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Abstract

The Dempster-Shafer theory of belief functions
[Shafer 1976] is an intuitively appealing formalism
for reasoning under uncertainty. Several Al
implementations have been undertaken [e.g.,
Lowrance et al. 1986, Biswas and Anand 1987], but
the computational complexity of Dempster's rule has
limited the usefulness of such implementations.
With the advent of efficient propagation schemes in
Markov trees [Shafer et al. 1987], the time is ripe for
more powerful systems.

This paper diécusses DELIEF (Design of
bELIEFs), an interactive system that allows the
design of belief function arguments via a simple
graphical interface. The user of DELIEF constructs a
graph, with nodes representing variables and edges
representing relations among variables. This graph
serves as a default knowledge schema. The user
enters belief functions representing evidence pertinent
to the individual variables in a specific situation, and
the system combines them to obtain beliefs on all
variables. The schema may be revised and re-
evaluated until the user is satisfied with the result.
The Markov tree used for belief propagation is
displayed on demand. The system handles Bayesian
causal trees [Pearl 1986] as a special case, and it has a
special user interface for this case.

1 Introduction

Reasoning about real-world situations is a process often beset
with uncertainty, contradictions and ignorance. Information or
evidence may come from many sources: from experience,
from sensory data, from context. Such evidence is rarely clear-
cut. Often it is incomplete, ambiguous, or misleading.

Uncertain evidence is not easily represented by logical
formalisms. Classical probability measures provide an
alternative, but they require that evidence be complete in a
different sense; in order for probabilities to be well-founded, we
need statistical data on many similar cases. Because of these
difficuities, existing expert systems often deal with uncertainty
using heuristic methods that can lead to unintuitive or hard-to-
interpret results,

The theory of belief functions provides another way of
dealing with some of these difficulties. It provides a formally
consistent method for interpreting and pooling uncertain
evidence, and it allows us to get meaningful answers to

questions with only partial evidence. Costly evidence is
gathered only when necessary. As we shall see, it also allows
us to use knowledge schemas that are flexible enough to
accomodate unexpected evidence,

In most successful applications, the Bayesian approach to
evidential reasoning utilizes probability measures that are
extracted from statistical data. The knowledge schemas used
by Bayesian analyses in such applications are fixed by the data
available. From the user's point of view, these schemas are
essentially hardwired. This is an advantage inasmuch as the
user needs only input evidence, without worrying about
improving the structure of the schema. But it is a
disadvantage in terms of flexibility and breadth of relevance.

The belief function approach embodies a different
philosophy. Knowledge schemas constructed in the belief
function framework can be supported by educated guesses that
are simpler in structure than probability measures. The
reasoner starts with hunches formalized as a default knowledge
schema, gathers and evaluates individual items of evidence for
some (but not necessarily all) of the questions considered by
this schema, uses the system to combine this evidence and
examines resulting joint beliefs on answers to particular
questions, and revises the evaluation of the individual items of
the evidence or even the structure of the schema as the
investigation moves along. This resembles the kind of
reasoning process in which an expert (e.g. an auditor)
assimilates his or her knowledge into the context (e.g. a firm
that is being audited). We think this kind of reasoning process
is common in many domains. The DELIEF system aids such
processes by facilitating the design of the knowledge schemas
and propagating probability judgments within these schemas.

2 Theoretical Background

2.1 Belief Function Models as Knowledge
Schemas

A belief function model consists of a set of variables, a set of
joint variables, and zero or more belief functions for each of
the individual variables and joint variables. Individual
variables represent questions for which we would like an
answer. A joint variable involves two or more individual
variables and is used to specify how these individual variables
are related. Associated with each variable is a frame of
discernment (henceforth a frame), an exhaustive set of
mutually exclusive answers to a question. The simplest kind
of variable is a Boolean variable, or a proposition; its frame is
the set {true, false}. The frame for a joint variable is the
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Cartesian product of the frames of its individual variables. If,
for example, A and B are Boolean variables, then the frame of
the joint boolean variable A x B is the Cartesian product
{(yes, no) (yes, yes) (no, no) (no, yes)}. Abstractly, the set of
variables and joint variables may be thought of as a
hypergraph, where each variable is a vertex and each joint
variable is a hyperedge containing only vertices that are
member variables. This concept leads naturally to a graphical
representation of the model [Kong 1986].

A belief function BELy bearing on a variable X can be
stored as a mapping my ("the m-values") from the set of all
subsets of X's frame to the real interval [0, 1]. If we let the
set of all subsets of X's frame be (S}, Sy, ..., Sy}, then the
sum of my(S;), where 1 <i <k, is one. The belief function
BELy itself is computed from my. Specifically, for any
subset S of X's frame, BELx(S) is the sum of all mx(S"),
where S' is a subset of S. We call any subset S of X's frame
for which my(S) is non-zero a focal element of BELy.

Individual items of evidence are entered into DELIEF in terms
of m-values for focal elements.

The simplest kind of belief function is the vacuous belief
function, whose only focal element is the entire frame (with
m-value 1). Next come the logical belief functions. A logical
belief function has only one proper subset as a focal element
(with m-value not necessarily equal to 1), and this focal
element may be represented by a logical assertion. DELIEF
initially associates a vacuous belief function with each node in
a knowledge schema. It also provides shortcuts for specifying
logical belief functions.

2.2 Propagation

The evaluation of a belief function model consists of the
combination of all belief functions and the projection of the
resulting joint belief function to the frame of each individual
variable or joint variable. At the heart of it is Dempster's rule
of combination, the main inference mechanism for belief
functions. As Dempster's rule is exponential in computational
complexity, care must be taken to trim down the size of the
frames involved. So instead of combining all belief functions
at once, we try to combine only a few belief functions at a
time using local computation. In order for such a procedure to
give the same result as combining all the belief functions on
an overall frame, the original hypergraph structure of the belief
function model must be embedded in a hypergraph that can be
arranged as a Markov tree [Shafer et al. 1987]. So to combine
belief functions, we first look for a hypergraph embedding,
and then we combine belief functions locally and propagate the
results through an associated Markov tree structure. See
[Kong 1986] and [Mellouli 1987] for more details.

3 The System

Performing evidential reasoning in DELIEF consists of three
major steps: creating a model as a graphical network,
providing evidence, and propagating the evidence in the model.
The user has the option of performing either a Bayesian or a
belief function analysis. Bayesian analysis is implemented as
a special case of belief function analysis. While interfaces for
providing evidence differ, and the inputs greater in the Bayesian
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analysis, the algorithms for propagating evidence are exact|
the same for either case, since probability transition Matriceg
are translated to and stored internally as belief functions. Fo, a
formal discussion, see [Shafer et al. 1987].

Throughout this section we will illustrate the system py
considering the following hypothetical knowledge schem,
from [Lauritzen and Spiegelhalter 1988]:

Shortness-of-breath (dyspnoea) may be due to tuberculosis,
lung cancer or bronchitis, or none of them, or more thay
one of them. A recent visit to Asia increases the chanceg
of tuberculosis, while smoking is known to be a risk factor
for both lung cancer and bronchitis. The result of chest x-
rays do not discriminate between lung cancer ang
tuberculosis, nor does the presence or absence of dyspnoea,

3.1 Creating a Model

Variable nodes are created where desired in the graph by
clicking the mouse over any blank area of the graph display
pane. A window then pops up (Figure 1) over the graph pane
and prompts the user to "formalize™ the variable by providing a
name and a frame for it. Variables are displayed as circular
nodes (Figure 3).

Creation of a joint variable is accomplished by first
indicating which variable nodes the joint variable conjoins
(Figure 2) and then indicating the location of the new joint
variable node. Joint variables appear as rectangular nodes with
edges to their member variables (Figure 3). The system
automatically calculates the joint variable's frame as the
Cartesian product of the frames of its member variables.
Figure 3 shows the resulting network for our hypothetical
knowledge base.

CREATE

THIS VARIABLE'S MAME: ASIA
THIS VARIABLE'S FRAME: (YES NO)

Abort Oone

Figure 1: Formalizing a variable node. The variable
has been named ASIA, and its frame is the set {YES,
NOJ.

3.2 Providing Evidence - The Belief-

Function Case

Until explicitly defined by the user, all variables and joint
variables have a vacuous belief function defined for them by
the system.

Evidence for a variable is represented by a belief function on
the variable's frame. For example, we wish to indicate that we
are 80% sure that the patient in question has visited Asia
recently. Figure 4 illustrates how this evidence can be
expressed as a belief function on the variable ASIA. First, we
select the subset of the variable's frame for which we have
evidence, namely "YES", and then indicate that we wish to add
this subset to the belief function. We are then prompted to
specify the m-value (degree of belief) for this subset, and we
enter 0.8 (Figure 4a). Figure 4b shows the resulting belief
function for the variable. Twenty percent of our belief is still




uncommitted and therefore remains on the entire frame. Joint
variables are handled in the same way.

|
= S |
\
® © o

Figure 2. Indication of variable nodes to be included in
a joint variable. The mouse is positioned where the
user wishes to place the joint variable node.

An additional feature of the system is the option to define
belief functions on a joint variable using logical expressions
involving the individual variables. We can express the
meaning of ASIA-TUBERCULOSIS as the statement "if
ASIA = YES then TUBERCULOSIS = YES cf 0.5". Such
expressions are translated to and stored internally as belief
functions by the system.

We can also define multiple belief functions (or logical
expressions) for a single node. To express the constraint "if A
then B else C", we define the two belief functions representing
"if A then B" and "if NOT A then C", and the system
combines them using Dempster's rule to yield the intended
meaning.

Belief Function Netw

RSIA BELIEF FUNCTION 1
YES 1.9 [fSTA
NO YES

Ko

BELIEF FUNCTION SUBSET
En—um.us FOR THIS SET: @.3

Done Abort

Belief Function Netw

RSIA BELIEF FUNCTIOM 1
YES 4.8
NO

Figure 4. Providing evidence for the variable ASIA. a)
The frame subset {YES) has been highlighted and an
m-value of 0.8 has been specified for the subsei; b) the
resulting belief function.

To complete our example, Figure 5 shows the belief
functions which were defined on the joint variables and on the
variable DYSPNOEA. The remaining variables represent
questions which we wish to answer but for which we have no
direct evidence. The input for these variables remains the
default - the vacuous belief function.

3.3 Providing Evidence - The Bayesian
Case

For a Bayesian analysis, inputting evidence means providing
prior probabilities for some individual variables and
probability transition matrices for joint variables. In

Belaf Function Network

GET MODEL
NAME MODEL
NEW MODEL
BAVE MODEL

ALL INPUTS

CLEAR YARJABLES
MARKOY TREZ
PROPACATE
VARIABLE INPUTS
YARIABLE OUTPUTS

Houne-1, -M, -H: CHEAIE A HEW UARIABLE NODE,
To nee other commands, press Lhift, C

press Lh

Figure 3. The completed model for our hypothetical example.

Cantrol, Meta-Shft, or Siuper.

Zarley, Hsia and Shafer 207



90uUpIA9 [[e puey Iesey Jasn oyl ey sordun  sisAreue
ueIsadeq € JO 901040 9] "92UdPIA? JO A10y) Joreys-1asdwag
ayl ‘wsIfewIo} suo Suisn sewayds aFpaymouy Jo sis[eue
ueIsadeq pue uonsunj jareq yioq stuswejdwn wasks oyl
‘poyTpOW AJISBS 9q UBD 20UIPIAD
Surpuodsal100 pue INIONNS Y1 YPOQ YIIYM I0) ‘S9[qeLiea
Jo sjIomidu [eoiyder§ se psjueserdes ATISEs oIe SBWAYDS
98pojmouy ‘swoiqoird pirom-reer Suizjeue pue Surjepow
u1 asn JOJ 3JBJI3IUL 25N-01-ASed pue 91qrxa)) e sepiaaid 1130

uoisnpuo) 4

*oAey ABw
1 S9IqEURA Joqwow Sururewar Auew Moy JO sso[preSar ‘os(e
patsjep 9q 01 91qeLIea 1urof ® YORS SISNED 9[qELIBA jUI0f B JO
3]qBLIBA 133]J9 2] S 1BY] 9[qeLeA B JO UOnaPRQ 'patedrdwod
210w 1BYMOWOS SI UONI[OP 9SpOU IJ|qelIBA ‘SISA|EuE
uersakeg JOJ ‘SNONOBA SAWO32q SIPOU ISOY] JOJ SAN[BA 2yt
‘osImIaqI0  “9Iqissod J1 ‘aweny mau oyl 01 palosefoid st apou
J]qeLrEA 21} pue S3pou 9[qeirea jurof Jusselpe qje jJo onfea oyl
‘padueyd ST SWe §,9[qBLIEA € J S9[qELIEA Joquiow Sururewal
11 JO awel) AN 01 parafoid st uonounj jor[eq s,9jqerrea jutol
Yl “ISIMIYIO ‘P[P OS[E SI 9[qeLreA JuTof 94 uayl ‘Joquiaw
Suturewas 9uo AJUO PIM S[qELIEA JUTOL O} SOABD] 2qEBLIBA Y1
JO UOTIRIaP J] “Iequidw ® SI 1 YoIym JO S]qewrea jutof 2yl uo
$129]39 OM1 JO QUO 2ABY UED 9[QEBLIBA [RNPIATPUT U Sunojeq
*apou ydesd € 1940 ST 25n0W Y1 Uaym
SUOIING ISNOW UO PIuT}ap ore suonesado asoy] "duUO SNONdEA
B 0] SI[NEJSP 9pOU 9Y) JOJ UONdUN] JII[2q Y} 9°1 “,paread,
2q Aew opou ydeid Aue 10] 25USPIAY PP PUB PAAOW
2q Aew S3POU S[QELIBA JUIOf "PIUIRIJal PUB PIWEBUAI “pIIRfap
‘PoAolr o ABW S3POU S[qeLreA “dwn AUB JB paljIpowl 1931
2Q AW 95UIPIAD PAIBIDOSSE SII DUEB [dpow B JO s10odse ||V

suonesddQ JPYIQ S'¢

*a)dwpxa upisalvg ayr 10f 2ouaprag *y 2.m81g

Low se 0 66°¢

[s34 58 | s34 106 |

OHIXQUS 3BHTAWA ¥ISE 378¥IEea

56°8 <B°® ox ox

e € ou 28’ 86°B $34 ox

vg a8 S3A 2e'B 86'e ok $3

on 534 DNINONS 2e's 66°p $34 534

S1.INouCPE U S3A SISOMIMIEN: Y3
AY=x

SIITHINDNE-INIAONS WOILETIE
AYZ-X-H3IHYI-SIS0ININ3IBNY KOII¥IIY

66'e 2@ 1]
£ e $34 [N} e Ok (.1} DN
(1] S$34  GHINOWS £ '8 $34 oH .11
FI5NET bR : g Ok S34 o
€8 '8 S34 S3A ox
33INYI-ININO0LS NOILEIIY &'p B'e [ oK S34
¥a-anpAOuS :'B 6°e $34 oW S
26 18°8 OK '8 6°8 L S34 $34
s6'2 se‘e 53 10 6°e $34 $34 S34
oH $3,  bISe ou S3h  SILIHONGZE ¥30n&D SISCINI¥IENS

81807283502 YIONISAG

$150In3238n1-4ISH NOTIWTIB ¥30KdSAG-SI1IININDES-FIIHBI-SISOINIUIENL HDILYIIY

"6 om31g
Ul umoys are sjdurexs ueisakeg o Joj synsax uoneSedoid
8 amgiq w umoys eore ojdwexe uondUN)-JOI[Rq Oy
10 uoneSedoid ap JO SINS31 2y puk 935 YL 98I AONIE

Buuosesy psyewoiny 807

S ul U3P1AS JY] seteSedord pue ysomiou o Junuosaider
SOJqeLIeA JO 92M AONIBIN B S21BaId WwalsAs ay], °oeSedoly,
uralt nuaw ay) s10epes Ajdwirs Jasn 9yl ‘jopow a1 9zA[EUR O]

DuIpIag ay) duppededoag ¢

"DNIJIOWS PUE VISV S9[qeLrea 3y 1o senniqeqoid
Joud pue s9jqeLrea jutof Jje 10] seownew uonisuen papracid
9ABY oM ‘L MBI U] °ULIOJ TEYI Ul WIYl SAI0IS PUR SUOTIOUN]
Jo119q 01U SIOLOBW UOTISURI 9 SIIB[SUBD WASAS 2y

" mopuim dn-dod

D4 SISOTNDYTLNL-YTDNYI-AVY-X 21901404 1irof
10f xvy-X apou 123ff2 ay1 fo uonvorf1oadg ‘9 2n814

pier] 400y

-
SIS0INJ¥IANL  ¥FINYD  AWA-X 300N 103333 awamul
JAON 103443

*(109313)5wrey x (asnes)oureq aoeds 3y Jo WD 4242 JOJ
90USPIAT 9p1A0ad I1SNW 19SN QY] "PRIISIP SB PILIpOW 3q Aew
Yorys JO san[eA 91 ‘XINBW UONISURT € Ylim Iasn i siuasaid
waIsAS oy] °'sosned Se palesn are SIAYI0 oyl ‘(9 amBiy)
9[qELIBA 139]J2 91 ST SI[QELIRA [ENPIAIPUI A JO YoM AJroads
snw J9sn oyl ‘xmnew uonisuen Anpiqeqosd oy Surdjroeds

"a1duioxs uonaunf f2112q ay1 40f 3ouapiAg ‘¢ 24n81y

2 ze
S3. ge
vISy 3PUIava
on
’ oM oW Owi JS!A L)
S34 [y ow -
o 534 on! S35 2
Oon

V3BNASAD 3IBYIBUA

ze's

4 86°8
1 NOILONA4 431738

s'e
1 MOLiJKN3 331738

SISONDEIGN-YFINEI-AVE-X NOIWI3A VISV-SISCINI¥3ANI NOIINI3N

oW oN oM

$34 [ 2] ONj

OH S3a ONy

S34 §34 Ou

DH o o

s34 o~ oM

on €34 ON

s34 534 ONj

68 ow o~ S34
534 o S34A

oH S34A s34

834 S34 834

A oN ox §34
e $34 o 834
1 WOI1JWNJ 317138 Ow 834 S34

INTIONS-BIINUD KOILNIIN A'QJN;’J SIS0INoNIFY

534 oM on o
534 534 on N
s3: N 53 oul
e 53: s34 s o
€34 ON ox S3A
§34 s34 o 534

:]
1 MOILIMNY 331738

S34 $34 & S34
YIOHLTAC SIJININOE HIMYS SISCINT¥ISHL] ¢+ p

T NDILINNI 431738
INTIOUS-STLTHINCYE ROIINIIN  SIS0INIWIANI-AIOWWI-STIIRINCYS~KIONJSAO NOLIWIe



Bedlel Funcilon Network

VALIAGLE SRSKING

R i

VRRIMELE SEERCHITIE

YARISSLL TUSCRCELOEIE

n eaTASLE X-REY

e

PAQPOGATION AESILTS

MARKOY TREE

RETURN

Figure 8. Markov tree for the model and results of propagation of the evidence shown in Figure 5 (belief

function example).

VRRIABLE RSIA VARIABLE TUBERCULOSIS

[3.e1 YES | -5896 50|

[@.99 NO | [-8184 1ES |

VARIRBLE SNOKING VARIABLE CANCER
8.5 YES @.345 na
9.5 NO @.855 YES

VARTARLE BRONCHITIS VARIABLE X-RAY

[e.55s _ _ro] 3897 10
9.4S YES 1103 YES

VARIABLE OYSPHOER

d.564 nO

3.436 YES

Figure 9. Results of propagation of evidence shown in
Figure 7 (Bayesian example).

necessary to define a joint probability distribution for all
relevant variables. The choice of a belief function analysis
implies that the user has limited access to evidence, or is
delaying getting costly evidence, but wishes to get meaningful
answers to questions nevertheless.
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