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Abstract

The stand-off between the frequentist and subjectivist interpretations of
probability has hardened into a philosophy. According to this philosophy,
probability begins as pure mathematics. The different meanings of probability
correspond to different interpretations of Kolmogorov's axioms.

This chapter urges a slightly different philosophy. Probability begins with the
description of an unusual situation in which the different meanings of probability
are unified. It is this situation—not merely the mathematics of probability—that
we use in applications. And there are many ways of using it.

This philosophy reconciles the various meanings of probability at a level
deeper than the level of axioms. It allows us to bring together in one framework
the unified eighteenth-century understanding of probability, the frequentist
foundations of von Mises and Kolmogorov, and the subjectivist foundations of de
Finetti. It allows us to recognize the diversity of applications of probability
without positing a myriad of incompatible meanings for probability.

1 An agreement to disagree

For over fifty years, there has been a consensus among philosophers,
statisticians, and other probabilists about how to think about probability and its
applications. According to this consensus, probability is first of all a theory in
pure mathematics, based on Kolmogorov's axioms and definitions. Different
interpretations of these axioms are possible, and the usefulness of each
interpretation can be debated, but the mathematical theory of probability stands
above the debate. As the historian Lorraine Daston puts it, “The mathematical
theory itself preserves full conceptual independence from these interpretations,
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however successful any or all of them may prove as descriptions of reality”

(Daston 1988, pp. 3-4).
SUBJECTIVISM \
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Figure 1. The consensus

The consensus is depicted in Figure 1. The subjectivists, who interpret
probability as degree of belief, and the frequentists, who interpret it as relative
frequency, have only the purely mathematical theory as common ground. Both
subjectivists and frequentists find applications for probability, but these
applications are separated from the common ground by the opposing
philosophies. They are based on different meanings for probability.

In practice, this consensus is an agreement to disagree. The two camps, the
frequentists and the subjectivists, agree on the mathematics of probability, but
they also agree that everyone has a right to give whatever interpretation they
please to this mathematics. Though they continue to debate the fruitfulness of
their different interpretations, they have come to realize that they are talking
past each other. They have no common language beyond the mathematics on
which they agree so perfectly.

The consensus has become so ingrained in our thinking that it seems natural
and unavoidable. All mathematics has been axiomatic since the work of David
Hilbert, and any axiomatic system, as Kolmogorov himself pointed out, admits
“an unlimited number of concrete interpretations besides those from which it is
derived” (Kolmogorov 1950, p. 1). So every branch of pure mathematics can
declare its conceptual independence of its applications. As Daston puts it, “For
modern mathematicians, the very existence of a discipline of applied
mathematics is a continuous miracle—a kind of prearranged harmony between
the ‘free creations of the mind’ which constitute pure mathematics and the
external world.”

We should remember, however, that not all fields that use mathematics have
ceded primacy to pure mathematics drained of meaning to the extent probability
has. In physics, for example, axioms are secondary to physical theory, which
melds mathematics and meaning in a way that goes beyond any single set of
axioms. The physicist is usually interested in a physical theory that can be
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axiomatized in different and sometimes incompatible ways, not in a single
axiomatic theory that can be interpreted in incompatible ways.

I remember vividly a lecture by one of my own physics teachers, in which he
derived one physical relation from another and then gave a second derivation
that went more or less in the opposite direction. When a student pointed out the
near circularity, he launched into a passionate discussion of the difference
between the physicist and the mathematician. This blackboard is the world, he
said. The mathematician wants to find a single starting place—a particular dot of
chalk—from which to derive everything else. The physicist does not see the point
of this. The physicist takes whatever starting point is convenient for getting
where he or she wants to go. Sometimes the physicist goes from here to there,
sometimes from there to here—he drew arrows all over the blackboard. The
point is to see how things hang together and to understand parts you did not
understand before, not to get everywhere from one place.

My purpose in this chapter is to urge that we once again look at probability
the way physicists look at a physical theory. Probability is not a physical theory,
but it does have an object. The axioms are about something. This something is an
unusual situation—a situation that occasionally occurs naturally, sometimes can
be contrived, and often can only be imagined. In this unusual situation,
“probability” is not devoid of meaning. It has many meanings, just as “energy”
or “work” have many meanings within the situation described by the theory of
mechanics. The numerical probabilities in the unusual situation described by the
theory of probability are simultaneously fair prices, warranted degrees of belief,
and frequencies.

Since the unusual situation the theory of probability describes occurs
infrequently and may be imperfect even when it does occur, I will call it “the
ideal picture of probability.”

Outline of the chapter. The next section, Section 2, describes informally
the simplest case of the ideal picture of probability, the case where a fair coin is
flipped repeatedly. We see there how the ideal picture ties frequencies, fair
prices for gambles, and warranted degrees of belief together in a circle of
reasoning, any point of which can be used as a starting point for an axiomatic
theory.

Section 3 refines the informal account of Section 2 into a mathematical
framework and formulates axioms for fair price and probability that resemble
Kolmogorov's axioms yet capture aspects of the ideal picture that are left
outside Kolmogorov's framework.

Section 4 relates the ideal picture to the philosophical history of
mathematical probability. The ideas that make up the ideal picture had been
developed and even unified to some extent by the end of the eighteenth century.
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But this unity fell victim to the extreme empiricism of the nineteenth century,
which saw frequency as an acceptable basis for a scientific theory but rejected
fair price and warranted degree of belief as metaphysical fictions. In the
twentieth century, the subjectivists have matched the frequentists' empiricism
with a story about personal betting rates that sounds like an empirical
description of people's behavior. Both the frequentist and subjectivist
foundations for probability have elements of truth, but they become fully cogent
only when they are brought back together and seen as alternative descriptions of
the same ideal picture.

The mistake that nineteenth-century empiricists made about the
mathematical theory of probability was to suppose that it could be used only by
fitting it term-by-term to some reality. They believed that using the theory
meant finding numbers in the world—frequencies or betting rates—that followed
the rules for probabilities. In the late twentieth-century, however, we can take a
more flexible view of the relation between theory and application. We can take
the view that the mathematical theory of probability is first of all a theory about
an ideal picture, and that applying the theory to a problem means relating the
ideal picture to the problem in any of several possible ways.

Section 5 discusses some of the ways the ideal picture can be used. Some
statistical modeling uses the ideal picture as a model for reality, but much
statistical modeling uses it only as a standard for comparison. Another way to
use the ideal picture is to draw an analogy between the evidence in a practical
problem of judgment and evidence in the ideal picture. We can also use
simulations of the ideal picture—sequences of random numbers—to draw
samples and assign treatments in experiments, so that probabilities in the ideal
picture become indirect evidence for practical judgments.

2 An informal description of the ideal picture

The ideal picture of probability is more subtle than the pictures drawn by
most physical theories, because it involves knowledge as well as fact.
Probability, in this picture, is known long-run frequency. The picture involves
both a sequence of questions and a person. The person does not know the
answers to the questions but does know the frequencies with which different
answers occur. Moreover, the person knows that nothing else she knows can help
her guess the answers.

This section briefly describes the ideal picture informally, with an emphasis
on its intertwining of fact and knowledge. It deals with the simplest case, the fair
coin repeatedly flipped. This simple case is adequate to demonstrate how the
ideal picture ties three ideas—knowledge of the long run, fair price, and
warranted belief—in a circle of reasoning. We can choose any point in this circle
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as a starting point for an axiomatic theory, but no single starting point does full
justice to the intertwining of the ideas.

The picture of the fair coin generalizes readily to biased coins and
experiments with more than two possible outcomes, and to the case where the
experiment to be performed may depend on the outcomes of previous
experiments. These more general cases are not considered in this section, but
they are accommodated by the formal framework of Section 3.

For a more detailed description of the ideal picture, see Shafer (1990a).

2.1 Flipping a fair coin

Imagine a coin that is flipped many times. The successive flips are called
trials. Spectators watch the trials and bet on their outcomes. The knowledge of
these spectators is peculiarly circumscribed. They know the coin will land heads
about half the time, but they know nothing further that can help them predict the
outcome of any single trial or group of trials. They cannot identify beforehand a
group of trials in which the coin will land heads more than half the time, and the
outcomes of earlier trials are of no help to them in predicting the outcomes of
later trials. And they know this.

Just before each trial, the spectators have an opportunity to make small even-
money bets on heads or on tails. But since they are unable to predict the
outcomes, they cannot take advantage of these opportunities with any con-
fidence. Each spectator knows she will lose approximately half the time. A net
gain, small relative to the amount of money bet, is possible, but a comparable net
loss 1s also possible. No plan or strategy based on earlier outcomes can assure a
net gain. For all these reasons, the spectators consider even-money bets on the
individual trials fair.

Since a spectator begins with only a limited stake, she may be bankrupted
before she can make as many bets as she wants. She can avoid bankruptcy by
making the even-money bets smaller when her reserves dwindle, but this will
make it even harder to recover lost ground. Consequently, she can hope only for
gains comparable in size to her initial stake. No strategy can give her any
reasonable hope of parlaying a small stake into a large fortune. This is another
aspect of the fairness of the even-money bets.

The spectators also bet on events that involve more than one trial. They may
bet, for example, on the event that the coin comes up heads on both of the first
two trials, or on the event that it comes up heads on exactly five hundred of the
first thousand trials. They agree on fair odds for all such events. These odds
change as the trials involved in the events are performed. They are fair for the
same reasons that the even odds for individual trials are fair. A spectator betting
at these odds cannot be confident of any gain and has no reasonable hope of



Glenn Shafer

parlaying a small stake into a large fortune. Moreover, if she makes many small
bets involving different trials, she will approximately break even.

Fairness has both long-run and short-run aspects. The statement about bets
involving many different trials is strictly a statement about the long run. But the
other statements apply to the short run as well. No way of compounding bets,
whether it involves many trials or only a few, can make a spectator certain of
gain or give her a reasonable hope of substantially multiplying her stake.

Precise statements about the long run are themselves events to which the
spectators assign odds. They give great odds that the coin will land heads on
approximately half of any large number of trials. They give 600 to 1 odds, for
example, that the number of heads in the first thousand tosses will be between
450 and 550. They also give great odds against any strategy for increasing initial
capital by more than a few orders of magnitude. They give at least 1,000 to 1
odds, for example, against any particular strategy for parlaying $20 into $20,000.
Thus the knowledge of the long run that helps justify the fairness of the odds is
expressed directly by these odds.

Just as very great odds seem to express knowledge,' less great but substantial
odds seem to express guarded belief. The spectators' degree of belief in an event
is measured numerically by the odds they give. Since the odds are warranted by
knowledge of the short and long runs, this numerical degree of belief is not a
matter of whim; it is a warranted partial belief.

The spectator's numerical degrees of belief express quantitatively how
warranted belief becomes knowledge or practical certainty as the risky shot is
stretched into the long shot, or as the short run is stretched into the long run.
The spectators' certainty that long shots, or very ambitious gambling strategies,
will fail is a limiting case of their skepticism about all gambling strategies, more
ambitious and less ambitious. They give at least k to 1 odds against any strategy
for multiplying initial capital by k—two to one odds against doubling initial
capital, thousand to one odds against increasing initial capital a thousandfold,
and so on. Similarly, their certainty that heads will come up half the time in the
long run is a limiting case of their belief that the proportion of heads will not be
too far from one-half in the shorter run. The degree of belief and the degree of
closeness expected both increase steadily with the number of trials.

! There is a consensus in philosophy that knowledge is justified true belief. We cannot know something
unless it is true. By equating knowledge with mere great odds, I may appear to challenge this consensus. The
spectators can know something that might not be true. It is not my intention, however, to enter into a debate
about the nature of knowledge. I merely ask leave to use the word in an ordinary sloppy way.

6



Glenn Shafer

2.2 A circle of reasoning

Our description of the ideal picture traced a circle. We started with
knowledge of the long run. Then we talked about the odds warranted by this
knowledge. Then we interpreted these odds as a measure of warranted
belief—i.e., as a measure of probability. And we noted that the knowledge of the
long run with which we began was expressed by certain of these odds.

This circle of description can be refined into a circle of reasoning. The
spectators can reason from their knowledge of the long run to the assignment of
fair odds to individual trials. They can argue from the odds for individual trials to
odds for events involving more than one trial. They can argue that all these odds
should be interpreted as degrees of warranted belief (or probabilities). Then
they can deduce very high probabilities for events that express the knowledge of
the long run with which they began.

Probability

Fair
(warranted
belief)

Odds

(or fair price)

of the
Long Run

(especially

frequency)

Figure 2. The circle of probability ideas

This circle of reasoning is depicted by Figure 2. The first step is represented
by the arrow from “Knowledge of the long run” to “Fair odds.” The spectators
move along this arrow when they argue that even odds for individual trials are
sensible and fair, because these odds take all their relevant knowledge into
account, and because someone who makes many bets at these odds will
approximately break even, and so on.

The next step can be located inside “Fair odds.” This is the step from odds
on individual trials to odds on all events. As it turns out, once we agree on odds
on individual trials, and once we agree that these odds are not affected by the
results of earlier trials, there is exactly one way of assigning odds to events
involving more than one trial so that a person cannot make money for certain by
compounding bets at these odds.

The next step, represented by the arrow from “Fair odds” to “Probability,”
is to interpret fair odds as a measure of warranted belief. The spectators point
out their own willingness to bet at the odds they call fair. Appealing to the
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natural tie between action and belief, they conclude that these odds measure
their beliefs.

Within “Probability,” the spectators deduce that their degrees of belief, or
probabilities, for complicated events include very high probabilities that the coin
will land heads approximately half the time in any particular long run of trials
and that any particular scheme for parlaying small sums into large ones will not
succeed. This allows them to travel the final arrow, from “Probability” back to
“Knowledge of the long run.”

2.3 Making the picture into mathematics

The reasoning we have just described is not axiomatic mathematics. Much of
it is rhetorical rather than deductive. And it goes in a circle. This is typical of
informal mathematical reasoning. When we axiomatize such reasoning, we
choose a particular starting point. We then use the rhetorical reasoning to justify
definitions, and the deductive reasoning to prove theorems.

In Figure 2, the arrows represent the major rhetorical steps and hence the
major potential definitions. The spectators can define odds on the basis of their
long-run knowledge, they can define warranted belief in terms of odds, and they
can define knowledge as very great warranted belief. The circles joined by the
arrows represent the potential starting points. An axiomatic theory can be based
on axioms for knowledge of the long run, axioms for fair odds, or axioms for
warranted belief.

In deference to the weight of popular opinion in favor of the frequentist
interpretation of probability, I began this description of the ideal picture with
knowledge of the long run. But, as we will see in Section 3, it is actually easier to
begin an axiomatic theory with fair odds or with warranted belief.

The fact that knowledge of the long run, fair odds, and warranted belief can
each be used as a starting point for an axiomatic theory should not be taken to
mean that any one of these ideas is sufficient for grounding the theory of
probability in a conceptual sense. The axioms we need in order to begin with any
one of these starting points can be understood and justified only by reference to
the other aspects of the picture. The three aspects of the ideal picture are
inextricably intertwined.

Section 4 will support this claim with the historical record. Historically, the
three starting possible points are represented by Kolmogorov's axioms
(probability), von Mises's random sequences (long-run frequency), and de
Finetti's two-sided betting rates (odds or price). Kolmogorov's axioms were
always intended as a formal starting point, not a conceptual one; everyone
agrees that they must be justified either by a frequency or betting interpretation.
Von Mises did want to make long-run frequency a self-sufficient starting point,
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but his work, together with that of Wald and Ville, leads to the conclusion that
knowledge of long-run frequency is only one aspect of the knowledge that
justifies calling the odds in the ideal picture fair. De Finetti wanted to make
odds or price a self-sufficient starting point, without any appeal to the long-run
to justify the fairness of odds or prices, but this too fails to provide a full
grounding for the ideal picture.

2.4 Conclusion

The situation described in this section is only one version of the ideal picture
of probability. Like the situation described by any physical theory, the ideal
picture has many variations, not all of which are strictly compatible with each
other. It would be unwise, therefore, to claim too much for the story told here.
But the intertwining of knowledge, fair odds, and belief described here occurs, in
one way or another, in all the visions that have informed the growth of
mathematical probability.

3 A formalization of the ideal picture

The preceding section pointed to several possible axiomatizations of the ideal
picture. This section develops a formal mathematical framework in which some
of these axiomatizations can be carried out.

The most fundamental feature of any mathematical framework for probability
1s its way of representing events. Kolmogorov represented events as subsets of
an arbitrary set. The framework developed here is slightly less abstract. Events
are subsets, but the set of which they are subsets is structured by a situation
tree, which indicates the different ways events can unfold. This brings into the
basic structure of the theory the idea of a sequence of events and hence the
possibility of talking about frequencies.

The section begins with an explanation of the idea of a situation tree. It then
shows how an axiomatic theory can be developed within this situation tree. We
start with axioms for fair price, and we translate them into axioms for
probability. We show how knowledge of the long run can be deduced from these
axioms. We conclude by briefly comparing the axioms with Kolmogorov's axioms.

To validate completely the claims made in the preceding section, we should
also develop axioms for knowledge of the long run. This task was undertaken, in
a certain sense, by von Mises, Wald, and especially Kolmogorov, in his work on
complexity theory and the algorithmic definition of probability. We will glance at
this work in Section 4.3, but it would stretch this chapter too far, in length and
mathematical complexity, to review it in detail and relate it to the other ideas in
Figure 2.
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The framework developed in this section is more general than the story about
the fair coin. This framework permits biased coins, as well as experiments with
more than two outcomes, and it also permits the choice of the experiment to be
performed on a given trial to depend on the outcomes of preceding trials. It does
not, however, encompass all versions of the ideal picture. It does not, for
example, allow the spectators to choose the sequence in which they see the
outcomes of trials.

3.1 The framework for events

Situation trees provide a framework for talking about events, situations,
expectations, and strategies.

Situation trees. Figure 3 is one example of a situation tree. It shows the
eight ways three flips of a fair coin can come out. Each of the eight ways is
represented by a path down the figure, from the circle at the top to one of the
eight stop signs at the bottom. Each circle and each stop sign is a situation that
can arise in the course of the flips. The circle at the top is the situation at the
beginning. The stops signs are the possible situations at the end. The circles in
between are possible situations in which only one or two of the flips have been
completed. Inside each situation are directions for what to do in that situation.

/ \
/ HO/\Q
VAr /v N N
SIS

Figure 3. A situation tree for three flips of a fair coin

Figure 4 depicts another situation tree, one that involves several different
experiments. The first experiment is a flip of a fair coin. Depending on how it
comes out, the second is either another flip of a fair coin or a flip of a coin that is
biased 3 to 1 for heads. Later experiments may include flipping another fair coin,
flipping a coin biased 4 to 1 for heads, or throwing a fair die. Altogether, there
will be three or four experiments, depending on the course of events. The odds
for each experiment are specified in some way; we specify the bias or lack of bias
for each coin, and we say that the die is fair.
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The ideal picture involves a situation tree like Figure 3 or Figure 4, except
that all the paths down the tree are very long. In each situation, we specify an
experiment with a finite number of possible outcomes, and we specify in some
way the odds for these outcomes.

/N

Figure 4. A more complicated situation tree

Events. An event is something that happens or fails as we move down the
situation tree. Getting heads on the first flip is an event. Getting exactly two
heads in the course of the first three flips is an event. Formally, we can identify
an event with a set of stop signs—the set consisting of those stop signs in which
the event has happened. We can illustrate this using the lettered stop signs of
Figure 5. Here the event that we get heads on the first flip is the set {a,b,c,d} of
stop signs. The event that we get exactly two heads is the set {b,c,e}. And so on.

Notice that for each situation there is a corresponding event—the set of stop
signs that lie below it. This is the event that we get to the situation. It is often
convenient to identify the situation with this event. We identify the situation S
in Figure 5, for example, with the event {g,h}. Not all events are situations. The
event {b,c,e} in Figure 5, for example, is not a situation.

We say that the event A is certain in the situation S if S is contained in A. We
say that A is impossible in S if the intersection of A and S is empty.

11
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Figure 5. Events as sets of stop signs

Expectations. Let us call a function that assigns a real number—positive,

zero, or negative—to every stop sign an expectation.! We call the numbers
assigned by an expectation payoffs. A positive payoff is the number of dollars
the holder of the expectation will receive in that stop sign; a negative payoff is
the number of dollars the holder must pay. Figure 6 shows an expectation that
pays the holder a dollar for every head in three flips.

Let us use upper class letters from the end of the alphabet—X, Y, Z, and so
on—for expectations, and let us write X(1) for X's payoff in the stop sign 1.
Expectations can be added; we simply add their payoffs in each stop sign. The
expectation X+Y has the payoff X(i1)+Y(i) in stop sign i. We can also add
constants to expectation. The expectation X+r has the payoff X(i)+r in i.

An $r ticket on an event A is an expectation that pays $r if A happens and $0
if A does not happen. Figure 7 shows a $1 ticket on the event {b,c,e}. We write
($r,A) for an $r ticket on A.

Suppose you bet $p on an event at odds p to (1-p), where 0 < p < 1. This means

that you pay $p, you will get a total of $1 back if the event happens, and you will
get nothing back if the event fails. Thus you have paid $p for a $1 ticket on the
event. So stating odds on an event is equivalent to setting a price for a ticket on
the event. Saying that p:(1-p) is the fair odds on A is the same as saying that $p
is the fair price for a $1 ticket on A.

The sum of two tickets is an expectation. It is not always a ticket; but
sometimes it is; for example, ($r,A) + ($s,A) = ($(r+s),A).

! This is now usually called a “random variable.” I use the eighteenth-century term, “expectation,” in order

to avoid evoking twentieth-century presumptions about the meaning of randomness.
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Figure 6. An expectation
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Figure 7. A $1 ticket on {b,c,e}

Every expectation is the sum of tickets, but a given expectation can be
obtained as a sum of tickets in more than one way. The expectation in Figure 6,
for example, is the sum of a $3 ticket on {a}, a $2 ticket on {b,c,e}, and a $1
ticket on {d,f,g}, but it is also the sum of a $1 ticket on {a,b,c,d,e,f,g}, a $1 ticket
on {a,b,c,e}, and a $1 ticket on {a}.

In general, gambling means buying and selling expectations. We can think of
this in several ways. On the one hand, we can think of it in terms of tickets on
events. Since all expectations are sums of tickets, gambling boils down to buying
and selling tickets. On the other hand, we can think in terms of the total
expectation we acquire by all our buying and selling. If we buy a collection ®; of
tickets for $r, and we sell a collection @, of tickets for $s, then the net result is
that we have added the expectation

YX - YX -%r+8$s

Xedq Xedy

13
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to whatever expectation we already had.

Strategies. A spectator is free to buy and sell expectations at each step as
the sequence of experiments proceeds. In terms of the situation tree, this means
that she can buy and sell expectations in each situation. The only restrictions
are those imposed by her means and obligations. She cannot pay more for an
expectation in a given situation than she has in that situation, and she cannot
sell an expectation in a given situation if there is a stop sign below that situation
in which she would not be able to pay off on this expectation together with any
others she has already sold.

A strategy is a plan for how to gamble as the experiments proceed. To specify
a strategy, we specify what expectations to buy and sell in each situation,
subject to the restrictions just stated. In Section 2, we said that a strategy could
take the outcomes of preceding experiments into account. This is explicit in the
framework of a situation tree. A situation is defined by the outcomes so far, so
when a spectator specifies what expectations she will buy and sell in a situation,
she is specifying what she will do if these are the outcomes.

A strategy boils down, in the end, to an expectation. The spectator's initial
capital, say $r, and her strategy, say S, together determine, for each stop sign i,
the capital, say X s(i), that the spectator will have in 1. So the strategy amounts
to trading the $r for the expectation Xy s.

The strategy S is permissible in the situation S for a spectator with capital $r
in S (and no other expectations or obligations) only if X s(1) is non-negative for
all 1 in S. Unlike businesspeople in real life, a spectator in the ideal picture is not
allowed to undertake obligations that she may not be able to meet.

3.2 Axioms for fair price

Now let us use the framework provided by the situation tree to develop some
of the possibilities for axiomatization mentioned in Section 2. It is convenient to
begin with fair price. We will formulate axioms for fair price and relate these
axioms to the circle of probability ideas in the way suggested by Figure 2. In
other words, we will informally justify the axioms by the knowledge we claim of
the long run (this is the arrow from knowledge of the long run to fair price), we
will use the axioms to derive rules for probability (this is the arrow from fair
price to probability), and then we will deduce the knowledge of the long run that
motivated the axioms (this is the arrow from probability to knowledge of the long
run).

There are a number of ways to formulate axioms for fair odds or fair prices.
For this brief exposition, it is convenient to emphasize fair prices for tickets on
events.

14
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Let us write Vg(X) for the fair price of the ticket X in the situation S. We will
omit the parentheses when we use the bracket notation for a ticket; in other
words, we will write Vg($r,A) instead of Vg(($1,A)).

Here are our axioms for the ticket prices Vg(X):

Axiom T1. If A is certain in S, then Vg($1,A) = 1.
Axiom T2. If A is impossible in S, then Vg($1,A) = 0.

Axiom T3. If A is possible but not certain in S,
then 0 < Vg($1,A) < 1.

Axiom T4. If 0 <r <t, then Vy($r,A) < V($t,A).

Axiom TS5. If the sum of the tickets X and Y is also a ticket,
then Vs(X+Y) = Vs(X) + Vs(Y)

Axiom T6. If X and Y are tickets, S precedes T, and V1(X) = V(Y),
then Vg(X,T) = V(«(Y,T) .

Axiom T6 extends our notation by using a ticket as a prize in another ticket. The
idea is that (X, T) is the ticket that pays X if T happens and nothing otherwise.
This does not really extend what we mean by a ticket, because the compounded
ticket (X,T) still boils down to a ticket that pays a certain amount of money if a

certain event happens and nothing otherwise. If X = ($r,A), for example, then
(X,T) = (8r,A),T) = ($r,ANT).

The derivation of these axioms from knowledge of the long run begins with an
argument for the existence of fair prices for all tickets. This knowledge of the
long run explicitly includes knowledge of fair odds for outcomes of each
individual experiment, odds that do not change until that experiment is

performed. So we can call $r-p the fair price in situation S of a $r ticket on an
outcome of an experiment that is to be performed in S or later and for which the
fair odds are p to (1-p). (If the experiment is to be performed before S, or only in
situations incompatible with S, then the fair price is either $0 or $r.) Fairness
means that a person breaks even in the long run by betting on these events at
these odds, and that no one can compound bets, over the short run or the long
run, to make money for certain. By buying tickets on various outcomes in various
situations (this may involve buying a ticket in one situation to provide funds to
buy a ticket in another situation), we can put together a ticket on any event, so
we conclude that there are fair prices for all tickets.

The axioms then follow from the idea that one cannot make money for certain
by compounding tickets. Axiom T1, for example, is justified because otherwise
one could make money for certain in S merely by buying or selling the ticket
($1,A). Axiom T5 holds because otherwise one could make money for certain in S

by buying X and Y separately and selling X+Y, or vice versa. Axiom T6 holds
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because otherwise one could make money for certain in S by buying (X,T) and
selling (Y, T) in S and then, if one arrives in T, selling X and buying Y (or vice
versa).

Axiom T3 requires special comment. Strictly speaking, only the weaker
statement that 0 < Vg($1,A) < 1 is justified, but the strict inequalities are

convenient. Allowing equality would mean, in effect, allowing events to have
zero probability even though they are possible. Since our framework is
finite—there are a finite number of experiments each with finite number of
outcomes—there is no need for this.

Axioms T1-T6 are only about tickets. But all expectations are sums of
tickets, and the assumption of fairness implies that all ways of compounding an
expectation from tickets yield the same total price. So every expectation has a
fair price. As it turns out, we can deduce this from Axioms T1-T6 alone, without
appealing to the background knowledge about fairness that justifies these
axioms. More precisely, we can deduce from these axioms the existence of
prices Eg(X) for all situations S and all expectations X such that Eg(X) = Vg(X)
when X is a ticket. We can deduce that these prices add:

fY= 22X, then Es(Y)= 2XEg(X) .

Xed Xed
We can also deduce that
minjes X(i) < Es(X) < maxies X(i), (1)
and more generally that if I1 is a partition of S into situations, then
minte; Ep(X) < Eg(X) < maxrey Ep(X). (2)

Formula (1) says that you cannot make money for sure by buying X in S and
collecting on it when you get to a stop sign (or by selling X in S and paying it off
when you get to a stop sign), and formula (2) says that you cannot make money

for sure by buying X in S and selling it when you get to a situation in I1 (or by
selling X in S and buying it back when you get to a situation in IT).

We can also deduce that strategies are to no avail. More precisely, we can
deduce that if the strategy S is permissible in S for a spectator with capital $r in

S, then Eg(Xy,s) =r. Thus a strategy accomplishes nothing that we cannot
accomplish directly by paying the fair price for an expectation.

3.3 Axioms for probability

We have completed our work inside the circle labeled “Fair odds™ in Figure 2.
Now we move along the arrow from fair odds to probability by using the fair odds
on an event as a measure of warranted belief in the event.
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Actually, we will not exactly use the odds p:(1-p) on A as the measure of our
belief in A. Since we are accustomed to a scale from zero to one for belief, we
will use instead the price p. We will write

Ps(A) = V(1L A), (3)
and we call Ps(A) the probability of A in S.

The following axioms for probabilities follow from Axioms T1-T6 for fair
prices.

Axiom P1. 0 <Pg(A) £ 1.

Axiom P2. Pg(A) =0 if and only if A is impossible in S.
Axiom P3. Ps(A) =1 if and only if A is certain in S.
Axiom P4. If A and B are incompatible in S, then
Ps(A=B) = Ps(A) + Ps(B).
Axiom P5. If T follows S, and U follows T, then
Ps(U) = Ps(T) - Pr(U).
Axioms P1-P5 are essentially equivalent to Axioms T1-T6. If we start with
Axioms P1-P5 and define ticket prices by
Vs($r,A) = r-Ps(A),
then we can derive Axioms T1-T6. It then turns out that
Es(X) = 2 X (@) Pg({i} (4)
€S
for every expectation X.

The fact that we can begin with Axioms P1-P5 does not, of course, make
probability autonomous of the other ideas in the circle of reasoning. Like each of
the other ideas, probability is caught in the circle of reasoning. It can serve as a
formal starting point, but when it does, it uses axioms whose motivation derives
from the other starting points. The only apparent justification for Axioms P1-P5
lies in the long-run and short-run fairness of odds that we used to justify Axioms
T1-T6.

Axioms P1-P5 are quite similar to Kolmogorov's axioms. We will return to
this point in Section 3.5. First, let us travel one more step in our circle, from
probability to knowledge of the long run.

3.4 Implications for the short and long runs

The axioms we have just formulated capture the essential properties of fair
price and probability in the ideal picture, and from them we can derive the
spectators' knowledge of the long run. The details cannot be crowded into this
chapter, but we can state the most basic results.
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One aspect of the spectators' knowledge of the long run is their knowledge
that no strategy, short-run or long-run, can assure a net gain. Since, as we have
already seen, a strategy always boils down to buying an expectation, it suffices
to show that buying an expectation cannot assure a net gain. And this is easy. It
follows from (3) that for any expectation X and any situation S,

if Ps{X > Eg(X)} > 0, then Ps{X < Es(X)} > 0.

If X can pay more than its price, then it can also pay less.

Another aspect of the spectators' knowledge of the long run is that no strategy
can give a reasonable hope of parlaying a small stake into a large fortune. Since
following a strategy in S boils down to using one's entire capital in S to buy a non-
negative expectation X, it suffices to show that the probability of a non-negative
expectation paying many times its price is very small. And this again is easy. It
is easy to show that

Ps{X 2k Es(X)) <t
when X is non-negative. The odds against a strategy for multiplying one's capital

by k are at least k to one.

Finally, consider the frequency aspect of the spectators' knowledge of the
long run. In the case of the fair coin, the spectators know that the proportion of
heads is one-half in the long run. They know something similar in the general
case. In order to derive this knowledge from our axioms, we need to formulate
the idea of a spectator's successive net gains from holding an expectation.

Let Q denote the initial situation in a situation tree, and suppose that a
spectator acquires an expectation X in Q. She holds this expectation until she

comes to a stop sign, but every time she moves down from one situation to the
next, she takes note of X's change in value. She calls this change her net gain.

Her first net gain is

G = Es(X) - Eo(X),
where S; is the situation at which she arrives immediately after Q. Her second
net gain is

Gs = Egy(X) - Es(X),
where S, is the situation at which she arrives immediately after S;. And so on.
The net gains G;,G,,... depend on the path she takes down the tree (because
S1,S,.,... depend on the path she takes down the tree). In other words, they are
expectations. And we can prove the following theorem about them.

Theorem. Suppose the net gains G; are uniformly bounded. In other
words, there exists a constant k such that |Gj(i)| < x for every j and
every stop sign i. And suppose € and § are positive numbers. Then
there exists an integer N such that

18



Glenn Shafer

Pa(

whenever n > N.

In other words, the average net gain in n trials is almost certainly (with
probability 1-8) approximately (within € of) zero. This theorem is one version of
the law of large numbers, first proven by James Bernoulli. For a proof of this
version, see Shafer (1985).

To see what this theorem means in the case of the fair coin, we can suppose
the spectator chooses a number n and bets $1 on heads for each of the first n
trials. Altogether she must pay $n, and she will get back 2Y, where Y is the total
number of heads in the first n trials. So her net expectation is

X=2Y-n.
We have Eq(Y) =% and Eq(X) = 0. The jth net gain from X, Gj, is $1 if the jth

trial comes up heads and -$1 if it comes up tails. And

n
X=26Gj,
J=1
Hence
n
26
an <eg
n
is equivalent to
X <e
n
or
1] €
T TS T

So the theorem says that 1—{, the frequency of heads, is almost certainly close to %

The frequency aspect of the long run in a general situation tree is only a little
more complicated. To derive it from the theorem, we assume that the spectator
bets $1 in each situation on the outcome of the experiment to be performed in
that situation. If we also assume that the probabilities of the events on which
she bets never fall below a certain minimum, so that the possible gains for $1
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bets are bounded, then the theorem applies, and it says that the frequency with
which the spectator wins is almost certainly close to the average of the
probabilities for the events on which she bets.

3.5 The role of Kolmogorov's axioms

Kolmogorov's axioms are similar to Axioms P1-P5, but simpler. The
simplicity is appropriate, because these axioms serve as a mathematical rather
than as a conceptual foundation for probability.

Kolmogorov begins not with a situation tree, but simply with a set Q of
possible outcomes of an experiment. Events are subsets of Q. We may assume,
in order to make Kolmogorov's axioms look as much as possible like Axioms P1-
PS5, that Q is finite. In this case, Kolmogorov assumes that every event A has a
probability P(A), and his axioms can be formulated as follows:

Axiom K1. 0<P(A) < 1.

Axiom K2. P(A) =0 if A is impossible.

Axiom K3. P(A) =1 if A is certain.

Axiom K4. If A and B are incompatible, then P(A=B) = P(A)+P(B).

Here “A is impossible” means that A = &, “A is certain” means that A = Q, and

“A and B are incompatible” means that ANB # . In addition to the axioms, we
have several definitions. We call
P(AN B)

P(AIB) = Nz (5)
the conditional probability of A given B, and we say that A and B are independent
if P(AIB) = P(A). We call a real-valued function X on £ a random variable, we
set

EX)= 2XO P (6)
i€Q
and we call E(X) the expected value of X.

Axioms K1-K4 are basically the same as Axioms P1-P4. Definition (5)
corresponds to Axiom P35, and definition (6) is similar to (4). But the comparison
brings out the sense in which Kolmogorov's axioms do not provide a conceptual
foundation for probability. Kolmogorov himself was a frequentist, and yet the
axioms do not involve any structure of repetition. This is something that must be
added, through the construction of product probability spaces.

Kolmogorov's axioms are justly celebrated in their role as a mathematical
foundation for probability. They are useful even in understanding situation
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trees, for probability spaces, sets with probability measures in Kolmogorov's
sense, are needed to provide probabilities for the individual experiments in a
situation tree. We should not try, however, to use these axioms as a guide to the
meaning of probability. Doing so only produces conundrums. It makes us puzzle
over the “probability of a unique event.” It makes independence seem like a
mysterious extra ingredient added to the basic idea of probability. It makes
conditional probability equally mysterious, by making it seem completely
general—a definition that applies to any two events. Independence and
conditional probability have a role in the ideal picture of probability, and this
role can give us guidance about their use, but all such guidance lies outside
Kolmogorov's axiomatic framework.

The framework provided by situation trees and Axioms P1-P5 does not create
these mysteries and confusions. This framework makes it clear that events do
not have probabilities until they are placed in some structure of repetition.
Independence has a role in this structure; events involved in successive trials are
independent if the experiment performed in each situation does not depend on
earlier outcomes. But we can relax this condition, for successive net gains are
uncorrelated even when the experiment performed in each situation does depend
on earlier outcomes. And we do not talk arbitrarily about the conditional
probability of one event given another; we talk instead about the probability of
an event in a situation.

4. Historical perspective

This section relates the ideal picture described in Sections 2 and 3 to the
historical development of probability theory.

Remarkably, the early development of mathematical probability in the
seventeenth and eighteenth centuries followed a path similar to the path we have
followed through Figure 2, except that it began with fair price as a self-evident
idea, not one that had to be justified by an appeal to knowledge of the long run.
By the end of the eighteenth century, the different elements of the ideal picture
were relatively unified, but this unity was not well articulated, and it was broken
up by the empiricism of the nineteenth century. This break-up persists in today's
stand-off between frequentists and subjectivists. I argue, however, that the
competing philosophical foundations for probability that these two groups have
advanced are fully coherent only when they are reunified within the ideal picture.

4.1 The original development of the ideal picture

We can use Figure 2, starting with fair odds, as an outline of the development
of probability in the seventeenth and eighteenth centuries. The theory of fair
price in games of chance was first developed by Pascal, Fermat, and Huygens in
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the 1650s. The step from fair price to probability was taken during the next fifty
years, most decisively by James Bernoulli. Bernoulli also was the first to use
ideas of probability to prove the law of large numbers, the central feature of our
knowledge of the long run. The final step, from knowledge of the long run back to
fair price, was apparently first taken only by Condorcet in the 1780s. I will only
sketch these developments here. For more information, see Hacking (1975) and
Hald (1990).

The origins of probability theory are usually traced to the theory of fair price
developed in the correspondence between Pierre Fermat and Blaise Pascal in
1654 and publicized in a tract published by Christian Huygens in 1657. The word
probability did not appear in this work. It is an ancient word, with equivalents in
all the languages these scholars spoke. A probability is an opinion, possibility, or
option for which there is good proof, reason, evidence, or authority. But these
authors were not talking about probability. They were talking about fair price.
Essentially, they reasoned along the lines that we have retraced in Section 3.2 to
deduce fair prices for some expectations from fair prices for others. They did
not, however, use knowledge of the long run frequency to justify the existence of
fair price. For them, it was self-evident that an expectation should have a fair
price.

In fact, there was remarkably little talk about the long run in the seventeenth-
century work. Many of the authors played and observed the games they studied,
and we must assume that they all had the practical gambler's sense that fair bets
would allow one to break even over the long run. But the connection between
fairness and the long run was not used in the theory. On the other hand, the
theory did involve repetition. There was always some sequence of play in
prospect, and this ordering of events was used to relate fair prices to each other,
just as we used it in Section 3.2. Situation trees like Figures 3 and 4 were implicit
in the thinking of Pascal, and they were drawn explicitly by Huygens (see
Edwards 1987, p. 146).

From the very beginning of the theory of games of chance, people did want to
use the theory in other domains. Pascal himself may have been the first to do so,
in his famous argument for betting on the existence of God. Even when writing on
this topic, Pascal did not use the word probability, but his friends Antoine
Arnauld and Pierre Nicole used it in 1662 in their Port Royal Logic. In one justly
famous passage, they explained how people who are overly afraid of thunder
should apportion their fear to the probability of the danger. From this it is only a
short step to probability as a number between zero and one, and a number of
people took this step. In 1665, at the age of 19, Leibniz proposed using numbers
to represent degrees of probability (Hacking 1975, p. 85). The English cleric
George Hooper, writing in 1689, used such numbers without hesitation,
sometimes calling them probabilities and sometimes calling them credibilities
(Shafer 1986).
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It was James' Bernoulli who made probability an integral part of the
mathematical theory. In his book Ars Conjectandi, which was published in 1713,
five years after his death, Bernoulli defined probability as degree of certainty.
The theory of fair price could be applied to probability, Bernoulli explained,
because conjecturing is like throwing dice, except that the stakes are certainty.
Just as the rounds you win and lose in a game entitle you to a definite portion of
the stakes, the arguments you find for and against an opinion entitle you to a
definite portion of certainty. This portion is the opinion's probability.

By relating probability to the theory of fair price, Bernoulli set the stage for
deriving properties of probability from properties of fair price. Since fair price is
additive, probability must also be additive. Since fair prices change as events
unfold, probabilities also change as events unfold. This is the substance of the
arrow from fair price to probability in Figure 2. Bernoulli did not work out these

new properties of mathematical probability,? but this was quickly done by
Abraham de Moivre. In The Doctrine of Chances, which first appeared in 1718,
de Moivre established many of the ideas used in probability theory today. He
talked about probabilities of events (rather than about probabilities of things, as
Bernoulli had), he formulated the idea that the probability of one event may
change when another event happens, and he formulated versions of the rules of
additivity and compound probability, our Axioms P4 and P5. The arguments that
he gave for these rules in the third edition of his book (pp. 5-9) were essentially
the same as the argument we used in Section 3 to derive Axioms T35 and T6.
Similar arguments were given by Bayes (Shafer 1982, 1985).

Bernoulli's second great contribution was his law of large numbers, a version
of which we proved in Section 3.4. Bernoulli saw this theorem as a way to justify
the use of observed frequencies as probabilities. This steps out of the ideal
picture that we have been studying, for within that ideal picture, the spectators
know the probabilities, and hence do not need to use frequencies to estimate
them.

Within the ideal picture, the law of large numbers is part of the knowledge of
the long run that can be used to justify the existence and derive the properties of
fair prices. The fair price is the price that will break even in the long run. This
use of the law of large numbers within the ideal picture did emerge in the

' His English contemporaries referred to Bernoulli as James, but it is now more common to use the German

Jakob, because he grew up in German-speaking Basel. But he usually wrote in Latin, where his name is
Jacob, or French, where his name is Jacques. We still call Bernoulli's country Switzerland in English, instead
of choosing among Schweiz, Suisse, Svizzera, and Helvetia. In the same spirit, I call him James.

% It is not even quite fair to say that these properties are consequences of Bernoulli's work, for he made a
looser connection between probability and fair price, one that permitted non-additive probabilities such as
those that appear in the theory of belief functions (Shafer 1978, 1986).
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eighteenth century, but only at the end. Apparently it was first formulated by
Condorcet, in the 1780s (Todhunter 1865, pp. 392-393).

4.2 The disintegration of the ideal picture in the nineteenth century

The eighteenth-century elements of the ideal picture that we have just
reviewed were synthesized at the beginning of the nineteenth century in the work
of the famous French mathematician Laplace, but this synthesis broke up in the
course of the nineteenth century. The break-up can be attributed to the applied
ambitions of the theory, together with the empiricism of the philosophy of
science of the times. The mathematicians who studied the theory wanted to use
it very widely, not just in games of chance, but the empiricism of the times
demanded that the terms of a scientific theory have direct empirical reference.

It is easy to imagine such a reference for frequency, but not for fair price or
warranted belief.

Laplace worked on probability from the early 1770s until 1820, when the third
edition of his famous treatise, Théorie analytique des probabilités, was
published. His most important contributions to probability were mathematical
advances, such as the central limit theorem, that facilitated the use of
probability in the analysis of data. These contributions can be regarded as the
beginning of mathematical statistics (Stigler 1986). We are more concerned here,
however, with Laplace's approach to the foundations of the subject. Here he
emphasized probability itself, as if there were always warranted numerical
degrees of belief that had the properties that De Moivre and Bayes had derived
from the properties of fair price. Traces of those derivations remain in Laplace's
work, but on the whole, he wrote as if probability were a self-sufficient starting
point. One aspect of this de-emphasis of fair price was that the ordering of
events, which was so prominent from Pascal to Bayes, was underplayed. Thus for
nineteenth century readers, who took Laplace as their authority, this ordering
was not an important feature of the ideal picture.

Though he took warranted belief as basic, Laplace integrated it thoroughly
with frequency. He had no qualms about Bernoulli's law of large numbers, which
purported to prove that the frequency of an event will equal its probability. But
as Porter (1986) and Hacking (1990) explain, many later nineteenth-century
writers found the direction of this reasoning troublesome. Most were willing to
accept it in games of chance, where rational beliefs are justified by the same
symmetries that imply equal frequencies. But in other domains, where the
probabilists now wanted to ply their craft, frequency itself seemed to be the only
empirical basis for probability. Beginning in the 1840s, philosophers and
philosophically minded mathematicians of an empiricist bent, especially
Cournot, Ellis, Fries, Mill and Venn, advanced the view that probability should
be defined as frequency. For many of them, proving that frequency will equal
probability was unnecessary and even silly.
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The thesis of this chapter is that a synthesis of frequency and rational belief
is once again possible and desirable. This is because we can afford to go back to
the idea that the theory of probability only applies, in the first instance, to
settings such as games of chance. We can afford to do so because our empiricism
1s more flexible than the empiricism of the nineteenth century in the way it
relates theory and application. We can now take the view that applying the
theory of probability means relating the ideal picture of probability to reality,
and as we will see in Section 5, there are many ways that this can be done.

4.3 The foundations of frequentism

Most probabilists resisted frequentism during the nineteenth century, if only
because it seemed to take aim at the most interesting mathematics in their
theory. By the end of the century, as positivism became dominant throughout
science, probabilists had accepted the idea that probability would ultimately find
its foundation in frequency, but they still struggled to reconcile this with the
structure of the mathematical theory.

A solution of sorts was achieved in the early twentieth century by
Kolmogorov's axioms. This solution simply put a wall between the mathematical
theory itself, which was to be treated axiomatically, and the interpretation and
application of the theory. One could equate probability with frequency by
definition in applications, while still deriving frequency from probability within
the theory.

Few have been satisfied with this, however. There has been a continuing
quest for a deeper frequentist foundation for probability. The most important
milestones in this quest have been the work of von Mises on random sequences,
the critique of his work by Ville and Wald, and the work by Kolmogorov on
algorithmic complexity. (For an overview, see Martin-Lof 1969. For related
recent work, see Uspenskii, Semenov, and Shen’” 1990.)

Von Mises, who began writing on probability in the 1920s, hoped to buttress
the frequency interpretation by establishing the existence of infinite sequences
of heads and tails, say, in which exactly half the entries are heads in the limit,
both in the sequence as a whole and in subsequences. He proposed deriving the
whole theory of probability from the properties of these “random” sequences.

Ville demonstrated that frequency is not a sufficient foundation for
probability, even in von Mises's framework. The existence of limiting
frequencies is not enough to rule out successful gambling schemes. We can
construct an infinite sequence of heads and tails in which half the entries are
heads in the limit (the limiting frequency of heads is one-half both in the whole
sequence and in subsequences selected on the basis of preceding outcomes) and
yet in which an observer can make money by betting on heads, because the
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number of heads is always slightly greater than the number of tails in any finite
initial portion of the sequence.

Wald proved the existence of infinite sequences that (1) have a limiting
frequency of heads equal to one-half for the whole sequence and for many
subsequences, and (2) rule out many gambling schemes of the type suggested by
Ville. In fact, given a countable number of subsequences and a countable number
of other gambling schemes, there exists a sequence that cannot be beaten by a
bettor that uses any of these subsequences or gambling schemes.

In the 1960s, Kolmogorov and others advanced a definition of randomness
that applies to finite rather than infinite sequences. According to this definition,
a sequence is random to the extent that it is complex, where complexity is
measured by the length of the shortest computer program that will generate the
sequence. Kolmogorov presented his complexity definition, just as he had
presented his axioms many years earlier, as a foundation for an objective,
frequency interpretation of probability. As he and others have now shown, the
complexity definition does indeed imply the knowledge of the long run that is
claimed in the ideal picture. It implies both the stability of frequency and the
futility of gambling schemes.

Did Wald and Kolmogorov succeed in providing foundations for a purely
objective conception of probability? The claim to pure objectivity is shaky, for
there are obvious subjective elements in their results. In the case of Wald, the
subjectivity lies in the choice of the countable number of properties that are
demanded of the sequence. A countably infinite set of properties is surely all a
person would want, but they do not make a sequence random from the
perspective of someone else who chooses a property not in the set. In the case of
Kolmogorov, the subjectivity lies in the choice of the computer. Some sequences
can be generated by a short program on one computer but only by a very long
program on another.

The viewpoint of this chapter suggests that rather than minimize these
obvious subjective elements, we should acknowledge them. They too represent
aspects of the ideal picture. They represent the relation between knowledge and
fact in the ideal picture. The countable set of properties (for Wald) or the
computer (for Kolmogorov) represent the spectators. The fact that someone else
may know more than these spectators is beside the point. The point is that these
spectators' knowledge is limited to knowledge of long-run frequencies and
knowledge of their own inability to devise successful betting schemes.
Randomness is a property of the relation between fact and observer.

4.4 The foundations of subjectivism

Belief plays such an important role in the ideal picture that frequentism has
never been universally persuasive, even among those who share the frequentists'
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empiricism. The most vigorous opponents of the frequentists in the twentieth
century have been the subjectivists, such as Frank P. Ramsey, Bruno de Finetti,
and Leonard J. Savage, who have sought an empirical foundation for probability
in the ideas of personal (rather than fair) betting rates and personal (rather than
warranted) degrees of belief. They have argued that a person's personal belief in
an event can be measured by the amount that the person is willing to pay for a $1
ticket on the event.

From the viewpoint of this chapter, this represents an attempt to simplify the
ideal picture. The simplification involves dropping the idea of fairness as well as
the ordering of events that provides the link with frequency. Is this
simplification successful? Can we establish the properties of probability—in the
form of Kolmogorov's axioms and definitions, say—from the idea of personal
betting rates alone? The subjectivists have argued that we can, but when we
compare their arguments with the arguments in Section 3, the holes are apparent.

First, consider the rule of additivity, represented in Section 3 by Axioms T35,
P4, and KS5. Since they did not want to appeal to fairness, Ramsey, de Finetti,
and Savage had to use a very implausible assumption to derive this rule. They
had to assume that the greatest price a person is willing to pay for a $1 ticket on
a given event is the same as the least price at which she is willing to sell such a
ticket. This symmetry is inherent in the notion of fair price; a price cannot be
fair unless it is fair to both the buyer and the seller. But it is not inherent in the
idea of personal price. It is perfectly rational for a person to refuse both sides of
some bets.

The possibility of one-sided betting rates and hence one-sided numerical
degrees of belief opens a space for alternative theories of subjective probability,
in which degrees of belief do not satisfy the usual axioms of probability. One
such theory is the theory of belief functions (Shafer 1990b). The followers of
Ramsey, de Finetti, and Savage, have not neglected to denounce this and other
one-sided theories as irrational, but there is no argument behind these
denunciations.

Second, consider the rule for changes in probability, represented in Section 3
by Axiom T6, Axiom P35, and formula (5). Since they do not assume any ordering
of events, the subjectivists do not explain this rule in terms of personal betting
rates in successive situations. Instead, they talk about called-off bets; the
conditional probability P(AIB), according to de Finetti, is a personal betting rate
for a bet on A that will be called off if B does not happen. This makes it possible
to derive (5), but it leaves unanswered the question of what rates for called-off
bets have to do with changes in probability.

Here, as in the case of frequentism, the foundation advanced by the
subjectivists is basically sound. But to make complete sense of it, we need to put
it back into the ideal picture.
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S5 The diversity of application

In the preceding pages, I have repeatedly asserted that applying probability
theory to a problem involves relating the ideal picture to that problem. This
concluding section briefly reviews some of the ways this can be done.

5.1 Probability models

In the frequentist view, the straightforward way to use probability is to make
a probability model of a real repeatable experiment, a model that gives
probabilities for the outcomes of that experiment. The model can then be tested
by its fit with data from repetitions of the experiment, perhaps after using this
data to estimate some of the probabilities in the model.

Such probability modeling is one instance of the thesis that applying
probability to a problem means relating the ideal picture to the problem. We are
using the ideal picture itself as a model. The question that must be debated is
the extent to which the relation between knowledge and fact that is central to
the ideal picture carries over to the reality being modeled. Do we really have a
probability model, or merely a frequency model? The answer varies. In practice,
we never have as much effective knowledge (knowledge of as many probabilities,
for example) as the spectators in the ideal picture have, and in some cases we
have relatively little. Often the statements we make in probability modeling
relate to the knowledge of some idealized observer, not to our own knowledge. It
is the negative aspects of the spectators' knowledge in the ideal picture—their
inability to take advantage of bets at odds given by the frequencies—that seems
to carry over most often to the practical problem.

It should be remembered that even within the ideal picture, not all
probabilities are interpretable as frequencies. In a situation tree in which the
same experiment is always repeated, we can interpret the probability for an
outcome of that experiment as a frequency, and in general situation trees, we
can interpret certain averages of probabilities as frequencies. But probabilities
for events involving many trials, though they derive their status as fair prices
from probabilities interpretable as frequencies, may not themselves be
interpretable as frequencies. When we elaborate probability models
mathematically by taking limits in the large (infinite numbers of trials) or in the
small (continuous models), we tend to create probabilities that do not correspond
to frequencies in the reality being modeled even if they do seem interpretable as
frequencies in the ideal picture. Matheron (1989) points out that this gap
between model and reality grows even wider when we insist on interpreting time-
series and geostatistical models in terms of imaginary independent repetitions
(see also Stein 1990). By emphasizing that our model is the ideal picture rather
the numerical probabilities, we can avoid this insistence.
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5.2 Probability as a standard of comparison

We often use the ideal picture of probability as a standard of comparison.
This is explicit in some cases, as when we test the performance of experts by
comparing their success with random choice, or when we evaluate or compare
judges who make probabilistic predictions (Bloch 1990). It is less explicit in
other cases, as when we use standard statistical tests to assess whether
additional independent variables should be included in least-squares fits to non-
observational data.

Several authors, especially Beaton (1981) and Freedman and Lane (1983),
have advanced “non-stochastic” interpretations for the standard F-tests in the
case of non-observational data. Their arguments involve the deliberate creation,
through permutation of residuals, of populations of data to which the actual data
can be compared. Without discussing these arguments in detail, I would like to
suggest that their rhetoric can be simplified and strengthened if we think in terms
of a comparison between the predictive accomplishment in the data of the
variables being tested and the predictive accomplishment in the ideal picture of
variables that are irrelevant.

5.3 Randomization

We are all accustomed to computer-generated random numbers. Since the
programs that generate such numbers are as deterministic as any other computer
programs, the numbers are often characterized as only “pseudo-random.” From
the viewpoint of this chapter, however, this derogation is inappropriate. As we
saw in Section 4.3, randomness is not a property of a sequence of numbers in
itself; it is a property of the relation between these numbers and an observer. So
the question is not whether a given sequence of numbers is truly random or not; it
cannot be random in and of itself. The question is what observer we are talking
about. A sequence of numbers generated by a certain program is not random
relative to an observer who is able to use the program to reproduce them. It may
be more or less random relative to an observer to whom we deny (or who denies
herself) this ability.

From the viewpoint of this chapter, we are deliberately creating an instance
of the ideal picture when we generate a sequence of random numbers. When we
use the sequence to choose a sample from a population or to assign treatments in
an experiment, we are deliberately entangling the ideal picture with data bearing
on a practical question, so that probabilities in the ideal picture come to bear,
indirectly, on that question.

We cannot enter here into the debates about the validity of arguments
contrived in this way. I would like to suggest, however, that by explicitly bringing
the ideal picture into the story, we can make these arguments more persuasive.
The i1deal picture itself requires a certain form of ignorance, and creating it
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typically requires some enforcement of that ignorance (not using the program to
regenerate the random numbers, not looking at them, etc.), and hence it is no
additional paradox that entangling this ideal picture with a practical problem
should involve ignoring certain information (which labels were sampled or
assigned to which treatments).

5.4 Argument by analogy to the ideal picture

The i1deal picture, as described in this chapter, always involves some element
of repetition, even if this repetition is not exact. There is some sequence of
events that allows us to bring a frequency or long-run element into the
discussion. How, then, can we apply probability to a problem for which we do not
have a sequence of similar problems?

One answer to this question is that using probability requires creating some
such sequence—some reference class. This is a fair answer, and it has the virtue
of making the deliberate nature of subjective probability judgment clear. When
the reference class is almost completely imaginary, however, it may be more
instructive to say that we are drawing an analogy between the question that
interests us and a question in the ideal picture. We are saying that our
knowledge (and ignorance) about this question is similar to our knowledge about
a certain question in a certain version of the ideal picture. Our evidence about
the question is similar in strength, and perhaps in structure, to knowing the
probabilities in that version of the ideal picture.

Shafer and Tversky (1985) discuss how both Bayesian and belief-function
probability arguments can be seen in this way.

5.5 Conclusion

To use probability; we must relate the ideal picture to a problem. It is obvious
from the examples that we have just discussed that the success we have in doing
this in any particular instance will always be debatable. The ideal picture may or
may not be good enough a model; it may or may not be relevant as a standard of
comparison; it may or may not provide a convincing analogy. This is life. But the
debate in each particular case need not be an empty debate. We can formulate
criteria for judging the excellence of each of these kinds of probability argument.

As Meier, Sacks, and Zabell (1984, pp. 161-164) have pointed out, the real
debate in applied statistics is not between the formulas of the frequentists and
the formulas of the Bayesians. The real debate is between “strict
constructionists,” who would limit the use of probability to those situations
where frequentist assumptions are fully satisfied, and “Benthamites,” who find
the mathematical precision of probability useful no matter how little evidence
they have at hand. The framework of this chapter is designed to focus this
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debate on examples and make it more productive. It provides a common language
in which to criticize and praise both Bayesian and frequentist analyses. To use
this language, the frequentist must go beyond saying that assumptions are or are
not satisfied; she must draw an analogy between her relation with her data the
spectator's relation with the outcomes in the ideal picture. The Bayesian must go
beyond saying that certain numbers represent her beliefs; she must defend the
analogy by which these numbers are produced. This puts both the frequentist and
the Bayesian in the position of discussing the quality of their analyses, not the
ideology that underlies them.

The philosophy of probability advanced in this chapter unifies the frequentist
and subjectivist approaches at a level deeper than the level of axioms. It allows
us to bring together in one framework the unified eighteenth-century
understanding of probability, the frequentist foundations of von Mises and
Kolmogorov, and the subjectivist foundations of de Finetti. It also allows us to
spell out explicitly the different ways we construct probability arguments. It
merits the name given it in Figure 8: the constructive philosophy of probability.
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Figure 8. The constructive philosophy of probability
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