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A sharp null hypothesis may be strongly rejected by a standard

sampling-theory test of significance and yet be awarded high odds by a

Bayesian analysis based on a small prior probability for the null hypothesis

and a diffuse distribution of one’s remaining probability over the alternative

hypothesis.  This disagreement between sampling-theory and Bayesian

methods was first studied by Harold Jeffreys (1939), and it was first called a

paradox by Dennis Lindley (1957).

The paradox can be exhibited in the simple case where we are testing

θ = 0 using a single observation Y from a normal distribution with variance

one and mean θ.  If we observe a large value y for Y (y = 3, for example),

then standard sampling theory allows us to confidently reject the null

hypothesis.  But the Bayesian approach advocated by Jeffreys can give quite

a different result.  Jeffreys advised that we assign a non-zero prior

probability π0 to the null hypothesis and distribute the rest of our probability

over the real line according to a fairly flat probability density π1(θ).  If the

range of possible values for θ is very wide, then the set of values within a

few units of y will be very unlikely under π1(θ), and consequently the

overall likelihood of the alternative hypothesis,
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will be very small.  It may even be so much smaller than the likelihood of

the null hypothesis,
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that the odds in favor of the null hypothesis,
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are substantial.

We can think of (1) as a way of balancing arguments for and against

the null hypothesis.  Against the null hypothesis is its small initial

probability (small π0) and the unlikeliness of the observation under the null

hypothesis (small L0).  For the null hypothesis is the unlikeliness of

alternative values of θ near y (small π1(θ), leading to small L1).  There is no

strong constraint between the arguments for and against.  No matter how

small π0 and L0 are, a sufficiently diffuse π1(θ) can make L1 small enough

to counterbalance them.

If we are confident of the specified prior distribution—if, for example,

we are working with a series of problems involving θs that are zero about π0

of the time and distributed roughly according to π1(θ) the rest of the

time—then the Bayesian analysis is unassailable, and hence we must reject

the standard sampling theory.  An observation three standard deviations

from the null hypothesis is not adequate to reject the null hypothesis if that

observation is even more unlikely under the alternative hypothesis.  This has

led many authors to suggest that we make tests increasingly stringent as

measurements become more precise relative to the range of possible values



for what is being measured.  We should, for example, lower the significance

level as the sample size grows.  More sophisticated suggestions are made by

Berger and Delampady (1987).

On the other hand, if diffuseness of π1(θ) reflects merely a wide

uncertainty about θ rather than a positive prior confidence that values of θ

near y are likely to occur, the conflict seems to constitute a criticism of the

Bayesian analysis.  If we have no idea how θ arises, then our mere ignorance

cannot justify a skepticism about values close to y so strong as to outweigh

real evidence against the value of zero.  This has motivated non-Bayesian

approaches to weighing the evidence, such as the belief-function approach

discussed by Shafer (1982).
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