GLENN SHAFER*

THE CONSTRUCTION OF PROBABILITY ARGUMENTS?

1. INTRODUCTION

Though this book has been assembled by legal scholars interested in
probability, I will address my contribution to a broader audience—students
of the foundations of probability and statistics. This group includes statisti-
cians. philosophers. and psychologists, as well as law professors. My pri-
mary purpose will be to suggest ways that the foundations of probability can
benefit from the legal perspective on problems of evidence and argument.

Incorporating the legal perspective on probability does not necessarily
mean seeking instruction from judges and law professors. It does mean
taking seriously the situations of the various actors in the legal setting: the
lawyer who must make a case, the opposing lawyer who must criticize it,
and the judge or juror who must evaluate the conflicting arguments. Within
the statistical tradition, at least, most thought about the foundations of
probability has been inspired by the situations of rather different actors: the
gambler in a pure game of chance or the scientist disentangling systematic
from random variation. Putting the metaphor of the courtroom on a par with
the metaphors of the gambler and the scientist can help us achieve a fuller
understanding of probability judgment.

The courtroom metaphor forces us to pay more attention to the construc-
tive nature of probability judgment. The lawyer in the courtroom must make
a case. She must construct an argument; she cannot merely present facts.
She must establish the relevance of the facts she presents. The judge and
Jjurors must do more than understand the conclusion of the argument. They
must decide how well the argument supports the conclusion.

Contrast this with the rhetoric of Bayesian statisticians. They have little to
say about relevance, argument, or evaluation. Fundamentally, everything is
relevant: we are supposed to condition on all the evidence. A probability
analysis is supposed to be all-inclusive, and hence not subject to another
level of evaluation. The final probabilities are the last word.

My purpose is not to caricature the practical statistician—Bayesian or
non-Bayesian. Thoughtful statisticians are perfectly capable of judicious
analyses. But they do so only by standing back from basic theory and
rhetoric. | am suggesting that the courtroom metaphor can help integrate a
more judicious attitude into this basic theory and rhetoric.
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To put this thought in perspective, recall that the legal tradition had a hand
in creating numerical probability. Numerical probability was first invented
by legal scholars.! These scholars did not develop the calculus of probability
we know today because they did not connect their idea to games of chance.
But Leibniz and Bernoulli, the seventeenth-century scholars who did con-
nect probability to the mathematics of games of chance, also appreciated the
legal tradition. In his famous Ars Conjectandi,* Bernoulli based probability
squarely on the concept of argument. Many of his basic examples concerned
legal problems and. as Garber and Zabell have shown.? some came from the
Ciceronian legal tradition.

Unfortunately, Bernoulli's eighteenth-century successors did not preserve
the tie between probability and the legal tradition. They were intent on
developing the mathematical vistas that Bernoulli's innovative ideas had
opened up. and this led to a renewed emphasis on the gambling metaphor.
Legal ideas never subsequently regained a central role in probability theory:
[ argue that they should.

The next section of this article outlines the constructive philosophy of
probability developed in more detail by Shafer and Tversky.* and relates this
philosophy to the courtroom metaphor. The following sections consider
some specific issues that are illuminated by the courtroom metaphor. Sec-
tion 1II discusses how the significance of evidence depends on the ground
rules for its acquisition. Finally. Section IV discusses the constructive
nature of likelihood, using as an example the problem of assessing prob-
abilities of paternity.

There are two disclaimers that need to be included in this introduction.
First. I can claim no originality when I urge that students of probability pay
more attention to the legal perspective; the thought has been formulated
many times. [ should call particular attention to the work of David Schum,
who is commenting on this article. Professor Schum has done more than
anyone else in recent years to bring insights from the law into other contexts
in which probability is used.®* My message here is that these kinds of insights
are part of the foundations of probability. The issues involved in justifying
Schum's cascaded inference schemes are at leasi as fundamental as the
Dutch-book arguments that philosophers of probability are so fond of debat-
ing.

Second, the interaction between law and the world of probability and
statistics has many strands, and this articie is not concerned with all of them.
The increasing use of conventional statistical evidence in legal settings
constitutes one important strand.® I regard this development positively, but
it is not directly related to the theme of this article. Another strand is the use
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of legal examples by scholars who have advanced alternatives to the usual
calculus of probability. Two scholars come to mind in this connection—L.
Jonathan Cohen and Per Olof Ekeldf. Cohen has argued that the usual
calculus is less satisfactory in the legal setting than a simple numerical
scoring of hypotheses.” Ekeldf has argued that the legal setting requires
calculations similar to those made in the theory of belief functions.? I have
made similar arguments.® but this is not my theme here. Here I am arguing
not for any particular theory of probability, but for an incorporation into all
these theories of the constructive attitude represented by the courtroom
metaphor.

II. CONSTRUCTIVE PROBABILITY

In The Foundations of Statistics '® L..J. Savage distinguished three catego-
ries of probability: the objectivistic. personalistic, and necessary interpreta-
tions. According to the objectivistic interpretation—also called
frequentist—a probability is an objective fact about a repeatable event: it is
the long-run frequency with which the event happens. According to the
personalistic interpretation—also called subjective or Bayesian—a probabil-
ity is a particular person's opinion; it can be deduced from the person’s
behavior when she chooses among bets or other acts with uncertain out-
comes. According to the necessary interpretation—also called logical—a
probability measures the extent to which one proposition, out of logical
necessity and apart from human opinion. confirms the truth of another.

The personalistic interpretation, which Savage advocated, has gained
wide support in recent decades. and it is now the most vigorous and self-
confident of the three interpretations. Most probabilists who offer advice to
the legal profession are Bayesians. Their message is that mathematical
probability in general, and Bayes's theorem in particular, can help judges
and jurors evaluate evidence.!!

Unfortunately. none of the three interpretations emphasizes the construc-
tive character of probability judgment. The objectivistic and necessary in-
terpretations both treat probability as objective, making it independent of
human action. The personalistic interpretation treats probability as a form of
opinion, but it neither emphasizes nor requires that probability opinions
be deliberately constructed. Indeed, much Bayesian writing gives the im-
pression that these opinions are ready-made in our minds, waiting to be
*elicited.”""?
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A. The Constructive Interpretation

If we want an interpretation of probability that emphasizes its constructive
character, we must explain what people are doing when they construct
probabilities. Shafer and Tversky suggest that they are matching problems to
canonical examples.'> When we make Bayesian probability judgments, we
are matching an actual problem to a scale of canonical examples from
physics or games of chance. In these canonical examples, the possible
answers to questions of interest have well-defined and known probabilities.

Of course, we do not match all the evidence we have about a problem to a
complex canonical example in one fell swoop. Instead we match parts of the
problem or parts of the evidence to more modest canonical examples, and
then try to fit these partial matches together. In so doing we construct an
argument, an argument that draws an analogy between our actual evidence
and the knowledge of objective probabilities in a complex physical experi-
ment or game of chance.

There are many choices in the design of a probability argument: we must
decide how to break down our evidence and how to put it back together in a
probability model: we must choose what to think of as fixed when making
numerical probability judgments, and how much detail to include: and we
must determine on what, if anything, to condition.

One advantage of the constructive interpretation is that it pulls us down
from the fantasy that a numerical probability analysis can take all evidence
into account and hence provide the final word on a question, to the reality
that any probability analysis must be treated as just another argument. As an
argument, it must be evaluated, and the result of the evaluation may be
negative for a variety of reasons: our evidence may fail to fit the scale of
canonical examples to which we are trying to fit it: our evidence may be
inadequate to justify some of the numerical probabilities in our argument
(traditionally. we worry about whether our evidence is adequate to justify
prior probabilities for statistical hypotheses, but there is nothing special
about these probabilities; we need evidence for every probability judgment);
or our evidence may be inadequate to justify some of the judgments needed
to put individual numerical judgments together.

B. Subjective Aspects

The constructive interpretation of probability preserves some of the fea-
tures of the personalistic interpretation. It preserves the connection with
betting behavior because the canonical examples to which we are matching
the evidence are examples in which probabilities are reasonable betting
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rates. Since, however, we are only drawing an analogy to these examples,
the interpretation is less dogmatic. There is no pretense that we would really
offer to bet all comers.

Subjectivity also enters the constructive interpretation in a more funda-
mental way. We often must make subjective judgments about which canoni-
cal example on the scale best matches the evidence in a problem, and about
whether this best match is good enough to constitute a sound argument.

One important way in which the constructive interpretation differs from
the personalistic interpretation is in its ability to acknowledge that the parts
of a probability argument may differ in quality. The personalistic interpreta-
tion is based on the demand that a person should have betting rates. or
preferences from which such rates can be derived, for all questions. This
demand is made categorically; a person cannot be excused from the demand
because of the poor quality of her evidence. The constructive interpretation,
on the other hand, directs attention to the evidence. It asks about the
adequacy of the evidence for each of the probability judgments we make.

Since one part of a probability argument may be better than the rest, we
are led to ask whether conviction should ever be carried by partial argu-
ments. [ believe it should. An argument that can be seen as only part of a
Bayesian argument, but is based on high quality evidence, may be more
cogent than a completed argument that draws on weaker evidence. Section
IV of this article argues for the cogency of partial likelihood arguments.
Other partial arguments that are often cogent include frequentist arguments
(interpreted subjectively) and belief-function arguments.'

C. Objective Aspects

The constructive interpretation also preserves some aspects of the fre-
quentist or objectivistic interpretation. The probabilities in the canonical
examples to which we compare our evidence are objective frequencies as
well as subjective betting rates, and the analogy a probability argument
draws to one of these canonical examples is therefore stronger when the
probabilities we use in the argument are clearly relevant frequencies.

Since clearly relevant frequencies are seldom available, dogmatic state-
ments of the frequentist interpretation make it seem that frequency ideas
have very limited applicability. The constructive interpretation permits us to
recognize a broader field of applicability for frequency ideas because it
allows consideration of cases in which there is only an analogy to the random
sampling that the frequentist interpretation requires. The constructive in-
terpretation allows us to make arguments that turn on the implausibility of
certain results were a situation the product of random sampling, without
pretending that it actually is.
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One way to explain the analogy to random sampling is to say that the
probability model we have constructed represents a thought experiment. In
this thought experiment, we imagine that facts were determined by a random
drawing from a certain reference class. The results of such a thought exper-
iment may constitute a persuasive argument, even after we acknowlege that
the selection of the reference class was somewhat arbitrary. Section IV will
apply this idea of a thought experiment to the problem of assessing the
evidence provided by blood tests in paternity cases.

D. The Courtroom Metaphor

The constructive interpretation of probability was not developed with the
courtroom metaphor in mind, but the metaphor can reinforce and add to the
interpretation. One contribution the courtroom metaphor can make is to
shift our attention from the idea of fixed evidence to the idea of argument.
Most of what is written about the foundations of probability, including the
preceding paragraphs. seems to take for granted that when a probability
judgment is at issue, the evidence on which it is based is fixed and well-de-
fined. But the courtroom metaphor encourages us to think of evidence as
something that develops as an argument is made. Evidence is introduced
into court. When a witness testifies, she gives evidence that was not there
before, and when a lawyer cross-examines a witness, they together create
evidence.

The creative nature of argument is relevant to many issues in the founda-
tions of probability. Consider, for example. the suggestion sometimes made
that we should base certain probabilities on our background knowledge. This
suggestion assumes the background knowledge is well-defined. Certain
things are stored in our heads—or on our library shelves—and others are
not. What is stored. however. may not be so well-defined. and what we will
find when we look certainly is not well-defined in advance. Rather than
speak of the probability defined by our background knowledge. we should
speak of the probability or the arguments that we happen to discover when
we search our background knowledge.

A related contribution of the courtroom metaphor is to draw attention to
how evidence is acquired. We will study this in the next section. Another
important contribution the courtroom metaphor can make stems from its
separation of the roles of creator and evaluator of argument. This separation
forces us to think about both processes. We will return to this point in
Section V.
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1II. THE AcCQUISITION OF EVIDENCE

Modem textbooks on mathematical probability teach that the conditional
probability of an event A given an event B, denoted by Pr[A|B], is given by
the following formula:

Pr[A|B] = Pr{A&B]/Pr(B]
Figure 1.

They say that this formula is a mathematical definition. Mathematicians have
simply decreed that the Pr{A&BJ/Pr[A|B] should be called the conditional
probability of A given B.

When we are taught the personalistic or subjective Bayesian interpretation
of probability, we are further told that when you learn that B is true, you
should *'condition on B'—i.e., you should change your probability for A
from Pr{A] to Pr[A[B]. This is a fundamental personalistic doctrine. One
should always take new evidence into account through conditioning. But
why? Surely there is something missing here. An arbitrary mathematical
definition cannot determine how you should change your beliefs.

A. Freund’s Puzzle

The suspicion that something is missing is confirmed by a number of
puzzles and paradoxes. My favorite is Freund's puzzle of the two aces.’®

I show you a deck containing only four cards: the ace and deuce of spades,
and the ace and deuce of hearts. I shuffle them, deal myself two of the cards,
and look at them, taking care not to let you see them. You realize that there
are six equally likely possibilities:

Ace of spades and ace of hearts,
Ace of spades and deuce of spades,
Ace of spades and deuce of hearts,
Ace of hearts and deuce of spades,
Ace of hearts and deuce of hearts,
Deuce of spades and deuce of hearts.

If A denotes the event that [ have two aces. B, denotes the event that | have
at least one ace, and B, denotes the event that 1 have the ace of spades.
then your initial probabilities are Pr(B,] = 5/6, Pr[B;] = 1/2, and Pr[A] =
Pr[A&B,] = Pr{A&B,] = 1/6.

Now I smile and say, ‘I have an ace.”” You are supposed to react to this
new information by conditioning on the event B,. Thus you change your
probability for my having two aces from 1/6 to
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Pr[A|B,] = Pr{A&B,)/Pr[B,] = (1/6)/(5/6) = 1/5

The information that I have at least one ace has increased your probability
that I have two.

Now 1 smile again and announce, **As a matter of fact. | have the ace of
spades.” You are supposed to condition again, this time on the event B,,
obtaining the new probability

Pr[A|B, & B,] = Pr|A|B,] =
Pr{A&B,|/Pr[B,] = (1/6)/(1/2) = 1/3.

The more specific information that T have the ace of spades has increased
even further your probability that [ have two aces. Is this second change
reasonable? Should my decision to identify a suit make any difference?

Most people will agree. on reflection. that what is reasonable depends on
what ground rules are established in advance regarding what I was supposed
to tell you. If it had been agreed that [ would first tell you whether I had an
ace and then whether 1 had the ace of spades, then the change from 1/5 to 1/3
is reasonable (your probability that I had both aces would go down from 1/5
to zero if I told you that I did not have the ace of spades, so it is reasonable
that it should go up from 1/5 to 1/3 when I tell you that I do have the ace of
spades). But if it had been agreed that I would first tell you whether I had an
ace and then tell you the suit of an ace that | had, if 1 did have one. then the
change from 1/5 to 1/3 is not reasonable. Once | told you | had an ace. 1 had
to tell you either spades or hearts. so it makes no sense for you to raise your
probability from 1/5 to 1/3.

B. A Personalistic Treatment of the Puzzle

The personalistic interpretation helps us to understand the puzzle. The
key is to observe that you should condition not only on the event that I have
the ace of spades, but also on the event that | have told you so. You should
calculate Pr{A|B;&B»&B;] = Pi{ A|B:]. where By is the event that [ tell you |
have the ace of spades. This event is part of your evidence, and you should
condition on all your evidence.

Suppose, for example, that it is settled that I am going to tell you whether ]
have the ace of spades. Then B, is equivalent to B,. The event that I tell you
I have the ace of spades is equivalent to the event that I have it. So the
change from 1/5 to 1/3 is correct.

On the other hand. suppose it is settled that if 1 have at least one ace, then
[ am going to tell you a suit. If | have only one. I will tell you its suit. If ] have
both, I will secretly flip a fair coin to decide which suit to tell you—spades if
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heads, hearts if tails. In this case, the event that I tell you I have the ace of
spades is equivalent to the event that either it is my only ace or else the coin
came up heads. When we work out the details, we find that your probability
of 1/5 for my having both aces should remain unchanged.'®

But suppose there are no ground rules; I just deal the cards and volunteer
the information. How can you use Bayesian conditioning in this situation?
The personalistic answer is that even though you do not know what ground
rules I am following, you should have probabilities for the different possible
sets of ground rules I might be following. Your probability model should
model what 1 am going to tell you, not just what cards I have.

C. A Contribution from the Constructive Interpretation

This personalistic treatment of the puzzle gives us important insights, but
it stops short of explaining why it is so valuable to you to know the ground
rules.

If we stand back from the personalistic interpretation, it is clear that
probability calculations are worth a lot more if ground rules are established
in advance. If no such rules were established, then you would not know what
was going on, and the assertion that you should have probabilities for the
rules 1 might have been following would not help much. Even the assertion
that I was following some unknown set of rules might not have much content.
I did what I did and said what I said, and, in the absence of any prior
agreement, the question of what I might have said lies more in the realm of
imagination than of fact.

The personalistic treatment of the puzzle seems to deny this. Since it
insists that we be able to supply a subjective probability for any event,
regardless of the quality of our evidence, the personalistic interpretation is
always unable to acknowledge that the strength of a probability argument
depends on the quality of evidence. In this case, it is unable to acknowledge
that the strength of the argument depends on the quality of the evidence for
ground rules for the acquisition of evidence on which to condition.

Moreover, the personalistic treatment of the puzzle fails to deal with the
question with which we began: Why is it imperative that your beliefs should
change in accordance with the formula Pr{A|B] = Pr{A&B)/Pr[B] if this
formula is merely an arbitrary mathematical definition?

The constructive interpretation of probability can do better. If prob-
abilities are interpreted as betting rates, and if there are ground rules that
single out B as one of the possibilities for what you might have learned at
some time, then the formula Pr{A|B] = Pr[A&B)/Pr(B] is more than just a
definition—it can be derived as a theorem.!” Moreover, there are such
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ground rules in games of chance. Card games, for example, have ground
rules for when the values of various cards are to be revealed to other players.
Hence the existence of ground rules governing our acquisition of evidence in
a practical problem is one aspect of the quality of any analogy that we can
draw to a game of chance. and hence one aspect of the quality of any
Bayesian probability argument that we can construct for the problem.

D. A Contribution from the Courtroom Metaphor

Teachers of probability and statistics have not dealt with these issues
well.!® This is due in part to the dominance of traditional metaphors: physical
experiments and games of chance. Ground rules for the acquisition of
evidence are so integral to both these metaphors that their presence is not
even noticed. In a game of chance, the very rules of the game constitute such
ground rules. In an experiment, such ground rules are implicit in the set-up
of the experiment, in the specification of what is to be measured or observed.
These metaphors do not, therefore, prepare students to deal with problems
for which ground rules for the acquisition of evidence are problematic.

The courtroom metaphor might help us do better. Courtroom ground rules
are not complete, and they are not there automatically; the contending
parties must fight for them. The courtroom metaphor therefore forces us to
pay attention to the presence or absence of ground rules.

There are many aspects of the courtroom metaphor that a teacher might
use to reinforce this point. For example, jurors must often struggle with the
significance of the absence of evidence. If a plaintiff fails to present evidence
that should have been available had her claims been true, and if she fails to
account plausibly for such absence. then a juror may conclude that the
claims are probably false.

We can also point out the significance of give and take in the courtroom
presentation of evidence. In order to evaluate a witness's testimony, a juror
does not limit herself 1o what the witness has said. She also considers what
questions the witness was answering and how well the cross-examining
lawyer has tested the witness’s credibility. She considers what the witness
did not say and how the witness said what she did say. The importance of
this give and take is recognized in law, for example, by the prohibition
against hearsay testimony. It should also be recognized by the philosophy of
probability.

E. The Completeness of Evidence

Professor I.. Jonathan Cohen, in his contribution to this book. con-
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tends that a person is justified in changing the probability for A from
Pi{A] to Pr[A|B] (where B is the evidence) only if the evidence B is
complete. This contention will seem obtuse to most Bayesians because there
are many very different scenarios in which conditioning is equally justified,
and the evidence will be much less complete in some of these than in others.
Professor Cohen's contention does have a kernel of truth, however. because
the legitimacy of conditioning depends on the existence of ground rules for
the acquisition of evidence. It is completeness relative to these ground rules
that is needed. We cannot justify conditioning on B if B, instead of represent-
ing one possible body of evidence permitted by the ground rules, represents
just part of such a body of evidence.

IV. THE QUALITY OF LIKELIHOODS

Ancillary to the personalistic doctrine that new evidence should always be
taken into account by conditioning is the doctrine that this conditioning
should be carried out using Bayes’s Theorem. It is often asserted that
Bayes's Theorem provides a recipe for dealing with new evidence: deter-
mine the ‘‘likelihoods’" associated with the evidence, and multiply prior
probabilities by these likelihoods. This means that the likelihoods fully
capture the import of the new evidence.

The idea that evidence should be assessed in terms of its likelihood has
influenced even those who are hesitant to rely on full Bayesian thought
experiments. We are often urged to think about the import of given evidence
in terms of likelihood even if we are unable to assess prior probabilities.

The constructive interpretation of probability questions these dogmas.
Bayes’s Theorem is one tool for constructing probability arguments, but it is
not always the best tool. There is no reason to think that probability judg-
ments corresponding to likelihoods will always be the most meaningful or
effective probability judgments we can make. In some cases, the analogy
that a given likelihood judgment represents may be too poor to make an
effective argument. We must seek other arguments in these cases. The
arguments we find may involve only partial likelihoods. likelihood judgments
based only on part of the evidence initially considered, or they may not
involve likelihood ideas at all.

This section will illustrate the limitations of likelihood using as an example
the problem of assessing the evidence for paternity provided by blood tests.
It turns out that in this problem the most effective arguments usually do have
a likelihood form, but that in some cases it is best to rely on partial likeli-
hoods.
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A. Bayes's Theorem

It will suffice for our example to consider Bayes's Theorem in its simplest
form, where prior odds for a hypothesis are multiplied by a likelihood ratio
for that hypothesis. A likelihood ratio in favor of A on evidence B may be
denoted by L[B|A). By definition,

L{B|A] = Pr[B|A)/Pr{B|not-A]
Figure 2
Bayes's Theorem says that,
O[A|B] = L[B|A]O[A]
Figure 3

where O[A] denotes prior odds for A, a ratio Pr{A)/Pr{not-A], and O[A|B]
denotes posterior odds, Pr{ A|B)/Pr{not-A|B].

B. The Probability of Exclusion

In paternity disputes, blood tests are often used to check whether a
particular man could be the child's father. They are also used, when the
possibility of the particular man's being the father is not excluded, to
calculate relevant probabilities. These calculations are the subject of a large
literature, dating back to Essen-Moller."

The blood tests determine an individual’s types for a set of antigens—the
individual’s phenotype. The law of genetics rules out certain combinations
of phenotypes for mother, child, and father. It is possible. therefore. that by
testing a mother, child, and alleged father we can exclude the possibility that
he is the real father. If this does not happen. then it would seem that the
evidence against him has been strengthened. How can this be measured?

One simple approach is the following.”® Suppose the phenotypes of the
mother and child have been determined but that the alleged father has not
yet been tested. We calculate a probability p that he will be excluded, given
that he is not the real father. If p is nearly one and yet, after testing, the man is
not excluded, then p can be thought of as a measure of the doubt cast on his
not being the father.

This is equivalent to a likelihood argument because the ratio p/(1 —p) is
approximately equal to a likelihood ratio. Indeed, if B denotes the event that
the alleged father is not excluded, and A denotes the event that he is the
father, then Pr[B|not-A]. calculated with the phenotypes of the mother and
child fixed, is equal to 1 —p. And since Pr[B[A]= 1, the likelihood ratio
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L[B|A] = Pr[B|A)/Pr[B|not-A] is equal to 1/(1—p). If p is near I, this is
approximately equal to p/(1 —p).

How do we calculate p, or equivalently, Pr{B|not-A]? Here we must rely
on the fact that large numbers of individuals from different populations have
been tested, and tables of the frequencies of different phenotypes have been
constructed. The populations are usually racial groups, because the frequen-
cies of different phenotypes do differ for these groups. If the alleged father
belongs unequivocally to a racial group for which frequencies of phenotypes
have been recorded, then we add up the frequencies for that racial group of
all the phenotypes that are inconsistent with his being the father. given the
known phenotypes of the mother and child. This total frequency is the
probability that the alleged father will be excluded. given that he is not the
father, and assuming that his phenotype is drawn at random from the
phenotypes of his racial group.

When we talk about the alleged father's phenotype being drawn at random
from the phenotype of his racial group. we invoke a thought experiment. The
alleged father is not a random man; he is a particular man in a dispute
marked by ‘many other particulars. But before we have typed his antigens,
assuming he is not the father. our only knowledge concerning his phenotype
is provided by frequencies for his racial group. Thus, we can compare our
state of knowledge to what it would be if we knew his phenotype were drawn
at random from a population having these frequencies. This comparison is
the basis for the thought experiment. We imagine how surprised we would
be and how much doubt would be cast on the randomness of the drawing if
the phenotype drawn were from a subset singled out beforehand as having a
very small total frequency. We argue that failure to exclude the alleged
father casts similar doubt on the hypothesis that he is not the real father.

In this thought experiment, the phenotype of the mother and child are
taken as fixed. and we imagine the phenotype of the alleged father being
drawn at random. An obvious alternative is to imagine instead that the
phenotypes of all three people—a mother and child and an unrelated man—
are drawn at random. Or we might fix the phenotype of the alleged father and
imagine those of the mother and child being drawn at random. The difficulty
with these latter thought experiments is that they cannot be performed
without a further assumption. In order to specify the probability with which
a mother-child pair of phenotypes will be drawn, we must specify the racial
group of the real father, and in order to draw our analogy to a game of
chance, we must think of the real father as being drawn at random from this
group. The strength of the thought experiment in which the phenotypes of
the mother and child are held fixed lies in its simplicity. It assumes only that
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the phenotypes of the mother and child have no causal connection with the
phenotype of the alleged father if he is not the real father. and it requires only
that we think of this alleged father's phenotype as random.

There are situations. of course. in which we would question even a
thought experiment in which the phenotypes of the mother and child are
fixed and the phenotype of the father is drawn at random. If the alleged
father is related to the mother or to the real father, then there is a causal
connection between his phenotype and the phenotypes of the mother and
child, and the thought experiment loses its cogency.

C. A Berter Argument

It turns out that there is a cogent thought experiment that accounts for
more than the mere fact that the father is not excluded. This thought
experiment accounts for the particular non-excludable phenotype the alleged
father turns out to have. Since the probability of this particular phenotype
will be small whether the man is the real father or not. accounting for it will
involve not just the contemplation of one small probability. but also the
comparison of two small probabilities. This requires considering their ratio,
which is a likelihood ratio.

It will be convenient, in the exposition of this more inclusive probability
argument, to use a notation that makes explicit the fact that we are holding
the phenotypes of the mother and child fixed. Let M, C, and S denote the
phenotypes of the mother, child. and alleged father, respectively, and let A
again denote the event that the alleged father is the real father. The argu-
ment | suggest compares two probabilities, Pr[SIM&C&A] and Pr(S|
M&C& (not-A)l.

To calculate Pr{SiM&C&(not-A)]. we use the same thought experi-
ment as before. We imagine determining the father's phenotypes by drawing
a phenotype at random from the population of phenotypes for his racial
group. This requires taking Pr{S|M&C&(not-A)] as the frequency of S in that
group. Since we are assuming that the alleged father is unrelated to the
mother and is not the child’s real father, M and C are irrelevant.

The calculation of Pr{S|M&C&A] is more complicated. Here we assume
that the alleged father is the real father, so the child’s phenotype is relevant.
The connection between the phenotypes of parent and child can only be
understood. however, in terms of their genotypes. An appropriate thought
experiment must consider the distribution of genotypes in the racial groups
of the mother and alleged father. Fortunately, these distributions can be
estimated from the distributions of phenotypes.* We consider the popula-
tion of triples of genotypes that result from drawing genotypes for the
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mother and father at random (still assuming they are unrelated). and then
crossing these two genotypes to obtain the genotype for a child. We then
consider the subset of this population consisting of those triples of genotypes
that give the observed phenotypes for mother and child. We imagine deter-
mining the father’s genotype by drawing at random from this subset; Pr(S|
M&C&A] is the frequency in this subset of genotypes for the father that give
the phenotype S.

In this thought experiment, we are accounting for more than the mere fact
that the alleged father is not excluded. We are using more genetic theory and
more detailed statistical data. Assuming we have the data, the fact that we
are taking it into account makes this a better thought experiment and a
stronger probability argument.

The ratio Pr{SIM&C&A]/Pr{SIM&C&(not-A)] is widely used: it is often
called the ‘“*paternity index’" in the literature. If it is very large, we say that
the alleged father’s phenotype is much more likely if he is the real father than
if not. and we construe this as a strong argument for his being the real father.

Writing Pr{S|M&C&A)/Pr{S|M&C&(not-A)] for the paternity index
makes it explicit that we are holdine the phenotypes of the mother and child
fixed in the thought experiment. If we are content to leave this implicit, then
we can write Pr[S|A)/Pr[S|not-A] for the index. This makes it clear thatitis a
likelihood ratio: it is the likelihood ratio L[S|A}, calculated by holding the
phenotypes of the mother and child fixed.

D. A Yet More Inclusive Likelihood

It might be argued that the thought experiment of the preceding section
does not yet account for all the evidence blood tests provide. When we
compare Pr{S|M&C&A] with PR[S[M&C&(not-A)]. we are accounting for
the phenotypes M and C to some extent—we are considering them fixed in
the thought experiment—-but we are not taking into account that M and C
may suggest genotypes for the real father that are more common in some
racial groups than others. This point becomes clear when we recognize that
the total evidence provided by the three phenotypes S, M, and C would be
fully accounted for if we could calculate joint probabilities for these
phenotypes under the two hypotheses, A and not-A. Thus. instead of con-
sidering only the ratio

Pr{SIM&C&A]/Pr[SM&C& (not-A)]
Figure 4

we should also consider the ratio
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Pr(S&M&C|A)/Pr{S&M&Cinot-A] =
[Pe{M&CIA)PIM&C|not-A]] [Pr[SIM&C& A ) Pr{SIM&C&(not-A)l]

Figure §

In order to calculate this ratio, we need thought experiments that will yield
Pr{M&C|A| and Pr{M&C|not-A]. The probability Pr[M&C|A] is obtainable
from the thought experiment already used to calculate Pr{SIM&C&A]. We
imagine genotypes for the mother and alleged father being drawn at random
from their racial groups and then crossed to produce the genotype of the
child, and calculate the probability that the phenotypes M and C will result
from this process. But the probability Pr{M&Clnot-A] poses problems. A
thought experiment for this probability must specify the racial group of the
real father, or at least specify a probability distribution for his racial group. If
we assume that the real father belongs to the same racial group as the alleged
father, then PF{M&C]|not-A] = Pr{M&C]|A]. and Figure 5 reduces to Figure
4, But if we cannot confidently assume this, then we probably will not be
able to construct a convincing thought experiment for the selection of the
real father’s racial group.

In view of the difficulties encountered in carrying out the thought experi-
ment represented by Figure 5. we should not necessarily prefer it to the one
represented by Figure 4. The former does try to take more evidence into
account, but it does not always succeed. A lawyer trying to construct the
strongest possible argument against the alleged father might be better ad-
vised to rest content with a large ratio for Figure 4 than to weaken her
argument by resting it on a questionable thought experiment about the racial
group of the real father.

This, of course. leaves a possible role for Figure 5 in rebuttal. The
defense, wishing to discredit the argument based on Figure 4, may be able to
suggest a plausible racial group for the real father for which PriM&C]|not-A]
is much greater than Pr{M&C|A], resulting in a low value for Figure 5. If the
racial group is only plausible, then this thought experiment might not count
as a direct argument against the allegation of paternity, but it would effec-
tively rebut the plaintiff’s argument based on Figure 4.

E. A Bayesian Thought Experiment

A full Bayesian thought experiment would go one step further than the
thought experiment represented by Figure 5. Tt would multiply that likeli-
hood by prior odds for paternity based on other evidence such as the
mother's allegation, the man’s denial. and evidence bearing on the trustwor-
thiness of their respective lestimonies.
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Some suggest that only such a full Bayesian thought experiment is truly
useful because other thought experiments do not yield a number properly
labelled *‘the probability of paternity.” From the constructive viewpoint,
this is unconvincing. The Bayesian thought experiment does not yield the
probability of paternity in any absolute sense. It is merely one argument:
other thought experiments may be more persuasive arguments, even though
on the surface they address slightly different questions. In fact, full Bayesian
arguments in paternity cases are usually weaker than arguments based solely
on likelihoods from blood tests because the analogy to the picture of chance
using the evidence from the blood tests is stronger than the analogy using
other evidence.

F. Where Do We Stop?

We have studied a series of successively more complex thought experi-
ments. Each takes more evidence into account, but by doing so risks
weakening the analogy to the picture of chance. Where in this progression
should we stop? When is the advantage of taking more evidence into account
outweighed by the disadvantage of treating it less convincingly? There is no
general answer; we must consider the circumstances of the individual case.

Some readers, although willing to stop short of the full Bayesian argu-
ment, will insist that the only reasonable stopping point is the argument that
calculates the full likelihood—the likelihood given by Figure 5. These readers
should recognize that there really is no such thing as a full likelihood because
the evidence to be taken into account by the likelihood is not well-defined.
We first studied a likelihood that accounted only for the fact that the alleged
father was not excluded. then a likelihood that accounted for his phenotype,
then a likelihood that accounted for all three phenotypes—the mother's. the
child's, and the alleged father’'s. Why stop there? Why not consider a
likelihood that accounts for all three phenotypes plus either the alleged
father's denial, or some other piece of evidence introduced in court?

Shafer and Tversky point out that, outside of the realm of planned statisti-
cal experiments, problems do not come with the evidence on which likeli-
hoods are to be based distinguished from the evidence on which prior
probabilities are to be based.?® This partitioning of the evidence must be
done deliberately by the person who constructs the Bayesian argument. The
standard terminology encourages a pretense that the partitioning is deter-
mined by timing: likelihoods are based on new evidence, priors on old
evidence. But this is only pretense. It is clear in our example that it is
pretense because the blood tests are unlikely to be the last evidence we
obtain, no matter whose shoes we are in.
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G. The Relevance of Likelihood

Several authors, including Professor Lempert*® and Professor Kaye,*
have advanced likelihood as a general tool for explicating and correcting
legal doctrine. Professor Lempert, for example, explains judgments of rele-
vance in terms of likelihood ratios. Given evidence is logically relevant, he
explains, unless its likelihood ratio is close to one. Such evidence may be
excluded, nonetheless, from a jury’s consideration if the jury is ill-equipped
to estimate this likelihood.

This reliance on likelihood is misguided because it overlooks the construc-
tive nature of likelihood. A cogent likelihood argument does establish the
relevance of the evidence it uses. but if we have not succeeded in construct-
ing a cogent likelihood argument, then there is no content in talk about
whether the likelihood ratio is close to one, and we are free to consider other
ways of establishing the relevance of the evidence.

Professor Lempert's references to difficulties that a judge or jury might
have in estimating a likelihood suggest that a likelihood, as opposed to a
prior probability, has objective reality. Even in the case of blood test
evidence. this is not necessarily so. If we cannot identify a population from
which we can say the observed phenotypes were randomly drawn, then our
likelihoods are simply meaningless symbols.

We might defend a reliance on likelihood by appealing to Savage’s per-
sonalistic interpretation, according to which an individual must always have
both subjective prior probabilities and subjective likelihoods.”® We could
then say that given evidence is relevant if any reasonable juror can give it a
likelihood ratio different from one. This approach leads. however, to all the
difficulties associated with the personalistic pretense to all-encompassing
probability opinions. Moreover, it leads to the paradoxical result that evi-
dence is relevant if it is weak. When we know little, almost any likelihood
ratio may seem reasonable.*

V. Is THERE A THEORY OF ARGUMENT CONSTRUCTION?

If Bayes's Theorem is not a general recipe for constructing probability
arguments, how do we construct them? Can we develop a theory that tells
how to do so? This question has gained prominence in recent years because
computer scientists have begun trying to incorporate the ability to construct
probability arguments into expert systems.*’ Their initial efforts have had
limited success, but the effort itself represents an important challenge to
statisticians and probabilists.

Genuine progress towards automating the construction of probability ar-
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guments will depend in part on progress in the construction of artificial
associative memories.”® Human probability judgment, poor as it is, depends
on an ability to retrieve memory of situations that are fairly similar to a given
situation. It also depends on an ability to evaluate the relevance of the
instances retrieved and to adjudicate between conflicting instances and
analogies. How can we mimic this human ability?

It is here that the courtroom metaphor may have its greatest impact. The
adversary system, the system the law has evolved to deal with conflicting
arguments, may turn out to be an essential element of automated probability
argument.
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