of

3 3\ 15
1 — (1 ——)(1 - —) == =0.9375
4 4/ 16

*“For details concerning the influence of Hooper's rules, see Grier® and Shafer.'® It
should be noted that similar rules were independently discovered by James Bernoulli; sce
again Shafer.'”
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that at least one of the two will be faithful and accurate. If the two witnesses agree,
then the proposition that at least one is faithful and accurate implies that their
common report is true. Hooper’s rule for concurrent testimony says that we may
therefore interpret 15/16 as the probability given to this report.

Does this rule take full account of the agreement between the witnesses? Let
us imagine that the experiment of having the two witnesses (or two similar
witnesses) testify is repeated many times. We can say that about 15/16 of these
times at least one of the two will be faithful and accurate. But perhaps we should
consider only those times when the two witnesses agree. Will at least one of the
two witnesses be faithful and accurate 15/16 of these times? Not necessarily.

Suppose, for example, that the experiments are arranged so that the two
witnesses must always speak to the same question, each witness always knows the
answer to the question, and he either tells the truth or lies. In this case. both
witnesses will tell the truth 3/4 - 3/4 = 9/16 of the time. and both will lie 1/4 - 1/4
= 1/16 of the time: otherwise they will disagree. So they will be telling the truth
only

9 1 10

of the times that they agree. And 9/10 is less than 15/16.

It seems clear that if the experiment really is arranged as described in the
preceding paragraph, and if we know this, then we should not use the probability
of 15/16 given by Hooper’s rule. We should use the probability 9/10 instead.
because it is the result of the analysis that takes the details of the situation more
fully into account.

When, then. is Hooper's rule appropriate? Suppose our two witnesses agree
but we do not know what, if any, rules they may be following with regard to what
questions they will speak to or what they will say if they are not being faithful and
accurate. Is Hooper’s rule appropriate in this case? Unbeknown to us, the
witnesses may be following the rules described above, so that their report is true
only 9/10 of the time when they agree. Is it legitimate for us. in this situation, to
say that the witnesses give the report a probability of 15/16? It might not be wise,
certainly, for us to offer to bet on the report at odds of 15 to 1. Someone who knew
the rules the witnesses were following could make money from us in the long run
by accepting such offers.

Of course, it is always unwise to bet with someone who knows more than we
do.

Moreover, there may be no clearrules that the witnesses are following. Often
any rules about what the witnesses would do if they were not to speak faithfully
and accurately to the question at hand will be more hypothetical than factual. Talk
about such rules is talk about might-have-beens, or "counterfactual’ talk. As van
Fraassen'! and other philosophers have stressed, such talk about might-have-
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beens is always controvertible, for it always involves the choice of one out of many
possible but nonactual worlds.

Our idea of numerical probability derives from the picture of games of
chance. Games of chance are played out step-by-step. and they always follow
a “protocol.”” a set of rules specifying what may happen at each step (see
Shafer'?). The players know the protocol and keep abreast of what is happening
in the game, and so at each step they have new probabilities for what will happen
next. The existence of the protocol means that these new probabilities take the
details of the situation fully into account, and hence these probabilities can be
given a strong betting interpretation: a player who offers to bet at the odds set by
these probabilities can be certain of breaking even in the long run no matter what
strategy another player uses in deciding what bets to accept.

In practical problems talk about probabilities usually involves an imperfect
comparison to the picture of games of chance. We construct “probability argu-
ments” by showing in detail how our situation is comparable to a situation in a
certain game of chance (see Shafer and Tversky'?). Usually one reason for the
imperfection of the comparison is the lack of a fully persuasive protocol for the
real-world problem. We cannot take a particular aspect of the situation fully into
account because we cannot give rules for what might have happened differently.
In the case of the two witnesses, we may not be able to take their agreement fully
into account because we cannot fully specify the conditions under which they
might accidentally or mendaciously agree.

The imperfection of the comparison of real-world problems to the picture of
games of chance means that there are often several probability arguments that
compete for our attention. Often, as in the case of our example of the two
witnesses. one analysis may seem to take the details of the situation more fully into
account and yet be less convincing as an argument than a simpler analysis that
makes fewer assumptions. ,

Hooper's rule for concurrent testimony is based on a very simple analysis and
often provides a convincing probability argument. Like the rule for successive
testimony, it can be applied not just to testimony but to arguments in general. If
there are n independent arguments for a conclusion. and each has a chance p of
being right, then all the arguments together constitute an argument that has a
chance 1 — (1—p)" of being right. So we call 1 — (1-p)” the probability pro-
vided the conclusion by these arguments alone.

III. LAMBERT

Hooper's rule for concurring testimony is concerned with the case where two
witnesses agree. Suppose they disagree. How is the credibility of one witness
affected by the contrary testimony of another?

The Alsatian polymath Johann Heinrich Lambert addressed this question in
his philosophical treatise Neues Organon,'® published in 1764 (see Shafer'®).
Lambert gave a general rule for combining the credibilities of two witnesses,
applicable whenever the testimony of both is directed to exactly the same
question.
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Lambert’s rule is based on a fuller probabilistic model for testimony than
Hooper’'s rule is. As we have seen, Hooper’s rule can be based on a picture where
a witness has a certain chance of being reliable. There is a chance p. say. that the
witness will be faithful and accurate, and we may be confident of what he says:
otherwise. his testimony is of no import. In Lambert’s fuller picture. there is a
chance p that the witness will be faithful and accurate. a chance g that he will be
mendacious, and a chance 1—p—g that he will simply be careless. In the first case
we may be confident of what he says: in the second case we may be confident of the
denial of what he says; in the third case his testimony is of no import.

Suppose two witnesses act independently, the first with chances p; and g,,
the second with chances p, and g,. Lambert's rulc says that when both witnesses
agree their testimony lends credibility

1-(1-p)(1—-p) -k

1
- % (D
to the report they are testifying to, and credibility
1-Q1- 1-¢g) -k
( g1 )( q2) )

1-k%
to its denial, where

k = piqs + qip>.

In the case where the second witness flatly contradicts the first, the resulting
credibility of the report of the first is

1-(1-p)(1-q) -k

3
& 3
while the credibility of the report of the second is
1-01- 1-p) -k
(1= q)d = pa) —k @

1 -k
where

k = pip> + q29-.

Expressions (3) and (4) are obtained from (1) and (2) by interchanging p, and g,.

Expression (1) can be thought of as a generalization of Hooper’s rule for
concurrent testimony. Indeed, if we set ¢, = ¢, = 0, then Expression (1) reduces
to 1 — (1-p1)(1—p,). Itis also of interest to note the special case where g, = g, =
0 and the witnesses contradict each other. In this case Expression (3) reduces to
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(%)
1 = pip2
and Expression (4) reduces to
1-pp

Expressions (1)—(4) are derived as follows. Since the two witnesses act
independently, there is a chance p,p, that both testify faithfully and accurately, a
chance p,g, that the first testifies faithfully and the second mendaciously. etc.
Altogether there are nine possibilities, with probabilities adding to one. as shown
in Table 1. The nine probabilities are shown schematically in Figure 1. where they
represent the areas of nine rectangles that together form a unit square. If we find
that the two witnesses agree, then we know that it is impossible for one to have
been truthful and the other mendacious. This means we must eliminate possibili-
ties 2 and 4 in Table II. Possibilities 1, 3, and 7 imply that the witness’s testimony is
true, and the total conditional probability of these possibilities,given the elimina-
tion of possibilities 2 and 4, is

pip2tpi(1 —p2—q2) + (1 — p1 — q1) pa
1 — pig> — qip-

L]

which is equal to Expression (1). Similarly, possibilities 5, 6, and 8 imply that the
testimony is false, and the total conditional probability of these possibilities is

g2+t @l —p2—q) + (1 —p1 —q) ¢
1-pig>—qp> '

which is equal to Expression (2). Expressions (3) and (4) follow similarly in the
case where the witnesses disagree; in the case possibilities 1 and 5 are eliminated.

Table 1.

Probability Possibility
1. ;g Both truthful.
2. pq2 First truthful, second mendacious.
3. p(l—-p2—q2) First truthful, second careless.
4. qp2 First mendacious, second truthful.
5. q192 Both mendacious.
6. q(1-pr—q>) First mendacious, second careless.
7. (1-p1—q1)p2 First careless, second truthful.
8. (1-pr—q)q9: First careless. second mendacious.
9. (1-pi—q)(—-p:—qy) Both careless.
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(1-p2—q2) p1(1-pa—q2) @i(l1-p2—q2)  (1-p1i—q1)(1-p>—q>2)

92 P42 9192 (1-p1—92)q2
P2 2120 qi1p2 (A-pi—q1)p2
P o (1=-pi—q1)
Figure 1.

The probabilistic model for testimony on which Lambert’s rule is based can
be more complete than the model for Hooper's rule, but it is still. in general,
incomplete. In particular, the witness’s behavior is incompletely modeled as long
asp + g < 1. Insuch a case, if the witness is really following a fuller model. then
someone who knows that model will be able to make money by betting with us.

An Example. My friend llse mentions to me that she will be busy late Sunday
afternoon; she is going to church at 5:00 p.m. I wonder whether Ilse is Catholic. It
is my impression that midwestern Protestant churches seldom have services in the
afternoon, whereas Catholic churches schedule masses throughout the day. Now
that I think of it, llse is from Austria. and Austria is 90% Catholic and only 10%
Protestant. Her husband is from Los Angeles, but that does not suggest any
particular religious affiliation.

Here is a simple analysis by Lambert’s rule. Ilse’s afternoon church services
and her Austrian origin are two independent arguments for her being Catholic. I
feel 80% certain that no Protestant churches in Lawrence have an afternoon
service. So the afternoon service is like testimony that has an 80% chance of

meaning Ilse is Catholic and a 20% chance of meaning nothing: p, = .8.¢;, = 0.
Her Austrian origin is like testimony that has a 90% chance of meaning she is
Catholic and a 10% chance of meaning she is Protestant: p, = .9, ¢, = .1.

Substituting these values in Expression (1), we find that our evidence provides a
probability of 97.8% that llse is Catholic.

IV. LAPLACE

Though Hooper's rules were popular in the eighteenth century, they did not
survive into the nineteenth century. Instead, they were replaced by rules more in
accord with the understanding of probability developed in the late eighteenth
century by Bayes, Condorcet, and especially Laplace.

This “Bayesian’ approach, as we now call it. seems to have first been applied
to problems of testimony by Condorcet in the 1780s (Todhunter,'’ p. 400). The
best early account is the one given by Laplace in Chapter X1 of the second edition

Table II.

A. Chance .8 of meaning “1 or 2”; chance .2 of meaning nothing..
B. Chance .9 of meaning “1 or 4”"; chance .1 of meaning *2 or 3‘.'
C. Chance .98 of meaning “1 or 3’; chance .02 of meaning nothing.
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of his Théorie analytique des probabilitiés,'® published in 1814 (Oeuvres de
Laplace, Vol. VII, pp. 455—470").

The Bayesian approach to testimony involves consideration of prior proba-
bilities. In addition to considering the credibility of the witness, we must also
consider the prior or intrinsic probability of what the witness says. The Bayesian
approach also requires a fuller probabilistic model of the witness’s behavior than
Hooper's or Lambert’s approach does. In explaining Hooper’s rule, we said that a
witness’s credibility p was the chance that the witness would report faithfully and
accurately, We left open the possibility that the witness might also say something
true by accident or as a result of a careless guess, but we said nothing about the
chance of this. The Bayesian approach, in contrast, requires consideration of the
total chance that the witness would make the report he did make, both under the
hypothesis that it is true and under the hypothesis that it is false.

In order to see what is involved when we think in terms of the total chance
that a witness would make the report he did make, let us consider the case of a
single witness. Let us make the simplifying assumption that the witness will be
accurate if and only if he does not deliberately lie, and let p denote his *‘veracity”
—the probability that he will not lie. Let A denote the fact he reports, and let B
denote the event that he reports it. Shifting to twentieth century nomenclature
and notation, we now use ““Bayes’s theorem’” to calculate “‘the conditional proba-
bility P[A|B]":

PlA]P[B|A]
PLAIB] = - = —— (6)

[A]P[B|A] + P[A)P[B|A]

Here P|A] is the prior or intrinsic probability of A—its probability based on
evidence other than the witness’s report. (The symbol A means “not A”’; thus
P[A] = 1-P[A].) How do we assign values to the conditional probabilities P[B|A]
and P[B|A]?

The conditional probability P[B|A] is the probability the witness will report A
if it is true. In order to assess this. it is not enough to know how likely the witness is
to be honest. We must also know how likely he is to say anything about A at all.
Similarly, in order to assess P[B|A], we must know not only how likely he is to lie
but also how likely he is to choose this particular lie.

The simplest way of handling this is to suppose that it is arranged that the
witness will find out about A and will report either that A is true or that it is
not—nothing less and nothing more. In this case the witness must either report
A or lie if A is true, and hence P[B|A] must equal his veracity p. Similarly,
he must either report A or tell the truth if A is not true, and hence P[B|A] must
equal his probability of ying. 1—p. Thus

P[A]p
PlAlp + P[A](1 - p)

P[A|B] = )

If we further assume that P[A] = 1/2, then this reduces to P[A4|B] = p; the final
probability of the report is simply the witness’s veracity.
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Laplace considered the following generalization of the preceding model. One
begins with » mutually exclusive possibilities—say n different balls that might be
drawn from an urn. The witness is supposed to find out which of these is true (he
draws a ball) and then to report one of them as true. It is assumed that if he decides
to lie then he is equally likely to choose any of the (n—1) false possibilities to
report. Thus P[B|A], the probability he reports A if it is the truc possibility, is
again p. But P|B|A], the probability he chooses A to report if it is not the true
possibility. is only (1-p)/(n—1). If we take the intrinsic probability P[A] to be
1/n, then Expression (6) becomes

1

—lp
n

HlAlB) = 1 n=1 1-p - P

—p+——

n n n—1

Again the final probability is the witness’s veracity (Oeuvres de Laplace, Vol. VI,
pp. 457-458'7).

Yet other models are possible, and perhaps more realistic. The important
point is that the Bayesian analysis requires we have some model. It is not enough
to assess the witness’s honesty. We must also assess how likely he is to choose this
particular lie if he is lying.

Now let us review Laplace’s treatment of chains of testimony. Consider first
the case of two witnesses. We again assume that each witness has veracity p and is
accurate unless he deliberately lies. And we again assume that there is a protocol
that specifies an event A and requires each witness to say simply whether or not A
is true—nothing less and nothing more. The first witness reports to the second; the
second reports to us. Let B denote the event that the second witness tells us A. If A
is true, then B will happen if both witnesses tell the truth and also if both lie—for
the first lies by saying “not A” and the second then lies by saying “A": Thus
P[B|A] = p? + (1 — p)°. Similarly, P[B|A] = 2p(1 — p). If we again take the
prior probability P[A] to be 1/2, then Expression (6) yields

@+ (1 -ppP
PlAIB] = | N =p’+(-p2
5(P2+ (1 —p)2)+52p(1 -p)

N |-

In the case of a chain of three witnesses. similar assumptions yield the probability
p* + 3 p(1-p)? for the final report: in the case of n witnesses. a probability of

1 1
S GHP"HA-py* = S+ = @p-1) 8)
Osk<n/2 2 2
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This is Laplace’s rule for successive testimony.*

Finally, let us review Laplace’s rule for concurrent testimony. We now
supposc witnesses follow a protocol which requires that each find out whether A
is true and then report to us either that it is or is not—nothing more and nothing
less. Let B be the event that all n witnesses report A is truc. The witnesses act
independently, and cach has veracity p. If A is true, then B happens only when all
the witnesses tell the truth: if A is false. B happens only when they all lie. Thus
Expression (6) yiclds

PlA]p"
PlAl" + PIAJ1 - p)"

PlA|B] = C)

If we again set P[A] = 1/2. then this reduces to p"/(p"+(1-p)") (Oeuvres de
Laplace. Vol. VII, p. 464"7).

A. Bayesian and Non-Bayesian Arguments

The name “‘Bayesian” has become current only during the last few decades.
and there is room for debate about its meaning. But everyone would agree that
Laplace’s arguments are Bayesian, while Hooper's and Lambert’s are not. What
distinguishes the two?

We cannot answer that the Bayesian arguments are distinguished by their
subjectivity, for the “*credibilities”” used by Hooper’s rules are as subjective as the
numbers we put into the Bayesian formulas. And it would be superficial to answer
that the Bayesian arguments are distinguished by their use of Bayes’s theorem or
by their use of prior probabilities. Bayes’s theorem is an inessential tool for
cxposition, and the use of prior probabilities is only one aspect of the Bayesian
demand for a full probability model.

This demand for a full probability model is the fundamental distinguishing
feature of the Bayesian approach. The fundamental advantage of the Bayesian
approach is that by using a full probability model we can take all the evidence into
account. The fundamental disadvantage is that we sometimes lack evidence for
some of the judgments that are called for. In the case of testimony, for example,
the Bayesian analysis demands a judgment of the likelihood that the witness will
choose to lie in a particular way if he lies. If there is something to be said about this
likelihood. then it is an advantage that the Bayesian analysis asks about it. But if
there is nothing to be said about it—if our evidence does not tell us anything about
the value or even the meaningfulness of such a likelihood. then the demand that
we supply it is a disadvantage.

Proponents of the Bayesian approach sometimes suggest that it is illegitimate
to ignore any likelihoods or prior probabilities. We cannot, for example. ignore
the likelihood that the witness will choose the particular lie, for this likelihood is

*The identity (8) may be proven by mathematical induction. Laplace did not, how-
ever, derive the expression 1/2 = 1/2 (2p — 1)" from a binomial sum. Instead, he solved a
difference equation. See pp. 466—467 of Vol. VII of the Oeuvres de Laplace'.
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part of what is going on. But this is fundamentally wrong. Its plausibility depends
on the pretense that the facts in the problem we are studying really are governed
by probabilities as in a game of chance, so that the Bayesian analysis merely
mirrors an objective reality. Actually, the picture of the witness choosing a
particular lie according to given probabilities may be very far from what is going
on.

The same pretense that every probability that can be named has an objective
reality also tempts us to give Bayesian explanations of non-Bayesian arguments.
Consider, for example, the special case of Lambert’s rule that is obtained when we
set p; = p; = p and q; = g, = 1—p in Expression (1). The substitution yields
p*/(p* + (1—p)?), which agrees with Laplace’s rule (9) with P[A] = 1/2. We are
tempted to say that Lambert’s argument implicitly takes the prior probability of A
to be 1/2. But this formulation overlooks the fundamental difference in logic
between Lambert’s and Laplace’s arguments. Only Laplace’s argument uses a
model in which the truth or falsehood of A is determined by chance.

In several recent papers, I have suggested that probability arguments,
whether Bayesian or non-Bayesian, should be thought of as thought experiments,
in which actual situations are compared to pictures of chance (sce Shafer,'® and
Shafer and Tversky'?). Such a thought experiment is convincing as an argument
to the extent that the details of the picture capture the significant and assessable
items of evidence in the actual situation. In this context, Bayesian arguments are
characterized by the fact that they attempt to fit the whole reality being investi-
gated to the picture of chance. Non-Bayesian probability arguments attempt more
modest comparisons.

B. Probability after Laplace

Laplace’s contribution to probability was monumental, but it was not mono-
lithic. It had both Bayesian and non-Bayesian clements. On the philosophical
side, Laplace developed what we now call a subjective, Bayesian interpretation of
probability: he stressed that probability is a measure of our knowledge, and he
introduced what we now call *‘Bayes’s theorem™ as a fundamental, axiomatic rule
for calculating the probabilities of causes. But on the practical side he developed
both Bayesian and non-Bayesian methods in the theory of errors. Apparently he
did not distinguish the two as we do now. He did not see the inconsistency between
his fundamental Bayesianism and statistical methods that seem non-Bayesian to
us (see Stigler'?).

Laplace’s nineteenth century successors did come to distinguish his Bayesian
method (the “inverse method,” as they called it) from the other methods in the
theory of errors, and to recognize that the philosophical justification of these
other methods required a different foundational approach to probability. They
found this different approach in the “frequency’ interpretation of probability.
Thus was born the great dichotomy of philosophical viewpoint that has dominated
probability for the past century and a half: on the one hand, Laplace’s subjective
Bayesianism; on the other, the “objective” frequentist philosophy that underlies
the modern vocabulary of statistical tests and confidence methods.
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The important point is that the nineteenth century re-emergence of non-
Bayesian probability did not challenge Laplace’s incorporation of Bayesian ideas
into the subjective conception of probability. There was no revival of Hooper’s
rules and related eighteenth century ideas, which were non-Bayesian but clearly
could have only subjective significance. Laplace made subjectivism Bayesian, and
so it has remained.

The frequentist philosophy proved well-suited to support the development,
in the early and mid-twentieth century. of non-Bayesian ideas in mathematical
statistics. But it did not provide a basis for the extension of these ideas to those
disciplines, such as philosophy and jurisprudence. that are concerned with proba-
bility judgment rather than with frequencies in repeatable experiments. Twenti-
eth century scholars in these disciplines have, for the most part. taken the
Bayesian picture for granted. even at times when this picture was an object of
scorn among most statisticians.

Today, as the still young and growing discipline of statistics seeks to expand
its breadth of application, statisticians have widely recognized the inadequacy of
the frequentist philosophy and the pervasiveness of the practical need for subjec-
tive probability judgment. But this has not broken down the objective frequentist
vs. subjective Bayesian dichotomy. It has simply resulted in the conversion of
many statisticians from frequentism to Bayesian subjectivism.

I believe we need to escape from the frequentist vs. Bayesian dichotomy.
Both sides of this dichotomy combine important truths with unreasonable dog-
mas. The Bayesian side is right to insist that probability judgment is subjective,
but wrong to insist that subjective probability judgments are meaningful only
within full probability models. The frequentist side is right to stress that probabil-
ity judgments vary in the quality of their supporting evidence and that probability
arguments depend on the strength of such evidence. but wrong to pretend to limit
probability judgment to cases where this evidence takes the strong form of
observed frequencies.

In order to break out of this sterile dichotomy, we need to revive the idea of
non-Bayesian subjective probability judgment.

V. EKELOF

In the early 1960s, Per Olof Ekeldf, a Swedish professor of law, began to
study how mathematical probability could be used in jurisprudence. Dissatisfied
with the relevance of what he could learn about probability from philosophers and
statisticians, he undertook to formuiate his own ideas. and soon he had invented
three rules for the combination of probabilities—a rule for chains of evidence, a
rule for concurring evidence, and a rule for conflicting evidence.* The first two of
these rules are, as it turns out, formally identical to Hooper's rules for successive

*Ekelof first presented his rules in 1963, in the first edition of Volume IV of Rat-
tegang,*® his Swedish legal textbook. Ekeldf (1964)2! is an early presentation in English,
and Ekelof (1981)%2 is a more mature presentation in German. Ekelof (1983)% includes an
interesting account of the evolution of Ekelof’s ideas.
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and concurrent testimony. The third rule, the rule for conflicting evidence. is
related to a special case of Lambert’s rule*

In addition to reviving Hooper's and Lambert's rules. Ekeldf also studied
practical aspects of the legal application of these rules. In particular, he studied
the role of auxiliary facts and circumstances that affect the weight of evidence.
Auxiliary facts are facts that do not bear directly on what one is trying to prove but
strengthen or weaken arguments that do bear on it. Evidence about a witness’s
eyesight is an example. Ekelof stressed that auxiliary facts are often necessary to
support a probability argument and that they cannot themselves be subjected to
formulas but must instead be weighed intuitively.

Here is an example, from Ekelof,?! that illustrates Ekel6f’s rule for chains of
evidence. Suppose there are two uncertainties involved in a witness’s testimony. It
is uncertain whether he is accurately reporting what he thought he saw. And it is
uncertain whether he really did see what he thought he saw. Suppose there is a
chance 3/4 that he reports his observation accurately and a chance 3/4 that he
observes accurately. Ekelof suggests that the argument from his statement to his
observation and hence to the truth of what he says then has overall credibility
(3/4)* = 9/16.

Here is an example, again from Ekeldf.?' that illustrates Ekelof's rule for
concurring evidence. Consider two items of evidence that each give credibility 3/4
to the conclusion that a car was traveling more than 60 miles per hour before an
accident: the length of its skid marks and the observation of a witness. Ekelof
suggests that both together give the conclusion credibility 1-(1-3/4)* = 15/16.

As these examples show, Ekel6f's rules, while formally identical to Hooper's
rules for successive and concurring testimony, are meant to apply to more general
kinds of evidence. Ekel6f’s Swedish colleagues have suggested that these rules are
concerned in general with “‘evidentiary mechanisms,” and with the event that
such a mechanism is working correctly. A witness is an evidentiary mechanism
that is working correctly if he is testifying faithfully and accurately. Skid marks are
an evidentiary mechanism that is working correctly if the causal factors that affect
the relation between speed and the length of the marks are within normal limits.

A. Halldén and Edman’s Bayesian Interpretation

In the early 1970s, the Swedish philosophers S6ren Halldén and Martin
Edman formulated assumptions under which Bayesian probabilities can satisfy
relations suggested by Ekelof’s (or Hooper’s) rules for concurring and conflicting
evidence. In this section I shall review and criticize Halldén and Edman’s Bay-
esian formulation and, in particular, their approach to the rule for concurring
evidence."

*Ekelof has given several versions of his rule for conflicting evidence. One of these
versions is the special case of Lambert’s rule given by Expression (5). Stenlund has given a
Bayesian treatment of this version in the same spirit as Halldén and Edman’s treatment of
the rule for concurring evidence. See Stening (p. 112)** and Goldsmith (p. 216).

*Niis-Eric Sahlin, in private correspondence, has pointed out to me that Halldén and
Edman do not consider themselves Bayesians. Yet they seem to take for granted the full
probability models that characterize Bayesian arguments.
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Let A denote the event that an evidentiary mechanism works correctly, let H
denote a hypothesis, and let E denote the event that the evidentiary mechanism
indicates H to be true. From.a Bayesian point of view. we might say that Ekel6f’s
(or Hooper's) rules concentrate on P[A]. the probability that the mechanism
works correctly. They do not consider P[H|E]. the probability of what the mecha-
nism indicates. or even P[A|E]. the probability the mechanism worked correctly
taking into account what it indicated and how likely what it indicated is on other
grounds.

Halldén and Edman were intrigued by the idea that we shall consider the
event A rather than the event H. Perhaps, they suggested. the probability of A is
of greater relevance to the law than the probability of H. In a sense, A is the event
that the evidence has proven H. Since courts are allowed to draw conclusions only
if they prove them, it is the probability of A that indicates whether the court is
entitled to conclude H, not the probability of H. Halldén and Edman took for
granted, however. the Bayesian assumption of a full probability model. and so
they considered it appropriate and possible to evaluate the probability of A on all
the evidence: they were interested in P[A|E] rather than P[A].

Consider how these ideas apply to concurring evidence. If A, is the event that
one witness reports faithfully and accurately. A, is the event that a second reports
faithfully and accurately. and the two are independent, then Hooper's rule uses
the formula

PAy v Ayl = 1 = (1=P[A,)(1-P[A;]), (10)

where “A, v A,” means ““A, or A,.” How close can we come to Expression (10) if
the probabilities for the A; are based on all the evidence? Halldén and Edman
suggested we consider the inequality

P[A, v AJ|E\E5] = 1 — (1-PlAI|E\])(1- P[A3|E2)), (11)
where E; is the event that the ith witness reports H, and “E £, means ' E, and
E5.” When will Expression (11) hold?

Halldén,*® who first posed this question. proved the following theorem.

Theorem 1. If P[E,E,A,] is nonzero, so that probabilities conditional on
E\E>A, E\E,, E,, and E, exist, and if the relations

P{ASE>E\A,] = P[A,|E;] (12)
and
PIA|E\E;] = P[A\|E)] (13)
hold. then Expression (11) holds. (Proof: We can write
PlA| v A|E\Ey| = P[A\|E\E>] + PlAAS|E,Es)

P[A\|E\E;] + P|A,||E\E] P[AJ|E\E>A,]
=1 - (1-P[A||E\E;]) (1-P[A3E\EA ).
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If we apply Expressions (12) and (13) to the last expression. we obtain (11).
Q.E.D))

Halldén suggested that conditions (12) and (13) are a reasonable formulation
of the idea that the evidentiary mechanisms represented by A, and A, are
independent.

It is evident from the proof of Halldén’s theorem that the theorem will still
hold if Expression (12) is weakened to the inequality

PlAJ|E E2A)] = PA)|E,). (14)

It is not clear, however. just when we can expect Expressions (12), (13). or (14) to
hold.

Recognizing the need for further analysis of Halidén's conditions (12) and
(13). Edman?’ formulated and proved the following theorem.

Theorem 2. Suppose again that P[E,E;A | > 0, so that the conditional
probabilities in Expressions (12) and (13) exist. Then Expressions (12) and (13)
are implied by the following set of conditions.

€1) If X, ¢ {A,, A\E)} and X, € {4, AE>}. then H.X,. and X, are
mutually independent.
c('g2) HA] = A]El and HA2 = A2E2.

If P[H] > 0. P[A,] > 0, and P[A,] > 0, then the inequality in Expression (13} is

strict. (Proof: To derive Expression (12), we write

PAEE\A] PlA:E,E\A)]

P|E,E\A|] PlA:E;E\A\] + PlA2E;E\A]

_ P[HA,E\A)] _ P[HA,|P|E\A))
P[HA:E\A\]+ P[AE;E\A,]  P[HA;]P[E\A |+ P{AE,]P[E\A]

_ P[HA,] _ P|AyE,]
P[HA;] + P|A3E))  PAsEs] + PlA;E,]

PlAS)|E;E A ] =

= PAJ|E;).

To derive Expression (13), we write

P[A\E\Es] P[A\E,E;]
PIE\E;]  PHE\E,| + P[HE,E,]

P[HAl(AzV/_‘zEz)]

P{H(A\VA\E\)(A2vA3Ey)| + PIHA,E\A,E)]

_ P[HA||P|AAE;]

- P[H(A\VAE)|P[A;vALE,| + P[HA\E,|[P[A2E,)

_ PIHA,] _ PlHA

~ P[H(A\vA\E))] + PIHA,E\] P[HA,] + [A,E)

PlA||E\E5] =

(15)
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_ P[AE\]
- P[A,E\] + P|AE)]

= P[A|E\].

Since P[A;vA3E,] = P[A,] + P[A,E;). the inequality is strict unless P[A;] = 0
or the numerator of Expression (15) is zero, and this is possible only if P[H] = O or
P[A)]=0. Q.E.D.)*

Condition €1 is Edman's way of making precise the idea of “independent
evidentiary mechanisms.” Condition €2 says that if the mechanism is working
correctly, then it will report H if and only if H is true.

But is condition €1 plausible? Ekelof’s rule for concurring evidence seems
intuitively reasonable whenever the event that the first evidentiary mechanism
works correctly is independent of the event that the second works correctly.
Condition 41 goes far beyond this. It requires that when the mechanisms are not
working they behave independently of each other and of the truth or falsehood of
H.Indeed, in the presence of 2, €1 is equivalent to the four following conditions:

#1) H.A,, and A, are mutually independent.

%2) The joint distribution for H.A,. and E; is independent of A,, and the
joint distribution for H,A,, and E; is independent of A,.

#3) E, and E, are independent given either HA|A; or HA | A,.

F4) E, and H are independent given A,. and E, and H are independent
given A,.

(The statement ‘A and B are independent given C” should be understood to
‘mean that P[ABC|P[C] = P[AC]P[BC]; this is equivalent to P[AB|C] =
'P[A|C)P[BIC] if P[C] > 0. Similarly. the statement *'the joint distribution of A.B,
and C is independent of D” should be understood to mean that P(ED) =
P(E)P(D) for any event E that is determined by the determination of A,B,and C.)
I contend that it would be unusual, in a situation where we did have a full
probability model for H. A,. A,. E,. and E; for conditions #3 and %4 to hold.

Consider condition #4 in particular. It says that P[E||HA] = P[E||HA,)
and P[E,;JHA,|] = P[E;|HA,). These equalities can be weakened to inequalities:
if 62, F1, #2, and ¥3 holds then Expressions (12) and (13) and hence (11) will
hold provided that

P[E\|HA,\] = P[E,|HA,] and P[E,|HA,] = P[E,|HA,]. (16)

But should we expect Expression (16) to hold? It would not hold, for example, if
there were any tendency for the evidentiary mechanisms to provide incorrect
information when they are not working correctly. (Suppose, to take an extreme
example, that 81, F1, #2, and ¥3 hold. that P[H] = P{A,] = P[A;] = 0.5. but

*Notice that since A and E imply H, P[H|E] = P[A|E]. Thus, P[A|E|, the “probability
that H is proven,” is a lower bound for P[H|E], the “probability that H is true.” Notice,
however, that by attending to P[A|E] instead of P[H|E] one does not avoid dependence on
the prior probability P{H].
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that P|[EJHA;| = 0 and P[EJHA;] = 1 for i=12. In this case P|A,vA,|E,E,] =
PlA||E|| = P[A,|E5] = 0.5, and so Expression (11) does not hold.)

When we use Hooper's or Ekeléf’s rules are we assuming Expression (16)?
Does the implausibility of Expression (16) invalidate arguments based on these
rules? No. Here, as in our discussion of Laplace above. we must insist that the
non-Bayesian arguments have their own logic. They do not use a model that gives
reality to conditional probabilities such as those in Expression (16), and hence
they do not depend on relations between such conditional probabilities.

B. Equality or Inequality?

Hooper's rule, Expression (10), is an equality. but Halldén and Edman’s
argument produces Expressions (11), an inequality. The inequality can be ex-
plained by saying that the concurrence of the second evidentiary mechanism
increases the credibility of the first (see, for example. Freeling and Sahlin,™ p.
66). Should we rely on this intuitive idea in general and therefore always construe
Hooper’s rule as an inequality?

Again, we must answer no. Making the idea that the concurrence mutually
increases the credibility of the evidentiary mechanisms into a genuine argument
requires a full probability model. Indeed, as we have seen, it requires question-
able assumptions about the behavior of the mechanisms when they are not
working correctly. If we are not willing to make these assumptions, we have only a
hint of an argument.

We should, in general, resist the temptation to think of the numbers given by
non-Bayesian probability arguments as bounds on more precise but unknown
probabilitics. In the case of the chain of 100 reporters each with credibility
100/106, for example, we are tempted to say that (100/106)'™ = .003 is a lower
bound for the probability of the report. which may be higher because of other
favorable arguments. But there may just as well be other negative arguments. The
meager support lent to the report by the chain of testimony does not imply a
strong probability against the report; we cannot say that a denial of the report has
probability .997. But it is otiose to explain this by saying that there is a true
probability for the report known to lie between .003 and 1.

V1. DEMPSTER

Both Hooper’s and Lambert’s rules apply only in problems where the argu-
ments being combined bear directly on a single proposition. so that only two
possibilities need be considered. In the story about my friend Ilse. for example.
both arguments bore directly on whether llse is Catholic, and so we considered
only the possibility that she is and the possibility that she is not. The idea of
combining independent probability arguments can, however, be generalized to
the case where the different arguments bear on different propositions and so more
than two possibilities must be considered. This generalization was first formulated
by A. P. Dempster.?”
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The nature of the generalization can be indicated by example. Returning to
the story of lIse. let us now drop the assumption, implicit on our earlier analysis,
that she is Catholic if she is attending Catholic mass. If we retain the assumption
that she is either Catholic or Protestant, then we may consider four possibilities:

1) Iise is Catholic and plans to attend Catholic mass Sunday afternoon.

2) llse is Protestant but plans to attend Catholic mass Sunday afternoon.

3) Ilse is Protestant but plans to attend a Protestant service Sunday after-
noon.

4) llse is Catholic but plans to attend a Protestant service Sunday afternoon.

The argument that Protestant services are not usually held on Sunday after-
noons is now an argument for "1 or 2,” whereas Ilse’s Austrian origin is an
argument for *1or 4. We must also make explicit a third argument: the argument
that Ilse is probably attending a church of her own faith. This argument is based on
the fact that people usually attend a church of their faith and on the fact that llse
mentioned the church service in a way that suggested that it was not a special event
for her. It is an argument for ‘1 or 3.” I would give this argument, standing on its
own, 98% credibility.

Altogether, then, we have three independent arguments, ecach of which may
be right or wrong. The probabilities for what each of these arguments mean are
given in Table II. Since the arguments are independent, we may multiply these
probabilities to find probabilities for what they mean together. The eight resulting
probabilities are listed in Table TII. The firstline of this table indicates that there is
a probability of .7056 that all three arguments are correct, in which case “17 is
true. etc.

The third line of Table III requires special notice. As this line indicates, the
probabilities for the arguments and their independence imply that there is a
probability .0784 that arguments A and C are correct but argument B is wrong. but
the conclusions to which the arguments point show that this is impossible. (It is
impossible for **1 or 2, *2 or 3. and ““l or 3 to all be true; we represent this
impossibility by the symbol ““0.”) So we must condition on this impossibility
by eliminating the probability .0784 and multiplying the other probabilities by
1/(1-.0784) = 1.085.

Table III.

Chance Meaning

.8 X .9 x .98 = 7056 (tor2)and (1or4)and (1or3) =1 ‘
8 x .9x .02 =.0144 (1 or 2) and (1 or 4) and (nothing) = 1

8 x .1 x .98 = .0784 (lor2)and Qor3)and (lor3) =20

8 x .1 x.02 = .0016 (1 or 2) and (2 or 3) and (nothing) = 2

2% .9x%x .98 =.1764 (nothing) and (1 or 4) and (Lor3) =1

2 x.9 % .02 =.0036 (nothing) and (1 or 4) and (nothing) = 1 or 4
2 x .1 x .98 = .0196 {nothing) and (2 or 3) and (1 or 3) = 3

2 x .1 x .02 = .0004 {nothing) and (2 or 3) and (nothing) = 2 or 3
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We find, therefore. a total probability of
(1.085)(.7056 + .0144 + .1764) = .9727

for possibility “*1," the possibility that Ilse is Catholic and the Sunday afternoon
service is a Catholic mass. And we find a total probability

(1.085)(.7056 + .0144 + .1764 + .0036) = .9766

for the proposition that Iise is Catholic. This differs only slightly from the
probability .978 that we found in Section III, where we neglected the possibility
that Ilse might be attending a service of another faith.

Of course, the story about Ilse contains many other assumptions that can be
examined. Why do | assume that she is either Catholic or Protestant? Was she
telling me the truth when she mentioned the church service? Is her husband’s
growing up in Los Angeles really irrelevant?, etc. The evidence for each assump-
tion can be brought into the analysis, but always at the cost of complicating the
analysis and multiplying the number of possibilities considered.

The fact that the evidence for assumptions can be brought into the analysis in
this way partially refutes Ekelof’s insistence that the assessment of auxiliary facts
cannot be formalized. Ekeldf is correct, however. to insist that the formalization
can never be complete. There will always be presumptions, circumstances. and
auxiliary facts that remain outside the formal framework and provide the basis for
the judgments made within that framework.

A. DEMPSTER’S GENERAL RULE OF COMBINATION

In order to use Dempster’s rule, we must always list the possible conclusions
of the independent arguments we are combining and their probabilities. Suppose,
for simplicity, that there are only two arguments. Denote the possible conclusions

of the first argument by A, . . . .A,,, and their probabilities by r|. .. .. |
(Here 275, r; = 1.) Similarly denote the possible conclusions of the second
argument by B, . . . ,B,. and their probabilities by sy, . . . ,s,,. The basic idea of

Dempster’s rule is that the two arguments together yield the conclusion " A; and
B;”" with probability rs;. The combination “A4; and B, may be impossible.
however, and we must condition on such impossibilities—i.e., we must eliminate
their probabilities and multiply the other probabilities by

1

- 17

where the sum is over all pairs (i.j) such that “A; and B;" is impossible. Demp-
ster's rule says, then, that the probability given to a proposition C by the two
arguments together is
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where the sum is over all pairs (i,j) and such that "*A; and B;" is possible and
implies C.

If we denote by Bel(C) the probability or ““degree of belief’” given C by the
two arguments together, then Expressions {17) and (18) may be combined in the
formula

= {rsj"A; and B;" is possible and implies C}

Bel = :
© 1 — 2 {rsj|"A; and B;" is impossible}

This is equivalent to

2 {rs|““A; and B;” is possible and implies C}
S {rsj|“A; and B;" is possible}

Bel(C) =

B. RANDOMLY CODED MESSAGES AND BELIEF FUNCTIONS

Underlying Dempster’s rule is the idea of an argument that has different
possible meanings, each assigned a probability. We have illustrated this idea with
examples of arguments about Ilse’s religion. In Shafer'® and Shafer and Tver-
sky.'? the idea is illustrated with the example of a “randomly coded message.”

Someone chooses a code at random from a list of codes, uses the chosen code
to encode a message. and then sends us the result. We consider the original or
“plaintext’” message to be completely reliable. We know the list of codes and the
chance of each code being chosen—say the list is ¢y, . . . ,c,, and the chance of
code ¢; being chosen is ;. Let Z denote the coded message we receive. We decode
Z using each of the codes and find, in each case, a message that makes sense. Let
A; denote the message we get when we decode using ¢;. We may say that the
evidence provided by the received message “‘means’ A; with probability r;. For a
given proposition C. we may say that

Bel,(C) = = {r)A; implies C} (20)

is the probability or “'degree of belief” given to C by this evidence alone. In
Shafer.* functions that assign numbers to propositions in the manner of Expres-
sion (20) are called “‘belief functions.™

Now suppose we receive a second message, again encoded by a randomly
chosen code. This time the codes are 4. ... .,d,, say. with probabilities
Spe ... s,. The corresponding possible plaintext messages are B, ... .B,.
This evidence. by itself, would give probability

Bel,(C) = = {s;|B; implies C}

to a proposition C.

If the codes for the two messages are chosen independently, then their
possible meanings are the combinations “‘A; and B;,” with probabilities r;;.
Eliminating the **A; and B;” that contradict each other, we arrive at Expression
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(19) as the probability the two messages together give to C. The belief function
Bel given by Expression (19) is the result of combining the belief functions Bel,
and Bel, by Dempster’s rule.

C. Williams and Good’s Bayesian Interpretation

P. M. Williams®! and 1. J. Good** have independently discussed the story of
the randomly coded message from a Bayesian point of view.

Let us review the story. A single plaintext message is encoded. The possible
codes are ¢y, . . . ,C,, and the probability of ¢; being used is r;,. We receive
an encoded message Z. and A; is the message obtained when Z is decoded
using ¢;. The argument of the preceding section boils down to saying that we
continue to think of r; as the probability for c; after we have seen Z. This means
that r, becomes a probability for A; being the correct plaintext message. Given any
proposition B.

S irlA; = B} €2

is the total probability that the correct plaintext message is B, and given any
proposition C, Expression (20) is the total probability that the correct plaintext
message implies C.

Williams and Good. taking the same tack as Halldén and Edman in their
Bayesian analysis of Ekel6f's rule for concurring evidence, have asked under what
circumstances Expression (21) will be a Bayesian’s probability for B being the
correct plaintext message—i.e., under what circumstances the equation

P[B is the plaintext message |Z is the received message] = £ rjA; = B} (22)

will hold.

In order to carry out a Bayesian analysis. we must assign probabilities to
possibilities for the correct plaintext message. Let us also assume that the choice
of this plaintext message is independent of the choice of a code. Then

P[B is the plaintext message |Z is the received message]

_ P[Bis the plaintext message and Z is the received message]

P[Z is the received message]

_ P[B s the plaintext message] P[Z is the received message |B is

N P[Z is the received message]

the plaintext message]

_ P[Bisthe plaintext message] X r|A; = B}

P[Z is the received message]
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This makes it clear that unless both sides of Expression (22) are zero, (22) can hold
only if

P[B is the plaintext message] = P[Z is the received message].  (23)

As Good (p. 343)* points out, Expression (23) does not seem to be a very natural
assumption. Williams (p. 342,*' and private correspondence, 1980) points out,
however. that Exp}ession (23) will hold under the following assumptions: (1)
there are a finite number, say k. of messages that we initially consider to be
possibilities for the plaintext message; (2) we assign each of these possible plain-
text messages equal prior probability: and (3) each of the possible encoded
messages can be decoded using any of the mm codes and this always yields one of the
possible plaintext messages. From assumptions (1) and (3) we see that

1
P[B is the plaintext message] = "

for every possible plaintext message B. And it then follows by (3) that

P[Z is the received message]

> P[B is the plaintext message] P[Z is the received message |B is the
B plaintext message]

1
M3
i

o

1}
|-

1]

for every possible reccived message Z. (The summation over B is over all possible
plaintext messages.)

We see. then, that the “belief-function’ understanding of the story of the
randomly coded message can be given a Bayesian justification only under very
restrictive assumptions. This is not an unfamiliar situation. As we saw in Section
IV above, Laplace gave a Bayesian analysis with equal prior probabilities that
agreed with Lambert’s rule for concurring testimony (with p+g=1). As we saw in
Section V, Halldén and Edman gave a Bayesian justification for Hooper’s rule for
concurrent testimony that involved unreasonably restrictive assumptions. And
similar situations are common in parametric statistical inference: there non-
Bayesian methods frequently give results that accord with Bayesian analyses
with equal prior probabilities for different parameter values (see, e.g., Cox and
Hinkley, pp. 378—379%%).

In all these cases it is tempting to say that the Bayesian analyses show what
the non-Bayesian arguments really mean, and that the unreasonableness of the
Bayesian assumptions show the non-Bayesian arguments to be wrong. This temp-
tation should be avoided. The non-Bayesian arguments. though they do not
pretend to be as definite as the Bayesian arguments pretend to be. have their own
logic and can be convincing in their own right.
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