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Summary. Dempster's Rule of Combination.

The theory of belief functions is a2 generalization of probability
theory; a belief function is a set function more general than a probability
measure but whose values can still be interpreted as degrees of belief,
Dempster's rule of combination is a rule for combining two or more
belief functions; when the belief functions combined are based on distinct
or "independent" sources of evidence, the rule corresponds intuitively
to the pooling of evidence. As a special case, the rule yields a rule
of conditioning which generalizes the usual rule for conditioning probability
measures, The rule of combination was studied extensively, but only
in the case of finite sets of possibilities, in the author's monograph
A Mathematical Theory of Evidence. The present paper describes the
rule for general, possibly infinite, sets of possibilities, We show
that the rule preserves the regularity conditions of continuity and con-
densability, and we investigate the two distinct generalizations of pro-
babilistic independence which the rule suggests.

AMS 1970 subject Classifications. Primary 60A05; Secondary 62A99.

XKey words and phrases. Belief function, upper probabilities, allocation
of probability, conditioning, Dempster's rule, product measure, cognitive
independence, evidential independence, continuity, condensability,
alternating set function, monotone set function.

: Some of the work in this paper was done while the author was supported
by a National Science Foundation Graduate Fellowship. The work was
completed with support from the General Research Fund of the University
of Kansas, allocations #3991-x038 and #3315-x038,



§1. Introduction.

A function f defined on a power set P(Q) is called a belief function

if f(f) =0, £Q) =1, and f is a monotone of order oo. The author's

monograph A Mathematical Theory of Evidence (1976) studies belief

functions in detail under the assumption that {1 is finite., The resulting

theory is centered on Dempster's rule of combination, a rule for com-

bining two belief functions f. and f both defined on the same power

1 2’

set £(Q), to obtain their orthogonal sum fl &£ which is also a belief

2
function on £(Q). This rule is central because of its intuitive inter-
pretation: if fl and fZ express degrees of belief based on entirely
distinct bodies of evidence, then the operation of forming f1 ¢ :Ez is
interpreted as pooling the two bodies of evidence.

The present paper, which studies Dempts;:er's rule for an arbitrary,
possibly infinite set 1, is a sequel to Shafer (1979 ), which studies
the representation and extension of belief functions on infinite sets.

We freely use the vocabulary, notation and results of that paper.

In preparation for describing Dempster's rule (§6 below), we
adduce two special cases: the rule for forming product belief functions
(§3) and the rule of conditioning (§5). Both these rules generalize thc
corresponding rules for probability measures, and both preserve thc
regularity conditions of continuity and condersability. Like the proof
that the product of two countably additive measures is countably additive,
the proof that the product of two continuous belief functions is continuous
requires a notion of integration--in this case a notion of upper integration,

which is explained in §2. -
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In §§4 and 7 we generalize to the case of infinite sets of possibilities

the notions of evidential and cognitive independence of subalgebras with

respect to a belief function, I-fere, as in the finite case (see Chapter 7
of Shafer (1976a)), evidental independence requires that both the belic{
function and its upper probability function obey the usual rule

P(A N B) = P(A)P(B), while cognitive independence requires only that
the upper probability function obey this rule. The notion of evidential
independence is intuitiveiy retrospective: two subalgebras are evidentially
independent with respect to a belief function if that belief function can be
obtained by combining a belief function that bears on only one of them
with a belief function that bears on only the other. The weaker notion
of cognitive independence, on the other ha.nd,-is intuitively prospective:
two subalgebras are cognitively independent wi;.h respect to a belief
function if combination with a new belief function that bears on only one
of them does not change the degrees of belief for elements of the other;

It should be noted that the study of monotone and alternating set

-functions was initiated by Gustave Choquet (1953); and that the theory

of belief functions is closely related to Chbquet's work; see §2 of Shafer
(1979 ). The theory of belief functions derives, however, from work

by A. P. Dempster (1967, 1968), work which was independent of Choquet's
work and was dire;ted towards problems in statistical inference.
Dempster used the name ''lower probabilities" for the guantities herc
called "degrees of belief," and he jintroduced his lower and upper
probabilities by means of a multivalued mappihg from a measure space,
He alslo described his rule of combination in _terms of such mappings-:

see Dempster (1967). The axiomatic approach taken here and in Shafer



(1976a, 1979 ) permits a rigorous study of the rule in connection with
the notions of continuity and condensability.
- Some of the results in this paper were originally obtained in

the author's doctoral dissertation (1973); some were announced in

Shafer (1976b). See also Nguyen (1978).

§2. Lower and Upper Integration.

Suppose g is a bounded function on P(C) such that g(g) =0
and g(A) = g(B) whenever ACBC Q, Given an extended real-valued
function @ on 1, we set |
© 0
G(o) =§ gl@ ™ (x, o] )dx-S(g(Q)-g(¢-l(x. @] ))dx (2.1)

0 -0

whenever at least one of the integrals on the rigl;xt-hand side of thi;
equation is finite. When @ is non-negative, this reduces, of course,
to
@
G(p) = § £(9 (x, ] )dx . (2.2)

0

This functional has been studied extensively, though usually with an
emphasis on some topology for f2; see, for example, Choquet (1953,
pP. 265) and Huber and Strassen (1973),

Notice that the set (x,] could be replaced, in (2.1) or (2.2),
by the set [x,®]. For this can change the integrands only at their
points of discontinuity, and since they are monotonic, there are only
a countable number of these, Nc;tice also that if AC Q and XA is
its characteristic function, then G(XA) = g(A); hence the functional
G may be thought of as an extension of the set function g. Moreover,

if g agrees with a measure U on some O-algebra G of subsets of 0
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and @ is measurable with respectto G, then G(p) is the integral
of ¢ with respectto H .

We shall be mainly concerned with the case where @ is non-
negative, Accordingly, we denote by 3t the set of all non-negativce

extended real-valued functions of ) and note the following facts:

(1) 1f o€ d" and a >0 then G(ap) = aG(p) .
(2) 1f cpl.q>2€ &t and cpl P, » then G(cpl) sG(cp?_)
(3) If g(ﬂAi) lim g(A ) for every decreasing sequencc
-1 i—o
Ay b= AZD ... in P(Q), then G( hmq) ) =lim G(cp ) for every
' i—~co i—oo
decreasing sequence {cp] in &t

(4)‘ If g(UA ) =1lim g(A ) for every increasing sequence
i—~oo

AC AZC ... in £(Q), then G( lim P, ) =lim G(Q) ) for every in-
i~ o i—~o
creasing sequence {q:i} in &t .

(5) If g is monotone of order 2, then
G(o,) + G(@,) = G, +P,)
for all D). Py € ¢t
- (6) If g is alternating of order 2, then
for all @ ,p, € &" .
The first four of these facts are easy to verify; (5) and (b)

were proven by Choquet (1953, pp. 287-288).

A function ¢ € % is called # simple function if it can be written

in the form
- - n =
Q= ?la Xa, : (2.3)
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where n 2], each Ai is a subset of Q, XA is the characteristic
i
function for Ai » and each a; is a non-negative real number, Every

simple function @ in ¢t can be expressed in the form (2. 3) with the

Ai nested,

Theorem 2.1. Suppose @€ &% is given by (2. 3).

(i) If the Ai are nested, then

n
G(p) = T a, g(A)) .
i=1

(ii) In general,

Gl)= T (maxa,) T ol gy Ay, C(2.4)
Ic{1,...,n} ie1 ‘'JcI1 i€ JUT
1£8 '
here 1 denotes the complement of 1 with respect to {1,... ,n] , and

we use the convention that U A, =§.
i€g

Proof: (i) We may assume without loss of generality that

A1 o AZ D.e. 2 An . And in this case the result follows from the

fact that
r
-1 { k-1 k
= =x<
® (x, o] Ao ? a, Ex }:7 a,
i=l i=1
n
-g Y a.=x<o .

—
[
1
ot
(™)

(ii) We may assume without loss of generality that the a, are

. = = = =
ordered: O_al-azé. . .;an. Set b1 a,

i=2,...,n. Andset B, = U Aj, i=1l],...,n. _Then

and b. = a, -a. for
i i i-l

J=1



n n
Q= ?1 a, XAi = i‘fl bixBi . And since the Bi are nested,

n
G(p) = T b, g(B,)

i=l

n
=iZ;41ai(g(Ai UA, U ... UA )-g(A;  U...UA)). (2.5)

(Since U A = § , the coefficient of a is this last sum is simply

i€
g(An) g(@) = g(An).) But since the a;, are ordered,

z (maxa,) Z (- 1)|Jl+lg(U{A|1€JUI})
1c{I,...,n}i€1l Jc1 ,

= Ta, > > (-1)|J|+1g(U{A.|j ¢ JUTUTTT)
i=1 ‘1c{1,...,i-1} Jo1u {i) ) :

n
_zla Kc{i T . (JLEJKA NS {-nlUEDNK[ A ey Ly, IU{;.}cx} (2.6)
= se eop Tl ' .

The sum

23{(-1)“IU (1DTK|+1 IIC {1,...,+:1ETU Gl € K]}
-5 INRIHEND I g g eie .. il
is empty unless K2 {i+],...,n}, in which case it becomes

o -l +HENE} 1 l Jc{1,...,i-1} N K}

0 if {1,...,i-1l} NK#Y

1 if K={i, i+l,...,n}

-1 if K={i+l,...,n}.
o

(2.6) reduces, therefore to (2. 5). _ z



-y -

Suppose f is a belief function on P(f2) and f is its uéper
probability function. Then we can extend both f and ' to functionals

by (2.1); that is to say, we can set

[e o]
f(p) = S f(cp"l(x. o] Ydx -S(l-f(¢-1(x, o] ))dx (2.7)
0 -0 ‘
and
. oo 0
£ () = Sf*(cp'l(x. o] )dx-f(l-f*(qa'l(x. ] ))dx . (2.8)
0 -

Notice that f*(cp) = -f(-9). We call (2.7) and (2. 8) the lower and upper

integrals, respectively, of @ with respectto f. We see from (5) and
(6) above that these 'integrals! are subadditive and superadditive,
‘respectively; if f is continuous, then they are countably so,.
Notice that when f° is an upper probabiiity function with

a llowment { : £(Q)—7M, formula (2.4) becomes transparent; it says
simply that

f(z a;Xp )= z (maxa)u(/\L(A)-VQ(A)) (2.9)

=1 i Ic{l,...,n}i€1 ' eI i€ :

(Here our convention'is that V M, =A.)

ieg

§3. Product Belief Functions.

If given evidence supports a given proposition A to degree s)»
and other evidence supports an -unrelated proposition B to dggree
S5 then to what extent does the pooled evidence support the con-
junction ANB? A common-sense answer is $)S5 - (See §4.4 of

Shafer (1976a).) And this simple idea can be applied to whole belief

functions,
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Suppose, indeed, that fl is a belief function on P(Ql) and

f

> is a belief function on P(QZ). Define f on

" e={aAxBlacn BcQ,}cr xn

1} 2)

fo(A X B) = fl(A)fz(B) R (3.1)

Theorem 3.1. fo is a belief function.

Proof: For-i=1,2, let (7f(i ’ ui) be a probability algebra and let

T, P(Qi)-.mi be an allocation of probability for fi . Let 7= 7]11x7722
be a product algebra, with product measure M = ul X “2 . And set
p; = hio T where hi is the canonical homomorphism of 7/‘ti into

M . (See Kappos (1969).) Notice that p; maps P(Qi) into 7, and

f.i =y P - And
H(M; A M) = BH(M,)H(M,) (3.2)

whenever Mi is in the subalgebra of 7 generated by pi(P(Qi)), i=1],2.
(The relation (3.2) will be used rep‘ea.tedly in this paper. Noti.ce that
it implies in particular that the two subalgebras are independent: if |
M,; A MZ = A, then either M, = \. or M, = fs.9)

Define Po : €=M by po(A X B) = PI(AM pz(B) . Then Po is
an allocation of probai:ility, and _since fo ERURY po , it follows that fo

is a belief function.

Let us denote by f the canonical extension of fo to the algebra G

generated by the multiplicative subclass €. Intuitively, the partial



beliefs expressed by { are appropriate when the evidence concerning
Ql X ), can be divided into two distinct and totally independent bodies

of evidence, one of which is relevant only to 2, and corresponds to

1

£ and the other of which is relevant only to Q2

and corresponds

1° 2

to fz,

Since the domain of f is an algebra, the domain of f* is this
same algebra. And, quite remarkably, £ obeys the same multiplicative

rule as f.

Theorem 3.2. If AC ﬂl and BC QZ , then

f(A X B) = £ (A)L,(B) (3.3)
and

£ (AXB) = £(A)L,(B) (3. 4)

Proof: f is overtly defined to make (3. 3) true. To prove (3.4),

consider the canodnical extension of P, to G, which we denote by

p. We have

p(C) =V {p (AN P, (A)|A C0 A, €054 XA, CC }. (3.5)

forall CE€G . Ifwefix AcCQ and BC QZ’ the" another pair of sets

1

AjcQ and A, C QZ will satisfy A, X A, CAX B if and only if |

A.CK or A,<B. Hence (3.5) yields

| 2
p(AX B) = pl(K)v 92(1_3).

This is equivalent to

ClA X B) = (A)A ,(B), (3.6)
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where (, Cl and CZ denote the allowments for PsPy and Py

respectively; (3.4) follows by (3.2). =

By evaluating the measure of the right-hand side of (3.5), one
can obtainan explicit though unwieldy formula for { in terms of Il and

f One can also easily derive from (3. 5) the corresponding formula

2 L]
for (C:

- Cta) = LG APV C(AL) A, € 054,20, 5AC(A xQ,)U(Q) X AL (3.7)
Notice also that these formulae remain valid for the extensions of ps

and f_ toall of £(Q).

§3.1. The Preservation of Continuity and Condensability.

Lemma 3.1, If Al X B1 sle oo ,An X Bn are elements of £, then

g _

BV GAINL(B)) = T £(U AMAL(B)-Y L(B.)) . (3.8)

:1=1gl 2 e e 1c{1,...,m}ﬁ jer 1 qer 2 Y ger 4?
Iff
Proof:
. i+
p(.\=/1 Ly (A AL, (B;)) -Ic{l;.} " (-1 u(i,élt..l(Ai)/\ £5(B;))
1

= v -y A AN A LB
IC{l,;.g,n}( ) u(i/él 144 jer ¢ 1
I

I BN L L W R W TPW)
1c{l,...,n} RCI i€R

&
19 1£¢
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[ 2 (- 1)|S|+1£*( U B,)]

1€S
Ii‘ﬁ
= ) (U ANEU B 1yIRI+[8] (i
c{1,...,n} ' i€R i€S IC{I...n}
SI‘F‘ RUSCI
But
0 if RUS#{1,...,n}
):(-l)m"'l f
1; {J.é.zrlx} L( 1y (-1 )-n+1=(_1)-|R|-|S|+[RF-Sl+1 if RUS = {1,....n}).
So
o IR NS|+1
H(V L(AIAL (B.) = T f1( U A)f(U B.)(-1)
o1 130 T2 poseqn,...on)tier 1 Zies
R,S7p
RUS={L...,n}
=z fuay seNRgC U oBy) .
Ic{}....n} Lie1r ¥ gc1 ZiEJUI’ i
1§ -

= z f(U A)H(/\QZ(B) VQZ(B))
IC{l,...,n} i€l i€l i€T

1£7

Theorem 3. 3.

(i) 1f fl and fz are continuous, then sois 1,

(ii) If f1 and fz are condensable, then so is f .

Proof: (i) Suppose fl and fz are continuous, To show that f is

continuous, we must show that
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LU Ay =\§L(Ai)

whenever Al ’AZ ,+.+ is a sequence of elements of @ and UAi €aq.
i
And since G consists of finite unions of elements of £, this will
follow if we can show that
t(A x B) =V{(A; X B,),

b

or (see (3.6) above) that

L(A)A L,(B) = V L (A) AL, (B,) pied m(3.19)
1

whenever A X B, A1 X Bl ’ AZ X IB2 »++. are elements of £ and
AXB=UA,XB.".
i 1 i
Notice that the sequence A1 X B1 ’ Az X B2 y+e. in (3.9) can
be replaced by a disjoint sequence C1 XD1 ’ C2 X D2 y «++ such that
A XB=U Ci X Di and such that each Cj X Dj is contained in somc¢
i

Ai X Bi . And since LI(E)/\LZ(F) = LI(G)/\ {.,Z(H) whenever EXFC G X H,

we will have
L, (A)A L,(B) E VL (A)A L,(B;) 2 VL (CA Ly(D;) .
. i i

In order to prove (3.9), it suffices, therefore, to show that the right-
hand side has measure greater than or equal to that of the left-hand
side under the assumption that the Ai X Bi are disjoint.

- On the assumption that the Ai X Bi are disjoint, we have

(e o]
XA XB = ._z XA. XB . And since fnax XA. =X U for every fu_uh-
i=l i i i€l i i€1 Ai

subset I of natural numbers, we may apply (2. 9) to obtain



£ (X gy (0) = £ (X , (W)X 5) = f.,_('z:xA (“i)XB)-B;Pf (zle (o), )

= sup z X (w)u(/\L(B)\/L(B))
n IC{I;Z..ﬁ”n] lleJIA ! i€ 2 i€l 2
1
for all wle Ql, or

£5(X )X, = sup b X M( A L(B.)- V_L,(B.)),
27BTA n Ic {l,...,n} UAJ. i€l 2 i€T 2

Irﬁ

the ‘supremum being over an increasing sequence of positive functions

on Ql . Hence
ML (A)AL,(B) = H(L (A)H(S,(B))

= £ (A) £55(B) = £(x,) & (Xg)

_
= £ (5 (Xg)X )
=supfi( T X H(A L,(B.)- V_L,(B)))
" n IIC{l,....,n} LEJIA:L i€1 i€71
19
Ssup T T(U AQH(A (B V_L(B))
n Ic{1,. ..,n}1161 i€l *2lPs i€T 21
1§

=wV L(A)A LZ(B ) -

i=1

(ii) Suppose fl and fz are condensable, and consider an

element A = U A xB in €@ . We have
i=1
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n
way=v | ( VL Y, ]
() i=1[ oLy ML Y ey
i ) BT
_ |
v .V (& (fay DAL, ({w, )

i=1(w) ,) € AX B,

= A% L( {wl ’ wz} )
(u)1 ,wz)é A
So for every € > 0 there is a finite set B € G such that f*(A)-I*(B)< €.

And hence, by Theorem 5.1 of Shafer (1979 ), f is condensable, =

Let us call the canonical extension of f to P(Ql X QZ) (Which
js also the canonical extension of fo to f-’(Q1 X QZ')) the product of
f1 and £2

are condensable, then fl X fz is also condensable; for since the

; we shall denote it by fl X fz . Notice that if f1 and 1'2

algebra G includes the cofinite subsets of - the canonical
extension of the condensable belief function f to P(Ql X QZ) coincides
with the canonical condensable extensions--it is, in fact, thé only
condensable extension. (It is also the canonical condensable
extension of .fo to P(Ql X QZ), but not the only condensable extension

of £, to F’(Q1 X QZ).) However, if fl and fz -are merely continuous,

0
then the canonical extension fl X fz may fail to coincide with the
canonical continuous extension of f and hence fail to be continuous.
(This is clear fromm Theorem 3.4 below.) So whenever fl and fz

are continuous we will call the canonical continuous extension of

to F’(Q1 X Qz) the continuous product of fl and £2 , and denote it by

X £ Notice that £ ;( {. can also be described as the canonical

172" 1 2

continuous extension of fO to P(Ql X Q).

f
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§3.2. The Relation to Measure Theory.

The product belief function generalizes the usual idea of a

product probability measure.

Theorem 3.4, Suppose (Bi is an algebra of subsets of Qi » 1=1,2.

And set

n
@B = =1
{iL=JlAi xB;lnzl; A €8, B €6,)},

(i) Suppose Pi is a finitely additive probability measure on
G%. , 1=1,2. ‘Let Pl X P2 denote the product measure on 8, and
let“ Pl* , PZ* and (Pl X PZ)* denote the respective inner contents

(= canonical extensions) for these measures. Then P# X Pz-n» = (P‘1 X PZ)'"’ .

(1i) Suppose (Bi is a O-algebra and Pi is a countably additive

(= continuous) probability measure on (Bi » 1i=1,2, Let P1 X P2

denote the product measure on ®, and let P.%, P_# and (P1 X P

1 2 2)-u~

denote the respectiveinner measures (= canonical continuous extensions)

for these measures, Then P.# X P

1 2% = (P X Poly

Proof: We will prove {i); the proof of (ii) is similar. We retain thc

notation of the preceding discussion, with Pl* and PZ* in the roles

of fl and fz . In particular, we denote (Pl* X Pz*)IG. by f.

First notice that f{, f* and P1 X P2

if A€ G’l and B € GZ » then they all assign the value % (A)PZ(B) to

all agree on ® ., Indeed,

AXxB, Andif A, X Bl »eoes A'n X Bn is a finite disjoint collection

1
of such rectangules, then the additivity of Py and P2 implies that

the LZ(Ai)/\ (.,Z(Bi) are disjoint, whence
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PyXPplUA X By) = B P)(A)P,(B,) = Tu(L(A)AL,(B,)

1

1
= (VL (A,)AL,(B) = WL(UA, X B,)
1 1

3
=£(L;AixBi)

It follows that £ and P1 X PZ agree on B; since I-"1 X P2 is

additive, they therefore both equal f.

Now (P1 X PZ)* is the canonical extension of Pl X P2

from & to P2, X 0,), while Py X P,y is the canonical extension

of £ from @G, which contains @, to b’-"(Q1 X QZ). It follows that

e (Py X Py)y 2Py X P (3.10)

2*

and that they are equal if they are equal on G . We shall show that
they are equal on G by showing that their upper probability functions
are equal on G--i.e., that (P, X PZ)* [ £ .

By (3.10), (P, x P,)*|a 2 £, So it suffices to choosc
A=U A XB; in G and ¢ >0 and show that (P X P,) (a)-1(A) <c.

i=l
But ’

(P, X PZ)*(A) = inf{P, X P,(B)|Ac B €®);

so it suffices to exhibit an element B € 8 such that AC B and

P XPZ(B)—f*(A)<e. We_choose Cl,...,CnEC?.l and D],...,DnEG.2

|
#* € 3 €
such that C,2 A,, D, > B;» P,(C))-P, (Ai) Sar= and PZ(Di)-PZ(Bi) <=z

n
and we set B =U CiXDi‘ Then ACBESB,
i=l

#* * . 3t 3* .°
f (Ci X Di)-f (Ai X Bi) = P].((Zi)}_?‘.':(DJ.‘)-P1 (Ai)PZ(Bi) : =
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and hence, by Choquet (1953, p. 172),

P, X P,(B)-f (A) #(B)-f (A)

1

1}

n .
I It
i2=:1 [£(C, xD,)-£ (A, x B,)]

=

§3.3. Tonelli's Inequality.

VWhen fz is a belief function on QZ and AC 01 X Qz , we denote

by f;(A) the function on Ql given by
i
£ (A)(w)) = £ ({w, |(w),w, € AD) .

Theorem 3.5, If fi is a belief function on P(Qi), i=1,2, then

#* * %
(f, x £,)7(A) 2 £ (£(A) (3.11)
for all AC Ql X QZ . If fl and ‘{2 are continuous, then
€, % )% = Sy : (3.12)
1 2 1YV 2 :

for all AC Ql XQZ .
n

Proof: First consider an element B€ (G . We can write B = UAi X Bi ,
i=l

- where the Ai are disjoint. In this case
n
3 #*

So by (2.9) and (3. 8),
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* 3
f. ({,(B)) = z (maxf(B))p(/\g(A)-Vg(A))
152 (15 0} ey @ i€l i€T

17

S z o L’ 13) H( A L)(A)- \/ L.(A))
={1,...,n} 2 i€l 1145) 114
n7 ¥

- *
= (f1 X fz) (B) .

And we find the value of (f1 X fz)* for an arbitrary subset A of

Q, x QZ by taking the infima over all B € G such that AC B :

(£, % £,)"(A) = inf(f; x £,)%(B) & inf£) (£3(B))

2 £ (inf£3(B)) & £ (f,(A) .

So (3.11) holds.

Now suppose fl and fz are continuous, and let C~i denote
the subset of (1) obtained by closing G under countable intersections.
An element B of G can always be represented as the union of an

increasing sequence BIC BZC ... of elements of G; and

(f sz) (B) =lim (f sz) (B ) al:.m f (fZ(B ))= f (f (B)).
i—~co ——
Since the value of (f; X £2)* for an arbitrary subset A of Q X 02

is found by taking the infima over all B € G such that AC B, (3.12)
a

follows,

In the case where fl and £2 are measures and A is measurable,

Tonelli's Theorem (see, e.g., Bartle, 1966, p. 118) says that (3.12)

holds with equality. As the simple example below demonstrates, onc

cannot expect equality in the case of belief functions.
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Example, Set Q = {a,b} and Qz = {c,d}. Let £ be the vacuous
belief function on Ql and let fz be the probability measure on QZ
that assigns probability li to eachof ¢ and d. Let A={(a,c),(b,d)}.
Then the function f;(A) is identically equal to the constant 17, and

h Fifan =L, But (£ x £)%(A) =1
ence 1(2( ))'2’0 u (lx 2)( )‘0

§4. Evidential Independence,

The notion of product belief functions can be immediately
generalized to the case of belief functions defined on independent
subalgebras of an algebra of sets. Such a generalization is of interest
primarily because it affords a convenient notation for working with
subsets qua propositions, especially when one passes from one algebra
to another. In this section we exploit this notational advantage to study

the notion of evidential independence,

Recall that two subalgebras G‘.l and G, of an algebra O of

2
subsets of a set (0 are sa&ld to be independent if § £ A € G, and

§ #BE€Q, imply that ANB £# . (Equivalently: if A€G,, B€G,,
and AC B, then either A = or B =Q.) Let us notice how the
construction of the product fl X fZ generalizes to the case where

f. is a belief function on Ci.1 and f2 is a belief function on Gz . We

1

set

e={ANB|AEG :B€G,}q,

notice that a non-empty element of € is uniquely expressible in the

form AN B with AGGl and BGGZ, and define f_on € by
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fo(A N B) = fl(A) fZ(B) .

The construction of Theorem 3.1 can then proceed; we find that fo
is a belief function and define f1 X fz to be its canonical extension
to G. Notice that (3.5), the formula for the allocation p for f1 X fz ,

becomes

P(A) =V {p(ADAP,(A,)|A €G 1A, €0,;A NA,CA) (4.1)

and (3.7) is similarly modified. The product fl X £2 is an extension
of both £, and f,: (f X fz)la1 = fl and (f xf2)|a2 =f, .
Theorem 3.2 also continues to hold, but now the conclusions

can be written

f(A N B) = f(A){(B) (4.2)
and

(A N B) = £(A)*(B) (4.3)

for all A € Gl and B € 0.2 , where we have written { for f1 X fz .
And in the case where the algebra 0 is generated by €, we obtain
a converse to Theorem 3.2,

Theorem 3.1, Suppose f is a belief function on an algebra 4

of subsets of 2 set (1, suppose 61 and GZ are independent subalgebras
of G, and suppose (4.2) and (4. 3) hold for all A € Gl and B € GZ )

(i) If G is the algebra generated by G, U Gz » then
f=(£]a)) x (£]G,).

(ii) If f is condensable, Gl and G,z are complete, and G

is the complete algebra generated by Gl V) 0.2 , then f = (f[Gl) X (flG.z).



Proof. (i) Let p:G—7M be an allocation for f. If A € G.1 and
B'_E GZ , then
3 R +* H
1-£(A U B) = £(AN B) = f (A) (B)
= (1-£(A))(1-£(B))

= 1-f(A)-{(B)+f(A N B),

or
f(A U B) = {(A) + {(B)-f(A N B),
or
i (p(A U B)) = H(p(A)V p(B)) .
Hence

: p(A U B) = p(A) V p(B)

for all AEG.l and BEGZ.

(4.4)

Since G is generated by G.1 U GZ , an arbitrary element A €0Q

can be written in the form
A = (AIU Bl) nNn... 0N (AnU Bn) .
with the A, in (3.1 and the Bi in G.Z . Using (4.4), this yields
p(a) = [p(A) Ve(BDIA ... Alp(AV p(B,)]

% [ Apa)A IE\TP(Bi)]

Ic{1,...,n} i€l i
= VvV p( N AN ﬂ_ﬁi) .
1c{l,...,n} i€1 ' €T
(Here we use the conventions that N A.=Q and A Mi = "V.)
ieg ? ieg
But

N A.N0 N B.cA
jer ' ieT ?

for 21 1< {1,...,n}. Hence




p(A) = V{p(A; NA,)|A €C ;A €G, 5 A NA,CA}

for all A € Q. Itis easily verified that the measure of the right-hand

side of this equation equals the measure of the right-hand side of

(4.1)--i.e., that f£(a) = (£]a;) x (f[a,NA) .

(ii) Since the algebras are complete, they are isomorphic to
power sets, In fact, we can assume, without loss of generality, that

[N

G is a power set P(Ql X ﬂz) and G'i is the subalgebra of S”(ﬂ1 X ﬂz)
corresponding to P(Q,)--i.e., a, = {A x Q2|A c Ql} and

G, = {Ql' X B|Bc Qz}. Let G_- denote the algebra generated by

Ci.1 X (12;
But Go jncludes all cofinite subsets of Ql X QZ and hence a con-

then by part (1) of the theorem, f[G = ((f[&l) X (£ | a,)) la, .

densable belief function on F’(Q1 X Qz) is uniquely determined by its

values on G_ . It follows that f = (f lap x(f]a,). o

The independent subalgebras G.l and Gz are called evidentially

independent with respect to f when (4.2) and (4.3) hold, As the

theorem demonstrates, the name can be interpreted to mean that the
evidence affecting G.1 is (or at least could be) independent of the
evidence affecting G.z . Notice that-evidential independence reduces

to the usual notion of "probabilistic independence' when { is a pro-

bability measure.
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§5. Dempster's Rule of Conditioning.

Suppose we begin with a belief function { on £(Q) and then
obtain new evidence whose precise and full effect; insofar as it bears
on 01, is to show that the truth must lie in a certain proper subset
A of.Q . How should we change f{ in order to reflect this new
evidence? The idea that each of our degrees of belief represents the
measure of a portion of our belief readily leads to an answer to this
question.

Recall that if p :P(2)—% is an allocation for f, then the
elements of M are thought of as portions of our belief or as "probability
masses'"; p(B) is the total portion of belief committed to BZ i, and
its measure H(p(B)) = f{(B) is our degree of belief in B. When we
consider how new knowledge of the truth of a particular subset A
should affect how we commit these portions of belief, our first thought
is that p(B), the portion of beliei previously committed to B, should
now be committed to B {1 A. To put it another way, we should now
commit to B all the belief previouslyi committed to any subset

cc suchthat CNACB. Since
u{cca|c~"A=B}=B.A,

this comes down tc; saying that we should commit to B all the belief
prew’.Ousl; committed to B . A --i.e., we should commit to B the
probability mass p(BU A), of measure £(B NAa).

The difficulty with this suggestion lies, of course, in the presencce
of the probability mass p(A), previously committed to A, which we

now know to be false. It certainly is not appropriate to commit p(A)
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‘to ANA =@, as the preceding paragraph suggests. It seems more
appropriate {(and consonant with the usual intuitive explanation of the
Bayesian treatment of "'conditional probability") to discard this
particular probability mass and to renormalize the measure of the
remainder so as to bring its total measure back up to u nity. (This
means multiplying the measure of each remaining probability mass
by the inverse of the measure of the total mass remaining--i.e., by
(1-£&) )

Thus we arrive at the following prescription: we commit to B
not the probability mass p(B U A) but rather the probability mass
p(B U A)-p(A), and our new degree of belief in B is its renormalized
measure, nameiy

£f(BU A)-f(A)
1-£(A)

We call this the conditional degree of belief in B given A and denote

it by f(B|A).

Theorem 5.1. If f is a belief function on P(Q), ACQ and £a) >0,

then the function f(- |A) on P(Q), defined by

fB|a) = LBY B) - {H) (5.1)
T 1-£(Z)

for all B< 1, is all also a belief function. If f is continuous, then
sois f£(-]A);if f is condensable, then sois (- |A). (Notice that

£%(A) must be greater than zero in order for £(B |A) to be defined.)

The easiest way to see the truth of Theorem 5.1 1is to examine

the upper probability function for f£(- |A). This is the function f*( - |A)
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on P(Q), given by

£f(B U A)-£(A)

M(B|A) = 1-£(B|A) = 1-

1-£(A)
or
3t
£(B|A) fEna) (5.2)

£¥(A)
and it is evident from this formula that @ |a) =1 and £ (g]|a) =0,
and that f (-]A) inherits from f* the property of being alternating
of order o, as well as properties such as continuity or condensability.

Equation (5.1) is called Dempster’'s rule of conditioning. It is

evident from (5.2) that it reduces, in the special case where f is
a probability measure, to the usual Bayesian rule of conditioning.
(cf. pp. 44-45 and p. 67 of Shafer (1976a).) It itself is a special case
of Dempster's rule of combination.

After we condition on the subset A of {1, we may wish to
continue to consider {1 as our set of possibilities, or we may wish
to put A in that role, Either attitude is possible after applying the
rule of conditioning, ‘for though f(-|A) is defined on P(fl), it awards
the subset A degree of belief one and hence conveys no more infor-
mation than its restriction to P(A). We shall denote by ?A the
belief function obtained by restricting f(- |A) to P(A), and we shall
use the term conditional belief function given A, as occasion demands,
to'refer either to f(- lA) or to fA .

It should also be noted that the rule of conditioning (5.1) can be
applied to a belief function defined on an algebra of subsets which is

not a power set. All the assertioas of 5.1 remain true in this casc,
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The fact that conditioning is impossible if £ (A) = 0 (or £(&)=1)
would occasion no embarrassment if this relation could be interpreted
to mean that f considers it certain that the truth is in A. But as
we know from our study of probability theor;(, this interpretation is
not always possible; if f is a countably additive measure on {1 that has
no atoms, then f*({w}) =0 forall w€ (], butwe can hardly interpret
this to rnea.n‘ that f is certain that none of the elements of {l are true.
Fortunately, though, the natural interpretation is possible if { is
condensable,

Indeed, if f is condensable belief function on (1), then itis

obvious that the subset C of Q given by
c=n{Aaec|{fa)=1}

will satisfy £(C) =1 and hence will be non-empty. We call C the

core of f; it is the smallest subset of Q to which { assigns degree

of belief one, and T is the la.'rgest subset of 1 to which f assigns

upper probability zero. Since C is a proper subset £, itis possible
to interpret it as the set of pdints f is certain are false; since f*(A) =0
implies AC c , the failure of the rule of conditioning when this relation

holds is then quite natural.

§6. Dempster's Rule of Combination.

Dempster's rule of combination is a rule £>r combining two belief
functions fl and fz , both defined on the same power set P(i1), to
obtain a new belief function on £(Q1), the orthogonal sum ;‘.'1 9 fz .

This rule was first introduced by Dempster (1966), though special cases
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FENT, Ay, LAY

were 'adduced by Bernoulli (1713) and Lambert (1764). (See Shafer
(1978b)) Shafer (1976a) studies the rule in detail for the case of finite
{1 and concludes that it corresponds to the pooling of the evidence
underlying .fl and 'fz provided two conditions are met: (i) the sources
of evidence must be "independent!--ie. e, the evidence underlying
fl must be entirely distinct from the evidence underlying 'fz--and
(ii) the set of possibilities 0 must be sufficiently fine to discern
thg relevant interaction of the two bodies of evidence.

The general rule of combination can easily be des cribed using

the tools we now have at hand: Given fl and f2 on (), we first

. form the product f X f, on P(1 X 1). We then condition { X f, on

1 2 1 2
the diagonal 8 of QX Q; fl 2 f2 is the result, _considered as a belief
function on #(Q). (Conditioning fl X fZ on 8 results formally in a

belief function on P(8). But 8 and ? can be identified in a natural
way.) This recipe requires, of course, that fl X £2 award the diagonal
8 positive upper probability; if it does not do so, then we say that

fl 4 fz does not exist,

The belief function fl 14 fz can easily be expressed in terms

of the allocations Py and Py constructed in §3; we have

1-1(8(#))
where
5(a) = V{p(a)Ap,(A,)[A,A, €04 NA,CA) (6.2)

f, @ fz exists, of course, if and only if Br{s(g) <1.
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Notice that we present this rule as a definition; we do not attempt
to derive it from simpler axioms. Many such axiomatic derivations are
not doubt possible; one might be based on the notion of weights of
evidence. (See §4.3 of Shafer (1976a).) But the idea that the rule
.corresponds to the pooling of evidence must find its fundamental
justification in examples and in the meaningfulness of the general theory
that the rulé generates. For the rudiments of such a justification, the
reader is again referred to Shafer (1976a).

--Since Dempster's rule of combination -is a composition of the
rulé of conditioning and the rule fo.r forming' products, it is not

s urprising thatit reduces to those rules in special cases.

Theorem 6.1, (i) Suppose fl is a belief function £(2), ACQ,

and f_ is the belief function on P(Q) given by

2
: [1 if ACB
]

£ (B)=
g \o if A¢B

forall BCQ. Then £ &£, exists if and only if fay>0. 1

fl sz

.(ii) Suppose fl and fz are belief functions on p(Ql X QZ),

exists, then fl e fZ =f(- IA).

and £i is discerned by P(ﬂi) , regarded as a subalgebra of

P(Q, x Q). Then £ 8 £, exists and is equal to . (f1|9(01)) X (leP(QZ)).

Proof: (i) In this case p, is given by
Vvoif ACB

Py(B)= < -
2 s g



Hence (6.2) yields, for any BCQ,
5By = Vi{p(AD]|A, A, c0; A NACB i AC A, }
= p, (B UA).

And hence (b.1) yields

£(B U &) - (A)

(f, ® £,)(B) = = fl(B|A) .

(ii) Recall the method of 83 for constructing allocations Pys Py

and p for £[P(Q £|P@ and (f; | P(Q)) x (£,|P(Q,)): For i=1,2,

) )
let (7/{i s ui) be a probability algebra and let T, : .P(Qi)—’mi' be an
ini‘tial allocation for fiIP(Qi) . Construct M = 77‘1 X 7/(2 and M = ul X pz '
as in the proof of Theorem 3.1, denote by hi the canonical homo-
morphism of 77(1 into 71 and set Py = hi° T . And define
P :P(Ql X QZ)-—'W( by (3. 5).

Now let -;i and Fi be the canonical extensions to £(Q; x )
of r, and p, respectively., i =1,2. Notice that "p-:.L =h.e ?.1 . Since
fi is discerned by P(Qi), both .;i and Fi are alloca.ti:on's for fi .

And since T)i =h,e -;i , the Fi can be used to define an allocation

p for flez;

p(a) = Y{p(ADA pZ(AZ)l ALA,CO X005 A XA C A}

for all AC (Ql X QZ) X (Ql X QZ). |
Applying (6.1) and (6.2) to the allocation p, we find that

fIGf

2 is given by (6.1), where

B(A) = V{P(ADA P, (A)] ApAS Q x0,;A NA,CA}.
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But this formula reduces to
8(a) =V {lVlp(B))|B, € Qi B, x 0, C A }]
ALV {p,(B,)|B,c0,; 0 x B, c A} |A A, SO X 0,5
AN AZC.Z A} .
= VIV {p(B)) Ap,(B,) | B, ;B, €0, 3B X0,

cQ x0

e 2C ) x 055

13 X B, A YA, A ANA,CA)

=V{p(B)AP,(B,) B C 0B, 0. B X B, & A)

= p(A) .

Hence (6.1) yields

(5, 0 £,)(8) = (p(A)) = [(5 [P X (5, P@NIA) . B2

When does fl 9 fz exist? It obviously never exists when {1

and £2 are inner measures for measures that have no atoms, and this

casts considerable doubt on the meaningfulness of the rule of com-
bination for belief functions that are merely continuous, But matters
are quite different when at least one of the belief functions being com-~

‘bined is condensa'ble and the other is continuous,

Theorem 6.2. Suppose f1 and fz are belief functions on §°(11), fl

is continuous and fz is condensable. And suppose that fl and IZ
do not flatly contradict each other--i.e., there does not exist any

subset A of Q1 such that £(A) = fz(K) =1. Then £ @ f, cxists.



Proof: Let C denote the core of iz. Then f‘:(C) > 0 by hypothesis.

And
£8)(w) = & ({wh >0

for all w € C. Since fl is continuous, it follows that the functional
%
fl must assign a positive value to the function f;(ﬁ). So Tonelli's

inequality yields

(£ x £,)*(8) = f;(f;(ﬂ)) >0. 72

Notice that ifﬂ fl and :EZ are condensabie, then the statement
that the two do not flatly contradict each other is equivalent to the state-
ment that their cores intersect,

Theorem 6.2 has an intuitive interpretation. Because of their
connection with "weights of evidence' (see the discussions of the com-
monality function in Shafer (1976a and b)), condensable belief functions
seem appropriate for the representation of empirical evidence. Belief
functions that are merely continuous, on the other hand, are typified
by the continuous probability measures used to represent chances or
“objective probabilities!; such probability measures represent
theoretical luxowlédge, knowledge which can be tested empirically
but which does not pretend to be merely a representation of empirical
evidence. Thus the theorem corresponds to saying that empirical a.nd
theoretical knowledge can be combined. And we need not be concérned
‘that two continuous belief functions may fail to be combinable--this

. corresponds to saying that two rival theoretical systems may fail to

be combinable,
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Since conditioning and the formation of products preserves con-

densability, fl & fz will be condensable if f1 and fz are, Butitis

evident from pa'rt (ii) of Theorem 6.1 that fl 9 fz need not be con-
tinuous just because fl and fz are. One might conjecture that

fl X fz and hence fl 8 £2 will be continuous if fl is continuous and

f. is condensable, but it is an open question whether this is so. We

2

can, of course, construct a continuous orthogonal sum of merely con-

tinuous belief functions by replacing fl X £2 by fl X fz in the recipe
for constructing fl & fz . This replacement will not affect the truth
or the proof of Theorem :0.2, for Tonelli's inequality will also hold

for flez. ) T

§7. Cognitive Independence.

The rule of combination easily generalizes to the case of belief
functions on an algebra of subsets that is not a power set, In this
section we use this generalization to study the notion of cognitive

independence.

There are several intuitive approa-ches to generalizing the rule
of combination to the case of two belief functions f.1 and fz defined
oh a proper subset O of a power set P(Q). Here we use the simplest:
we canonically extend fl and fz to P(Q), corhbine, and then restrict
to G.again. This results in obvious modifications in the formulae in
§ 6. Equations (6.1) and (6.2) become

1-p(8(f))

(£ 01



where

8(A) = Vip (A AP (A) [ A A, €EG; AN A,C A}, (7.2)

and Theorem 6.1 (i) remains valid,.

(An obvious question arises: If :f1 and £2 are belief functions
on P(l) and G is a proper subalgebra of P((‘)),- then will
(£1|G.) 8 (f2IQ) = (f1 e fz)IG.? The obvious answer: Generally not,
unless fl and fz are discerned by G . The rule of combination is
sensible only if the subalgebra (G, and more fundamentally the set
of possibilities 1, is suﬁicieﬁtly fine to discern the relevarlxt inter-
action of the two bodies of evidence. For an extensive discussion,
.see Chapter 8 of Shafer (1976a).)

Two independent subalgebras G’l and G‘.2 of an algebra of subsets

G are said to cognitively independent with respect to a2 belief function

f on @ if
(A NB) =f(A) (B) (7.3)
for all A € G.l arid B € Gz . The intuitive content of this name is

explained by the following theorem.

Theorem 7.1. ‘Suppose 'G'l and Gz' are independent subalgebras of G

and suppose f is a belief function on G . Then the following assertions

are equivalent:

(1) Gl and G.Z are cognitively independent with respect to {.
(2) £(A|B) = f(A) whenever A€G,, BE€G,, and f(my>o0.

(3) If £, is a belief function on G that is discerned by Gz ,

2

and f @ f  exists, then (f & f2)|G.1 = £|@, .

2



Proof. The equivalence of (1) and (2) is obvious, especially when
the equation in (2) is rewritten as f*(A[B) = f*(A).
Furthermore, (2) is obviously a special case of (3). For if we

.choose B € G_ such that f*(B) > 0 and consider the belief function

2

fz given by

1 if BccC
£,(C) =
0 if BY¢C,

then Theorem b.1 tells us that £ & fz = f(- IB). And hence the con-
clusion of (3) is that £(-|B)|g, =£[q, .
-To complete the proof, let us assume that (7. 3) holds and

deduce (3). First note that (7.3) is equivalent to

f(AU B) -f(A) = (1-{(AN(B) (7. 4)'

for all A€G, and BE G,. Let f, bea belief function on G that is

discerned by G fix A€ G’l » and calculate (f @ fz)(A) using (7.1)

z’

and (7.2). In the present case

p,(A,) = VI{p,(B) | BEG,; BC A, Y},

whence
8(a) =v {p(AUB)A p,(B) | B € g, }
=p(a)v _V [p(aUB)-py(A)]AP,(B) ,
B Gﬁz
and
n
H(8(A)) = £(A) + sup BV [p(AUB)-p(A)]A P,(B)).

n 3=
Blpoo,BnE\lz 1-1

Using (4.2) and (7.4), we find that

——— et st



n .
WV [p-(AUB)-p. AN AP BN = T (-l
=1 UL IC{l,...,n}( )

H([p,tAU N B)-p(A)]l AP, ( N B,
M er ! ] 25e1 i)

= ) (-l)lIl[f(AU n B.)-f(A)]f( N B,)
. 1€ {1,...,n} jer *? TS

- = (pa-gang n Ba" n By
1c{1,...,n} jer * jer t

n
= (l-f(x"x))u(_\/1 P (B)AP(B)) .
i=

Hence
H{5(A)) = £(A) + (1-£(A)){5(F)) . .

Substituting this in (7.1), we obtain (f® fz)(A) = f(A). Hence (3)

holds. 3

In words: CI.1 and Gz are cognitively independent if new
evidence that bears only on G.Z cannot change one's degree of belief
about Gl . |

Cognitive independence is 2 weaker notion than evidential i.nde-
pendence, ‘for it requires only the second of the two relations (5.1) and
(5. 2) required by evidential independence, That two subalgebras can
in fact be cognitively independent without being evidentially independent

is demonstrated by an example in §7.5 of Shafer (197ba).
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