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This article is concerned with the development of the mathematical theory of
probability, from its founding by Pascal and Fermat in an exchange of letters in 1654 to
its early nineteenth-century apogee in the work of Laplace.  It traces how the meaning,
mathematics, and applications of the theory evolved over this period.

1.  Summary

Blaise Pascal and Pierre Fermat are credited with founding mathematical probability
because they solved the problem of points, the problem of equitably dividing the stakes
when a fair game is halted before either player has enough points to win.  This problem
had been discussed for several centuries before 1654, but Pascal and Fermat were the first
to give the solution we now consider correct.  They also answered other questions about
fair odds in games of chance.  Their main ideas were popularized by Christian Huygens,
in his De ratiociniis in ludo aleae, published in 1657.

During the century that followed this work, other authors, including James and
Nicholas Bernoulli, Pierre Rémond de Montmort, and Abraham De Moivre, developed
more powerful mathematical tools in order to calculate odds in more complicated games.
De Moivre, Thomas Simpson, and others also used the theory to calculate fair prices for
annuities and insurance policies.

James Bernoulli's Ars conjectandi, published in 1713, laid the philosophical
foundations for broader applications.  Bernoulli brought the philosophical idea of
probability into the mathematical theory, formulated rules for combining the probabilities
of arguments, and proved his famous theorem:  the probability of an event is morally
certain to be approximated by the frequency with which it occurs.  Bernoulli advanced
this theorem (later called the law of large numbers by Poisson) as a justification for using
observed frequencies as probabilities, to be combined by his rules to settle practical
questions.  Bernoulli's ideas attracted philosophical and mathematical attention, but
gambling, whether on games or on lives, remained the primary source of new ideas for
probability theory during the first half of the eighteenth century.

In the second half of the eighteenth century, a new set of ideas came into play.
Workers in astronomy and geodesy began to develop methods for reconciling
observations, and students of probability theory began to seek probabilistic grounding for
such methods.  This work inspired Pierre Simon Laplace's invention of the method of
inverse probability, and it benefitted from the.evolution of Bernoulli's law of large
numbers into what we now call the central limit theorem.  It culminated in Adrien Marie
Legendre's publication of the method of least squares in 1805 and in the probabilistic
rationales for least squares developed by Laplace and by Carl Friedrich Gauss from 1809
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to 1811.  These ideas were brought together in Laplace's great treatise on probability,
Théorie analytique des probabilités, published in 1812.

2.  Games of Chance

Games of chance and the drawing of lots are discussed in a number of ancient texts,
including the Talmud.  A number of medieval authors, both mystics and mathematicians,
enumerated the ways various games can come out.  But most of these enumerations were
not enumerations of equally likely cases, and they were not used to calculate odds
(Kendall 1956, David 1962).

One genuine precursor of probability theory was Cardano's Liber de ludo aleae.  This
book was probably written in the 1560s (Cardano died in 1576), but it was not published
until after the work of Huygens.  Cardano formulated the principle that the stakes in an
equitable wager should be in proportion to the number of ways in which each player can
win, and he applied this principle to find fair odds for wagering with dice.  Another
precursor was Galileo, who enumerated the possible outcomes for a throw of three dice in
order to show that the faces add to ten more easily and hence more frequently than they
add to nine.  This work also remained unpublished until after the work of Huygens.

Galileo did not comment on the problem of points, but it was the most salient
mathematical problem concerning games of chance during this period.  It was discussed
by Italian mathematicians as early as the fourteenth century, and Pacioli, Tartaglia,
Peverone, and Cardano all tried to solve it.  Tartaglia concluded it had no solution:  “the
resolution of the question is judicial rather than mathematical, so that in whatever way the
division is made there will be cause for litigation.”  But Pascal and Fermat found a
solution, and they gave several convincing arguments for it.

Fermat preferred to solve the problem by listing the ways the play might go.
Suppose, for example, that Peter and Paul have staked equal money on being the first to
win three points, and they want to stop the game and divide the stakes when Peter lacks
two points and Paul lacks only one.  Paul should get more than Peter because he is ahead,
but how much more?  If two more games were to be played, there would be four
possibilities:

Paul wins the first and the second.
Paul wins the first, and Peter wins the second.
Peter wins the first, and Paul wins the second.
Peter wins the first and the second.

In the first three cases, Paul wins the game (in the first two, it is not even necessary to
play for the second point), and in the fourth case Peter wins the game.  By Cardano's
principle, the stakes should be in the same proportion:  three for Paul and one for Peter.
If the stakes are divided now, Paul gets three-fourths.

Pascal preferred another method, the “method of expectations.”  This method relies
on principles of equity instead of Cardano's principle, and it enabled Pascal to solve the
problem when the players lack so many points that listing all the possibilities is
impractical.  Since the game is fair, Pascal said, both players have an equal right to expect
to win the next point.  If Paul wins it, he wins the whole stakes; this entitles him to half of
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the stakes.  If Peter wins, the two are tied; so both are entitled to half of what is left.  So
Paul is entitled to three-fourths altogether.  Extending this backwards reasoning by
mathematical induction, and using the recursive properties of what we now call Pascal's
triangle, Pascal was able to solve the problem for any number of points the players might
lack.  He found, for example, that if Peter lacks four points and Paul lacks two, then their
shares are found by adding the numbers in the base of the triangle in Figure 1:  Paul's
share is to Peter's as 1+5+10+10 to 5+1, or 13 to 3.

1 1 1 1 1 1

1 2 3 4 5

1 3 6 10

1 4 10

1 5

1

Figure 1.  Pascal's arithmetic triangle

The combinatorial knowledge that underlay Pascal's reasoning was richer and less
streamlined than the combinatorics now taught as a foundation for probability.  Pascal
organized much of this knowledge, together with his general solution of the problem of
points, in his Traité du triangle arithmétique, which was published in 1665, three years
after his death (Edwards 1987).

Huygens heard about Pascal and Fermat's ideas but had to work out the details for
himself.  His treatise De ratiociniis in ludo aleae, published in 1657, essentially followed
Pascal's method of expectations.  In one respect, he went farther than Pascal.  He justified
the very idea that there was a fair price for a position in a game of chance by showing that
by paying that price, the player would end up with the same chances for the same net
payoffs that could be obtained in a fair game with side payments.

At the end of his treatise, Huygens listed five problems about fair odds in games of
chance, some of which had already been solved by Pascal and Fermat.  These problems,
together with similar questions inspired by other card and dice games popular at the time,
set an agenda for research that continued for nearly a century.  The most important
landmarks of this work were James Bernoulli's Ars conjectandi, published in 1713,
Montmort's Essai d'analyse sur les jeux de hasard, with editions in 1708 and 1711, and
De Moivre's Doctrine of Chances, with editions in 1718, 1738, and 1756.  These authors
investigated many of the problems still studied under the heading of discrete probability,
including gambler's ruin, duration of play, handicaps, coincidences, and runs.  In order to
solve these problems, they improved Pascal and Fermat's combinatorial reasoning,
summed infinite series, developed the method of inclusion and exclusion, and developed
methods for solving the linear difference equations that arise from Pascal's method of
expectations.  Perhaps the most important technical mathematical development in this
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work was the invention of generating functions.  Though Laplace gave them their name
much later, De Moivre invented them in 1733 in order to find the odds for different sums
of the faces of a large number of dice.  This was the first step in the development of what
we now call Laplace and Fourier transforms.

From the time of Huygens onward there was one important practical application of
this work:  the pricing of annuities and life insurance policies.  Huygens's ideas were first
applied to pricing annuities by Jan de Witt in 1671 and Edmund Halley in 1694.  De
Moivre, in his Annuities on Lives, with editions in 1725, 1743, 1750, and 1752, and
Simpson, in his Doctrine of Annuities and Reversions, published in 1742, extended this
work to more complicated annuities, reversions, and insurance and assurance policies.
This work involved the rate of interest, but otherwise it remained conceptually close to
the work on games of chance.

3.  Probability

Probability—the weighing of evidence and opinion—was an important topic in the
seventeenth century, but it was not discussed in the letters between Pascal and Fermat or
in Huygens's treatise.  The word “probability” did not appear in this work.  For these
authors, the number between zero and one that we now call probability was only the
proportion of the stakes due a player.  They did not isolate it as a measure of belief.

The ambition to apply the new ideas to problems in the domain of probability
developed almost immediately, however.  Pascal himself used these ideas in his famous
argument for believing in God, and the Port Royal Logic, published by Pascal's religious
colleagues in 1662, argued for using the theory of games of chance to weigh probabilities
in everyday life.  Soon the idea of probability as a number between zero and one was in
the air.  The English cleric George Hooper, writing in 1689, gave rules for combining
such numbers to assess the reliability of concurring testimony and chains of testimony.

James Bernoulli formalized the connection between probability and Huygens's
theory.  In Ars conjectandi, published in 1713, eight years after his death, Bernoulli
contended that an argument is worth a portion of complete certainty, just as a position in a
game of chance is worth a share of the total stakes.  Take complete certainty to be a unit,
he said, and then probability is a number between zero and one.  By Huygens's rules, it
will be the number of favorable cases to the total number of cases.

Bernoulli tried to draw the traditional ideas of probability into the mathematical
theory by formulating rules for combining the probabilities of arguments, rules that were
similar to Hooper's rules for testimony but more general.  Bernoulli hoped that these rules
would make probability a widely used practical tool.  Probabilities would be found from
observed frequencies, and then combined to make judicial, business, and personal
decisions.

Bernoulli buttressed this program with his famous theorem, which says that it is
morally certain (99.9% certain, say) that the frequency of an event in a large number of
trials will approximate its probability.  Though Bernoulli proved this theorem rigorously,
he gave only a disappointingly large upper bound on the number of trials needed for
moral certainty that the frequency would be within a given distance of the probability.



5
Nicholas Bernoulli improved the upper bound, and De Moivre, in 1733, accurately
estimated the number of trials needed, using a series expansion of the integral of what we
now call the normal density.  In retrospect, this can be seen as a demonstration that the
binomial distribution can be approximated by the normal distribution, but De Moivre did
not think of it in this way.  He did not have our modern concept of a probability
distribution; he was merely improving on Bernoulli in finding the number of trials needed
in order to be sure that the observed frequency would approximate the probability.

This work of Bernoulli and De Moivre is also seen today as a precursor of the
modern theory of confidence intervals:  De Moivre's approximation allows us to state a
degree of confidence, based on the observations, that the true probability lies between
certain bounds.  This is not the way Bernoulli and De Moivre saw the matter.  They were
aiming for moral certainty, not for some middling degree of confidence.

Bernoulli's theorem and his rules for combining probabilities did not achieve his goal
of making probability a tool for everyday life and judicial affairs.  His rules for combining
probabilities were discussed in textbooks, but not used in practice.  His theorem was
mainly discussed in the context of speculation about the ratio of girl births to boy births.
Yet his program had great philosophical impact.  It put probability, rather than equity,
into the center of the mathematical theory.

The increasing autonomy of probability from equity in the early eighteenth century
can be seen in the contrasting attitudes of Nicholas Bernoulli and his younger cousin
Daniel Bernoulli.  In the 1730s, they discussed what we now call the St. Petersburg
problem.  A person throws a die repeatedly, and he wins a prize when he first gets a 6.
The prize is doubled every time he fails to get a 6; he wins one crown if he gets a 6 on the
first throw, two crowns if his first 6 is on the second throw, four crowns if it is on the
third throw, and so on.  How much should he pay to play this game?  By Huygens's rules,
he should pay an infinite amount, yet no one would be willing to pay more than a few
crowns.  Daniel explained this by formulating the idea of expected utility.  If a person's
utility for money is only proportional to its logarithm, then the expected utility of the
game is finite.  Nicholas could not see the point of this explanation, because for him the
theory of probability was based on equity.  If we are talking about what a person wants to
pay rather than what is fair, then there is no basis for calculation (Shafer 1988).

4.  The Combination of Observations

Though probability had found a theoretical place in the mathematical theory by 1750,
the applications of the theory were still only to questions of equity.  No one had learned
how to use probability in data analysis.  This was true even in the work on annuities and
life insurance.  De Moivre used theoretical mortality curves, Simpson used mortality
statistics, but no one used probabilistic methods to fit models in the way modern
demographers do.

It was work on combining observations in astronomy and geodesy that finally
brought data analysis and probability together.  In the eighteenth century, combining
observations meant reconciling inconsistent equations.  An observation typically yielded
numbers that could serve as coefficients in a linear equation relating unknown quantities.
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A few such observations would give enough equations to find the unknowns.  More
observations would mean more equations than unknowns, and since the measurements
contained errors, these equations would be inconsistent.

Galileo had struggled with this problem, and had vaguely formulated the principle
that the most likely values of the unknowns would be those that made the errors in all the
equations reasonably small, but the first formal method for estimating the unknown
quantities was developed by Tobias Mayer, in his study of the libration of the moon in
1750.  Mayer generalized the averaging of observations under identical circumstances to
the averaging of groups of similar equations.  Another early contributor was Roger
Boscovich, who used the idea of minimizing the sum of absolute deviations in his work
on the shape of the earth, in 1755.  Laplace, in an investigation of the motions of Saturn
and Jupiter in 1787, generalized Mayer's method by using different linear combinations of
a single group of equations.  Then, in 1805, Adrien-Marie Legendre showed how to
estimate the unknown quantities by minimizing the sum of squared deviations.  This
method of least squares was an immediate success, because of its conceptual and
computational simplicity, its generality, and its clear relationship to other methods that
had been used in practice.  It was similar to Boscovich's principle of minimizing absolute
deviations, but easier to implement.  Like Laplace's generalization of Mayer's method, it
entailed solving a set of linear combinations of the original equations, but it gave a
generalizable rationale for the choice of these linear combinations.

Though practical work on combining observations was not influenced by probability
theory until after Legendre's publication of least squares, attempts to base methods for
combining observations on probability theory began very early.  Simpson, in 1755, made
some arbitrary assumptions about the distribution of errors and deduced that the average
of a set of observations of a single quantity is likely to be less in error than the individual
observations.  A number of authors, including Daniel Bernoulli, Joseph Louis Lagrange,
and Laplace, derived methods for combining observations from various assumptions
about error distributions.

The most important fruit of this probabilistic work was the invention by Laplace of
the method of inverse probability—what we now call the Bayesian method of statistical
inference.  Laplace discovered inverse probability in the course of his work on the theory
of errors in the 1770s.  Laplace realized that probabilities for errors, once the observations
are fixed, translate into probabilities for the unknown quantities being estimated.  He
called them posterior probabilities, and he justified using them by adopting the principle
that after an observation, the probabilities of its possible causes are proportional to the
probabilities given the observation by the causes.  This was called the method of inverse
probability in the nineteenth century.  We now call it Bayes's theorem, in honor of
Thomas Bayes, who had enunciated a similar but more obscure principle in a paper
published 1764 (Shafer 1982).

Inverse probability was recognized by Laplace's contemporaries as an important
contribution to the theory of probability.  During the 1770s and 1780s, moreover, Laplace
made great strides in developing numerical methods for evaluating posterior probabilities.
But this work did not immediately bring probability theory into contact with the practical
problem of combining observations.  When applied to the error distributions proposed by
Laplace and his contemporaries, inverse probability produced methods for combining
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observations that were intractable or unattractive in comparison to the established
methods.

This changed after Legendre's discovery of the least squares.  In 1809, Carl Friedrich
Gauss, who considered himself the inventor of the method, published his own account of
it.  Gauss provided a probabilistic justification for least squares:  the least squares
estimate of a quantity is the value with greatest posterior probability if the errors have
what we now call a normal distribution:  a distribution with probability density

f(∆) = 

π
h

e-h2∆2
(1)

for some constant h.  Why should we expect the errors to have this distribution?  Gauss
gave a rather weak argument.  It is the only error distribution that makes the arithmetic
mean the most likely value when we have observations of a single unknown quantity.
Thus the consensus in favor of the arithmetic mean must be a consensus in favor of this
error distribution.

Laplace saw Gauss's work in 1810, just after he had completed a paper rounding out
several decades of work on approximating the probability distributions of averages.
Laplace had originally worked on this problem, in the 1770s, in connection with the
question of whether the average inclination of the planetary orbits to the ecliptic was too
small to have happened by chance.  In the 1780s, he found ways to use generating
functions and the asymptotic analysis of integrals to approximate probabilities for
averages of many observations, and by 1810 he had succeeded in showing that no matter
what the probability distribution of the original observations, probabilities for their
average could be found by integrating functions of the form (1).  This is a generalization
of De Moivre's normal approximation for the binomial; it is the first statement of what we
now call the central limit theorem (central meaning fundamental).

With this recent work in mind, Laplace saw immediately that he could improve on
Gauss's argument for using (1) as an error distribution.  Each individual error would have
the distribution (1) if it itself was an average—the resultant of many independent additive
influences.  The following year, 1811, Laplace also pointed out that Legendre's least
square estimates, being weighted averages of the observations, would be approximately
normal if there were many observations, no matter what the distributions of the individual
errors.  Moreover, Laplace showed, these estimates would have the least expected error of
any estimates that were weighted averages of the observations.  As Gauss pointed out in
1823, this last statement is true even if there are only a few observations.

5.  Laplace's synthesis

The work on the combination of observations brought into probability theory the
main idea of modern mathematical statistics:  data analysis by fitting models to
observations.  It also established the two main methods for such fitting:  linear estimation
and Bayesian analysis.

Laplace's great treatise on probability, Théorie analytique des probabilités, appeared
in 1812, with later editions in 1814 and 1820.  Its picture of probability theory was
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entirely different than the picture that had been available in 1750.  On the philosophical
side was Laplace's interpretation of probability as rational belief, with inverse probability
as its underpinning.  On the mathematical side was the method of generating functions,
the central limit theorem, and Laplace's techniques for evaluating posterior probabilities.
On the applied side, games of chance were still in evidence, but they were dominated by
problems of data analysis and by Bayesian methods for combining probabilities of
judgments, which replaced the earlier non-Bayesian methods of Hooper and Bernoulli
(Shafer 1978, Zabell 1988).

Laplace's views dominated probability for a generation, but in time they gave way in
turn to a different understanding of probability.  The error distributions at the base of
Laplace's approach seemed to the empiricists of the nineteenth century to have a
frequency interpretation incompatible with Laplace's philosophy, and Laplace's own
rationale for least squares based on the central limit theorem seemed to make his method
of inverse probability unnecessary.  In the empiricist view, which became dominant in the
late nineteenth and early twentieth centuries, frequency is the real foundation of
probability.

Laplace's synthesis also came apart in a different way.  Laplace's powerful
mathematics of probability was aimed directly at applications.  Mathematics and
applications constituted a single topic of study.  Today probability has evolved into too
vast a topic for such unity to be sustained.  It is now a rich branch of pure mathematics,
and its role as a foundation for mathematical and applied statistics is only one of its many
roles in the sciences.
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