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REFACE

This essay constitutes Part II of a proposed monograph devoted to the
exposition and justification of some of A.P. Dempster's methods of statis-
tical inference. Part I of that monograph exists in draft form and is

devoted primarily to a historical and critical account of the Bayesian

paradigm for statistical inference. Statistical inference is not taken

up directly in the present essay, but the ideas4discussed here are directly
relevant to a justification of Dempster's methods, somevdetails of which
may be found in my essay “A Theory of Statistical Support."

The ideas expounded here are directly inspired by my study of
Professor Dempster's work, a study that began when i attended his seminar
at Harvard in the épring of 1971. The reader will note that the quanti-
ties Bel(A),P*(A) treated axiomatically here correspond to the quantities
P*(A),P*(A) derived by Dempster from multivaelued mappings. Unfortunately,
the exact relationship between the present axiomatization and Dempster's
original formulation remains somewhat obscure to me. In particular, I do
not know how to express the condition of condensability in terms of multi-
valued mappings, though the examples that most interested Dempster were

condensable.

The present essay does not include a discussion of the theory of

integration on probability algebras. Using that theory, one can easily

extend to allocations the discussion of several topics that are usually

treated for distributions of probability. These include measures of

location and dispersion, as well as analogues to entropy. Interestingly
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enough, the concept of entropy, rather overworked for distributions,

breaks into two distinct concepts for allocations. One of these is

related to the degree of conflict present in the evidence, white the
other is related to the precision and strength of the evidence.
Aside from my obvious debt to Professor Dempster, I am also indebted

to my wife Terry and my many other friends, teachers and fellow students

who have helped me with these ideas. These include Paul Benacerraf,

Thomas corwin, Robert Epp, Alan Gross, Ian Hacking, Richard Hamming,

Richard Jeffrey, Simon Kochen, Rod Montgomery, Edward Nelson, Dana Scoth,

Gary Simon, John Tukey and Paul Velleman. Peter Bloomfield, Richard

Holley and Hale Trotiter have been especially generous with their time.

And Geoffrey Watson, my supervisor, has provided much needed encourage-

ment.
I must also express my gratitude to the National Science Foundation;

I have been supported by one of their graduate fellowships during the past

three years.
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ABSTRACT

A function Bel:@—-?io,ﬂon a Boolean algebra of propositions @ is

a belief function if

I. Bel( Ay)=0, where Mg is the impossible proposition.
II. Bel(Vg)=1, where Vg is the sure proposition.
II1. Bel(A{v-u VAn)>/iZ Bel(Ai)-ZBel(Ai/\Aj)k--- +(-1)n+1Be1(A1A"'AAn)
for all Ajyeeesb s Qo |
The adoption of Bel means the adoption, for each A€ Q y, of the quantity
Bel(A) as one's degree of belief in the proposition A. If these degrees
of belief correspond to the degrees to which the evidence supports the
various A, then the quantities P*(A)a1-Bel(K) will correspond to the degrees
to which the various A are plausible in light of the evidence.
Axioms I-III are satisfied by probability functions, but they are also

satisfied by many functions that are not probability functions. In parti-

.cular, they are always satisfied by the vacuous belief function, given by

Bel(VQ)=1 and Bel( A )=0 for all af Vj.
A pair (777,#) is a probability algebra if M is a complete Boolean

algebra and M is a positive and completely additive measure with /,_(’\/7;7),1.

A mapping / from a Boolean algebra of propositions a into a probability
algebra 7/ is called an sllocation of probability if
1. /o (__A_@)== ‘A'M'

2. p(VQ)=V;ﬂ'
3. /o(A/\B)=/0(A) A/o(B) for all A,Be (2.
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As it turns out, 0{0 is a belief function whenever /D is an allocation
of probability, and any belief function Bel: d» [0,1] can be represented
in the form /Ao/p for some allocation /o on & « Intuitively, the
elements of 7/ are probability masses, or portions of one's total belief,
and P (A) is that portion of one's belief which one commits to A. Hence
the axioms for belief functions correspond to the idea that having a
certain degree of belief in a proposition means comnitting that proportion
of one's total belief to it.
An allocation p on a power set #(§) is condensable if f(nC)zs /\{,(c)

for all Ccf(j) This is equivalent to P*(A)—sup{P*(B)lB cA; B is fmlte}

for all Ac/g . Condensability can be defended as a natural condition for

belief functions that are derived from empirical evidence, and it plays an

important role in tﬁe abstract theory.

A belief function Belo on a subalgebra &o of a Boolean algebra a
naturally induces a belief function Bel on Cl And belief functions on
independent subalgebras of Qcan be combined by a natural rule to produce

a belief function on & . Study of this rule leads one to distinguish

between orthogonality and cognitive independence for two independent sub-

algebras &1 anda (1 , with respect to a belief function Bel. Orthogonality

means that Bel(A A B)=Bel(A)Bel(B) whenever A £ @1 end B £ @2, while cogni-

a,.

tive independence means that r*(AA B)=P*(A)P*(B) whenever A ¢ a 4 and BE (0,

empster's rules of conditioning and combination are techniques for

modifying a belief function Bel: Q *?[O,ﬂon the basis of new evidence or
opinion. The rule of conditioning tells how to modify Bel when one learns

that a given proposition Ae¢ Q is true. The rule of combination tells how
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to combine Bel with a new belief function Bel’:(?—?[b,{]so that the resulting
belief function corresponds to the total evidence-~the evidence that would

be obtained by pooling the evidence underlying Bel with that underlying

Bel'. Both of these rules are most applicable and most easily expressed in

the condensable case.
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CHAPTER 1. DEGREES OF BELIEF

This chapter adduces and defends a set of rules governing degrees
of belief for propositions in a Boolean algebra 59.

Intuitively, a Boolean algebra of propositions (Z is simply a col-
iection of propositions which includes the impossible §r0position A, the
sure proposition'V’, the negation X of any of its elements A, and the
conjunction AsB and the disjunction AvB of any pair A,B of its elements,
One writes A<B to indicate that A implies B, and one assumes that A=B
whenever both A<B and BsA. I will assume that the reader is familiar with
the mathematicai structure of Boolean algebras and with the rules governing
the symbols §, M, V,=, , A, and V, If he is not hgvmay wish to consult
Chapter 3 below, or he may wish to rely on a simple analogy with the sym~
bols C,é,,f,”’,ﬂy,fl and U , &s they apply to subsets of a-set 4(. -(AcB
means .that-A is contained ig B,-¢,denqteé-the~empty set, A«~B is the -
set of points of A that are not in B, A=j~A, ANB denotes the intersection

of the subsets A and B, and AV B denotes the union of the subsets A and B.)

1. Axioms for Degrees of Belief

In Part I of this essay, I discussed at length reasons why the axiom
of additivity is not always appropriate as a rule for degrees of belief,
and I concluded in particular that it is not appropriate for the problem
of statistical support. Nonethelesé, I find that I cannot ignore the
tremendous intuitive attraction of the classical theory of epistemic pro-

bability, and I can understand why many people find this attraction more
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veighty than any abstract argument, This attraction appears to stem from
an intuitive understanding we have of probabilities, which, though it is
seldom made entirely explicit, gives many of the rules that the subjective
probabilist associates with degrees of belief a compelling, almost self=-
evident quality. We have an intuitive picture of probabilities, and it
is that picture, rather thanithe formal rule of additivity, that we find
hardest to give up.

The axiom of additivity is not, however, the most fundamental part
of this intuitive picture, There are other rules that we associate with
probabilities as degrees of belief that seem to be more fundameﬁtal, and
éorregpondihgly more self-evident, A good example is the rule of’mono-
tonicity, vhich states that if one proposition implies a seco;d pféfosi—
tioﬁ, then the second proposition deserves at least”as greal a degree of
belief as the first, In this chapter, we will discover that many of these
more fundamental rules, as well as the intuitive picture underlying them,
“can be preser{ed even ;hough the rule of additivity is dropped.

Le?fué fake a closer lock at the rule of nmoumotonicity, for example;
and try to understand the intuitive piéture that makes it so self-evident,
Denoting the degree of belief in A by Bel(A), we can exprsss that rul
by saying that

if A£3B, then Bel(A)<Bel(B).
Two corollaries of this ruie are that A, the impossible proposition,
shonld have the lowest degree of belief, conventicnally zero, while Wf,
the sure proposition, should have the highesi degree of belief, conven-
tionally one, The rule iiself ie obviouely more thum o conveation; it

I8 SBOMehow DecessSRIT, SITVED GUT LILBLTIVE LLean Lol hou UEZNGRE of

heliel should woirk.,
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How can we make these intuitive ideas more explict? One way to bring

them out is to examine the intuitive arguments that we might use in support
of the rule of monotonicity, The reader is invited to consider what sort
of intuitive argument he might offer; I find myself saying something like
this: "If A implies B, then whenever 4 is true, B is true. So whatever
belief I associate with A's béing true, I must also associate with B's
being true; and hence the belief I associate with B will include the
belief I associate with A, In other words, the portion of my belief
committed to B will include the portion committed to A, And in particular,
its measure will be greater.®

| The fuﬁdamental feature of the picture revealed by this argument is
that our belief appears in it as a measurable substance, various poriions
of which are committed to various propositions, Thié is naturasl enough
an idealization; it merely makes explicit the notion that the relation
between a degree of belief and complete belief ie like the relation
bétween a part and a whole, A secondary aspect of the picture is &
restriction on our freedom in cemmitiing portions of this belief to
various propositions, namely, the requifement that a portion of belief
commitied %o & given proposition must also be commitied to any more ip-
clusive proposition. A further resiriciion, of course, is-that none of
our belief may be commitied to M, while all of it must be committed to
“f} I sccordingly adopt the convention that the tefal messurs of our
belief iz equal to ouns,

Yhat other resiricticns ars nabursl to ihis intuitive picture? One

thet seems natural enovgh is the recuirement thet a glvom poriicen of
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belief should not be simultaneously committed to two incompatible proposi-
tions. This requirement leads to the rule of superadditivity, which states

that the degree of belief in the disjunction of two.incompatible propositions

should be at least as great as the sum of the degrees of belief for the
w-separgtepropositions. In symbols:

if AAB=A, then Bel(A)+Bel(B) <Bel(4vB).

In order to jnstify this rule, one should note that ASAVB and BYA“B, so

that the belief committed to AvB must include both the belief committed to

A and the belief committed to B. And there can be no overlap; since A and

B are incompatible, none of the belief committed to one of them can also

be committed to the other. Hence the measure of the belief committed to

AvB must be at least as great as the sum of the measures of these two

separate portions of Eelief. »

(Nptice that there is nothing in our intuitive picture to require that
the inequality in the rule of superadditivity be replaced by equality.
Equality would hold, efideptly, only if all the belief commitied to AVE
were neceséarily comnitted either to A or to B, This would be a very
strong reatriction compared with the two restrictions that we have just
consideredr'and we will find that it is not necessary for a coherent

- theory of degrees of belief,
This is not to say, though, that no further restrictions are

sppropriate ou our freedom to commit our idealized portions of beliefl

to different propesitions. One further restrictior that seems wnavoids

sble is the requirement thet any portion of belief that is comnitted to

boih of two propositions should also be committed to thelr logical con-
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junction. This may seem like a tautology, but it has a great many con-
sﬁquences.

- Por a start, we can use it to deduce the.rule
Bel(A)+Be1(B)-Be1(AAB) £Bel(AvVB)

for all pairs of proposltions in the Boolean algebra for whlch one has
degrees of belief, The argument for this rule again depends on the fact
that the belief committed to AvB must include at least all the belief
committed either to A or to B or to both. For the left-hand side repre-
sents the measure of this latter belief, obtained by adding the measure
of the belief committed to A to the measure of the belief committed to B
and subtracting the measure of whatvis countéd twice, namely the belief

, commltted both to A and to B,
A similar inequality will hold for triplets of prop081tions A,

and C- _
‘ Bel(A)+Be1(B)+Bel(C)nBel(AAB)nBel(AAC)«Bel(BAC)+Be1(AvBVC) Bel(AvB+C),
Bere the left-hand side is the measure of all the belief that is committed
to_at least one of A, ﬁvand €, To see that this is so, notice that the
quantity Bel(A)+Bel(B)+Bel(C) overstates that measure, for that pértion
of belief that is committed to both of any two of the propositions is
counted twice, while that committed to all three is counted three times.
Vhen one subtracts the quantity Bel{4rB)+Bel(AsC)+Bel(BrC), one is sub=
tracting exactly once the measure of the belief committed o exactly two
of the propositions, as is appropriate, but one is subiracting three times
the measure of the belief commitied to all three, and this is once too
often, Hence one must finally add »el(AABAC) back again.

A sinilar insquelity cen be obfained for any finite collection

%

o wrouosidione by couparing the measure or the beliled

cogmitied

AL ussesh
LR
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to A vu,vAn with the measure of all the belief that is committed to at

1
least one of the Ai. That inequality is _

o+ Ave - . ‘
ZBel(Ai)-ZBel(Ai/‘Aj)+ZBe1(AiAAjf‘Ak)-f-~-+(-1) Bel(aA" A4 ) € Bel(A¥-- VA,
As we will see, these inequalities, together with the conventions Bel(A)=0
and Bel(V)=1, provide a satisfactory basis for a general theory of degrees

of belief., Hence I will use then for a formal definition.

Definition. A function Bel on a Boolean algebra is a belief function if
~-—. it takes values between Zero and one and satisfies the following
" three axioms:
(1). Bel(A)=0.
, (n); Bel(V)=t.

<. (I1ITI). If n>1 and Ay,...,A are elements of the Boolean algebre,

then
~ -\t e
- Bel(Ag-»--vVAn)zZBeJ.(Ai)-§Be1(AiAAj)+-m+(,-|) Bel(an Ak ).

N My claim that this definition provides a satisfactory 5&315 for s
genéral‘théory of degrees of belief will be supported in two different

ways in the following pages. On the one hand, we will see that these axioms
more or legs exhaust the consequences of our intuitive pleture of "portions
of belief" and that that intuitive picture is at least as attractive as

the more specisl one usually associated with subjective probabilities.,

On the other hand, we will see that the axioms are gemeral enough to

encompass many systems of degrees of belief that are attractive and useful

ut fail t6 satisfy Kolmogorov's axioms., The demonstration that these

new axioms are equivalent o the intuitive piciure of poriions of belief

b bo Silveivato fhlir

iy e Y e [ T o
Foaernlity domediotely.
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2. Four Examples of Belief Functions

In this seétion I will exhibit four simple examples of belief func-
tions., For the first two examples, I will verify Axiom III directly. For
the last two, though, I will leave such a verification until the next
chapter, where it will be facilitated by a fuller understanding of the

,‘structure of belief functions,

A. The Vacuous Belief Function
The simplest beliéf function én any Boolean algebra of propositions
is the one that assigns degreé of belief zero to every proposition except
the sure proposition, which must of course have degree of belief one., This
pelief funciion corresponds to a complete lack of opinion;—one has too
little evidence or is too skeptical to assign a positive degree of belief

H

to any<proposition in the Boolean algebra except the one that is logically

certain. I will cell it the yacuous belief function. Axioms I end II
Qﬁviously hold for this belief function, but how can we establish Axiom III?
First note that if none of the propositions Ay ,...,A are equal to 'V,
then the right-hand side of the inequality is zero, so that the inequality
nééeséarily holds, Suppose; on the otbgr hond, that some of the Ai are
equal to ¥ ~—gay k of them; Then (g) of the propositions Aiﬂﬁj will also
be equal to V, (g) of the propositions A{\Ajﬂﬁk, etc. Hence we will have
> me1(s, )=e=(}), |
S Bel(agra)=(3),
Bel(aiafa)=(5),

ete., go that the right=hand side of the ineguel’ity will de

'w
PRV SN
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But A,v---vA will also be equal to "V, so that the left-hand side,
Bel(A1v--- VAn), will also be equal to 1, and the inequality will hold

with equality, Hence Axiom III does indeed hold for the vacuous belief

function,

B, Belief Functions on a Four-Element Boolean Algebra

The vacuous belief function is the only posaible one on the itwo-
element Boolean algebra gﬂ,“{?, but there are more possibilities for a
four~element Boolean algebra ;A,A,E;\ﬁ}. Suppose, for example that A is
the proposition that there is life of Mars. A4 belief function on this
Boolean algebra would then summarize one's dégrees with respect to that
proposition, both for and against it, Some might profess a complete lack
of opinion abvout the proposition and adopt the vacuous beliel funciion,
but others will have some degree of belief either for or ageinst it, or
beth, even if those degrees of belief are rather woak. One might, fer
exgmple, profess a degree of belief of 1/?0 in A, a degree of belief of
>2/1O in Z} and of course 8 degfee of belief 1 in AvA=V, But will the
function Bel with values Bel{ i )=0, Bel{A)=1/10, Bel{X)=2/10 and Bell¥ )=1
satisfy Axiom III?

'It is not difficult tc show that it does, asz dees any function
Bel:§ A ,4,E,V]—[0,1] that satiafies Bel(A)=0, Bed(V )=l and
Bel(A)+Del(E) £ 1. Suppose, indeed, that Ayyees A are all propositions
from §;A ,A,KZ@f}. Then let & be the nunber of the n propogsitions that

A

sre egual to .iu, b the number thatl are equal to A, ¢ the number that are

>~B ‘(‘ }"{34(‘3)( ,H:E’i( ‘\-3 * i"a
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3 me1(ayry)oBo1(n) [ () () smaa @[ D] D),
Y Be1 (a4, )=8e1 (1) )+ (D) () ()] 421 (B) [+ GO+ +D,
etc.; and
ZBel(A )= ZBel(A AL, )+~-- +{=1 )n'”Bel(A AsetAd )
=ze1() | (O)=(D)+- - ke 3P ()] (=3 +<-1>d<d>]
#361(E) [(8)=( D= +(=1) T (O] [(D=(B) 4=+ (=)X(D)]
#[(@)=(@am s () (],

This last expression is equal %o

1 if 4> 0,
Bel(A)+Bel(X)  if d=0, ¢ 50, and b> 0,

Bel(A) if =0, ¢ >0, and b=0,

Bel(R) if d=0, ©=0, and b> 0,

and 0 if =0, c¢=0, and b:rO.’

But Bel(Aiv"' \/An) will be equal to

! ‘ if d> 0,
1 if é=0, ¢> O, and b> 0,
Bel(A) if a=0, ¢ >0, and b=0,
Bei(%) if d=0, ¢=0, and b> O,
and ) if d=0, c=0, and b=0,

Hence Axiom TIT will indesd hold provided Bel{a)+Bel(X) £1. And it will
1ot hold if Bel(i)+3el(Z) > 1. Hence a function Bel: T4 4%, "v'} =[0,1] is

& belief funciion if and only if it satislies Bel{il )zO, Bel{¥ )=1 and

Bel{a)+ze1{R) ¢1,

+het our noiion of & belief funcition is

One consequence of this is

generel enough %o sccommodate degrocn oI telisd urining from Janes
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Bernoulli®s notion of a “"pure argument.” (Ses Bernoulli's Artis Conjectandi,

pp. 218-220; or Part I of this essay,) Indeed, Bermoulli obtained
#probabilities™ of 5%( and zero, respectively, for a thing and its

opposite when ﬁ out of d==ﬁ+-¥ cases proved the thing But the other
Y cgses proved nothing. If we translate g-’probabil:i.‘*1:3,7" into "degree of

belief" and "thing and its oppbsi%e“ into Yproposition and its negation,”

this becomes Bel{A)= B/ ‘and Bel(:)=0,

C. The Senate Example
A more picturesque example of a belief function involves the first

meeting of the United States Senate in 1789, At the time of that meeting,

eleven States had ratifisd the Constitution., OFf these eleven, five chose

Podernlists to Till both of their Senate seals, four chose Demecratics

Republicans, and two, Connecticut and Pennsylvania, chose both a Pederalist

and a Demoeratic-Nepublizcan. The overall 2plit wae thus twelve to ten

in favor of ithe Federalists. The first order of business for the Senate

was to select o temporary presiding officer vho would have the honor of

counilng the ballo®s that elecied George Washingion as the first President

of +he United States, I do not know how that presiding officer was in
fact seolected, buit let us imagine that in order ©o groid State vivalry

or auch a hisitorical honor, it wag done by lot ranther than by votle,
2 2

=y

magine, indeed, the follewing procedure: a goldier is employed to choose

fr

-

at random the nome of a State and then select as he plemses one of the

two Senabtors from that
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The phrase "at random" may raise questions in some minds, but for

my purposes it suffices‘to suppose that the selection of the State is to
be carried out in such a way that I am willing to accord a degree of belief
of 1/11 to the proposition that any particular State will be chosen. On
the other hand, by saying that the goldier selects one of the two Senators
from the résulting State Yag he pleages," and adding that I have no know=-
ledge of his preferences, I mean to convey the notion that I have no
positive degree of belief that he will choose one or thé other,

- The algebra of all the propositions about who will chosen corresponds

in a natural way to the field of all subsets of the set of the twenty-two

Langdon (D) |Wingate (D)| |Wew Hampshive - (0,0)] [D D
Few (p) | Gunn (D) Georgia (p,D) DD
Lee (D) | erayson (D) Virginia (p,D) D D
Izard (p) |Butler (D) South Carolina (2,D) D D
Johnson (D) | Ellsworth (F) Connecticut (p,F) Drﬁ~
Maclay (p) | Morris (F) Pennsylvania (D,%Sv Df F
Strong (P) | Dalton (7) Massachusetts (¥,F) PP
Paterson (F) | Elmer (7) New Jersey (r,7) PP
Bassett (F) | Read (r) Delaware (r,F) P F
| carroi1 (®) | Henry (r) Maryland (r,F) P F
King (») | Schuyier (¥) New York (F;F)b F F
The 22 Senators The 11 States The 2 Pariies

Pigvre 1. The Senzte Problenm




o] Dee
Senators, For example, the proposition that either Senator Carroll or
Senator King will be chosen corresponds to the subset §Carroll, King}. The
‘situation is illustrated by Figure 1, In the first panel of that figure,
the set of Senators is shown; the second panel represents the same set,
partitioned only to the extent of dividing the States; while in the third
panel the set is partitioned between Democratic-Republican and Federalist
_ Senétors.

My degree of belief that a Democratic-Republican will be chosen seems
to be 4/11, for I have that degree of belief that New Hampshire, Georgia,
Virginia or South Carolina will be chosen, in which case the soldier canmnot
help choosing a Democratic-Republican, I cannot add any of the belief
committed to Comnecticut or Pennsylvania to this, for I do not claim any
positive degree of belief that the soldier will choose the Democratice
Republican rather then the Federalist in the event that one of those States
is chosen. Sinmilarly, my degree of belief that a Federalist will be chosen
;is 5/11. And in general my degree of belief Bel(A) that the Senator chosen
will be in any given subset A of Senators will be k/11, where k is the

nunmber of States both of whose Senators are in A,

D. The Kancas Bxample
This final example is distinguished by the fact that the belief funciion
is defined on an infinite Boolean algebra of propositioms. Let us suppose
that a military base is %o be located somewhere in the State of Xansas,

and that its exact location is to be determined as follows: One of the

7111l be

at

members of Congress from Kansas will be chosen at randoem, and he
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represents, Cﬁnsider the Boolean algebra of all propositions of the
form "The base will be located within R," where R is any region (or subset)
of Kansas, What degrees of belief should one have for such prbpositions?

Well, there are seven Kansans in Congress; the five Representatives
represent the districts shown in Figure 2, while each of the two Senators
represent the State as a whole, Intuitively, our total belief must be
divided into seven equal pieces, one corresponding to.each of the éeven
politicians; and the degree of belief for the proposition "The base will
be located in R"™ will be equal to /7, where k is the number of districts
yhich lie entirely within R, In particular, that degree of belief cannot
exceed 5/7 unless R is the whole State, in which case the proposition is
the sure proposition, ,

The collection {E of all propositions of the form "The base will be
located in R," where I is a subset of Kansas; is indeed a Boolean algebra,

And it is infinite, for there are an infinite number of subsets of Kansas,
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And as we will see in the next chapter, the function

Bel: I — [0,1]:"The base will be located in R." ~->k/7,
vhere k is the number of districts lying entirely in R, is a belief

function,

%. Upper Probabilities

Thé most striking feature of the preceding examples of degrees of
belief is of course their failure to obey the rule of additivity, a failure
that is most conspicuous in the case of a proposition and its hegation.

In practical terms, this failure of additivity means that one's degree

of belief in a proposition does not necessarily determine one's degree

of belief in its negation, so that the two quantities constitute distinct
items of information, If degrees of belief were to follow the rule of
additivity, then one's degrce of belief P(A) in e proposition A would
determine one's degreec of belief P(Z) in its negation through the relation
P(A)+r(F)=1, or P{&)=1~P(L); and once we knew someone's degree of belief
in & proposition, we would learn nothing new if we were to be told his
degree of belief in its negation. But the degrees of belief we have

‘been studying do not work this way; we often have Bel(A)+Bel(X) <1, and
xaowledge of Bel{A) does not guavanice knowledge of Bel{A),

Anothsr way of pubtiing the matter is {o say that a small value for
Bel(A) does not necessarily imply a large value for Bel{i). Since Bel(k)
i, or one's degree of disbelief in A,
this asseriion means, in English, thet a low degree of beliel does not

in other vwords, we musi

Pl

necessarily imnly = high desres of disbelilel.
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distinguish between mere lack of belief and actual disbelief. Such a
distinction ia often left undrawn in everyday language: "I don't believe
it" usually means "I believe the opposite.” But it is a valuablé distinc-
tion, and one that is usually made by careful thinkers. As an illustra-
tion of the distinction, consider agein the proposition A="There is life
on Mars," and its negation‘K;”There is no life on Mars.” Suppose I know
little about Mars, in particular have no reason to believe A, and accord-
ingly have no belief in it whatever. Does this mean that I disbelieve A,

i.e., that T have a strong belief in A? I think not; it seems to me that

" an agnostic view is possible: I might entirely lack any belief either in

A or A. Or at less of an extreme, I might have no belief in A but only a

mild belief in A, For example, I might put Bel(A)=0 andeei(K)=%.

A felicitous synonym for disbelief, as somethiné susceptible of degree,
is doubt, and this is the term I will employ in the seguel: one's degree
of belief in & will be called one's degree of doubt for A, In this vocabu=
lary, the assertion that both Bel(A) and Bel(X) might be small becomes the
assé;fion that one might lack both belief and doubt for something., In
many situations, one's degree of doubt for a proposition is moré impertant
than‘one's degres of belief in it. A low degree of doubt, for exampie,
while not necessarily implying th&t one strongly believes a proposition,
does indicate that one finds it plausible.

More getnerally, the extent to which one finde a proposition plausible
is always inversely related to one’s degree of doub% for it: the more one
doubts it the less one finds it plausidie, This fact leads us to think of
the quantity 1-Bel(X) as s measure of the extent to which one finds A

plausibls, As it turns oud, this quentity will pisy usa dnporient role in

-~
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our theory, and it will be convenient to have a neme for it. Following

A, P, Dempster, I will call 1=Bel(Z) the upper probability of A4, and denote

1t by P*(4). |

The function P*:{->[0,1] :A~ 1-Bel(E) will be called the upper

probability function associated with Bel, It obviously conveys exactly

the séme information as Bel does, for Bel can be recovered from P* through
. the relation Bel(A)=1 -P*(I). What are the rules for P* that correspond to

our rules for Bel? This questioh is answered by the following definition

and theorem:

» Definition. A function P*: & 9[0,1] on & Boolean élgebra a is an
upper probability function if
(1). p*(A)=0.
(2). P(V)=i.
- (3). Ifn>1and A, are elements of (I , then
Pr(agpeah )€ 3 Pe(A )= TPHAV A4 4(-1 Y2 e (av--ova ).

~—

‘I‘hex;rem. A mapping P%: &—7[0,1] is an upper probability function if
and only if the mapping Bel: a-> ):0,1] defined by Bel(A)=1-P*(X) is a
belief function. | |
Proof: The only non-trivial part of the proof is the demonstration
that the inequality (3) for P* is eqﬁivalent to the third sxiom for
belief functions for Bel. Substituting 1-Bel(X) for P¥(a) in (3)
gives ‘
1=Bel(E,v---vE ) ¢ > [1-Be1(X)]-2 fs ~Bel(T;AT, Y meee +(=1)™ [ ~Bel (KK
= [V (@) (™ (]

- < N ‘-T* ,,..\'*‘,’1 A \7‘,..«,.. O] ,w‘x En"-? T- Leww x.:'- 7
{A,wluki} PREICHE It 3@3.(:.1» ""n}.i .
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Since (?)—(2)+----+(-1)n+1(§)=(8)-(1-4)n=1, this is equivalent to
(%, v---vk )2 . T AT Jomees +{<1)0H B AveAd
Bel(k, v VAn),ZBel(Ai) ZBel(AiAAj)+ +(<1)"" "Bel (A4 AR ).
since (3) is equivalent to this last inequality for all _}ﬂWUE; in d,
| it is also equivalent to it for all A1?...,Ani'@ , for every proposition

in a Boolean algebra is the negation of some other proposition in it.

But this gives us precisely the third axiom for belief functions.

2z

Rule (3) for upper probability functions can be written in another

way which is also useful,

Theorem, Suppose f is a realévalued function on a Boolean algebra .
Then f is an upper probability function if and only if |
C@). 2(a)=0.
(i1). £(¥)=t.
(1i1). If n>1 and B,Ay,...,A are elemonts of ({ , then
f(B)~Zf(BvAi)+Zf(BvAiv Aj)-+ vee (=1 )P (BYAyerr YA ) €O,
Proof: Suppose i;deed that £ is an upper probability function,
‘Then épplying rule (3) to BYA,,...,BvA yields
2(Be(an))e 3 f(B\"Ai)n§f(BVAiVAj)+-=-~- +( 1 }nﬂf(Bv;ﬁ\’ evh )
‘Since upper probability funations alveys take non-negaiive valuves,
rule (3) implies in paréicul&r that f is menotone. Hence £(B) <
f(BV(AAi)), and (iii) follows.
Po see that (iii) implies rule (%) for upper probability
funetions, set B:ﬂﬁhv-nAn and iransfer all the terms on the ilefi-
hend side of (3ii) ezcept the first to the righi-hand side,

=1 and choosing B end A, so thet BSA,, (iid)
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The quantity
n
r(B)-Zf(BvAi)+Zf(BVAivAj)-+---+(-1) £(BvAyY---vA )

can be written somewhat more compactly as

S _qyeard J
Jefl, .. n} 1) £ 4

where card J, or the cardinality of J, is the number of elements in J, and
VA

i
1£¢ )
and called the nth successive difference of f£(B) with respect to A1,...,A .

is understood to be equal to A . It is sometimes denoted ‘7£(B;A1,.,.,An)

This terminology derives from the fact that the quantities (7£(B;A1,...,An)
can be specified recursively by the relations

Vf(_B;A1 )=£(B)~£(BvA,)
-and ’

f
V (B;A1,O"'A

oo f . f - a )
n+i n+1)” Vn(B’A1"‘7’An)-s7n(avan+1’A1""Jﬂn"

(See Choquet, p. 169.)

4., The Logzical and Subjective Vocabularies

urThe tﬁeory that we have been developing in this chapter is overtly
subjective, It is a theory of belief, and it desls with the degrees to
which we believe and doubt propositions, not with the degrees to which they
deserve belief or doubt. Butffﬁe subjective notions of degree of belief
and upper probability are obviously parallel to the logical notions of
degree of support snd degree of plausibility, developed in Part I of this

eassay., That parailelism, as exhibited in Table i, counects bveliel wit

support and upper probability with plausibiiity.

N
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o
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" e notions of support and pleusibility are not subjective, for
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and against it; we take it as an objective, if sometimes elusive fact
that the evidence does or does not support a proposition to a givendegree,
or that it does or does not leave it plausible to a given degree. But
these logical quantities, if they are known, obviously determine the degrees
of belief and the upper probabilities that we ought to haves we ought to
velieve a proposition to the extent that the evidence supports it; and our
upper probability for a propositiorn, or the degree to vhich we find the
proposition plausible, ought to equal its actual degree of plausibility.

My ultimate interest in this essay lies on the logical side of the
ledger in Table 1; I want to measure degrees of support for statistical
hyéotheses. Why, then, am I congtructing & subjective theory? The answer,
of course, is that I will eventually want to impoge on support functions
the rules and structure that is being developed heré for belief functions,
Such an imposition will>be partially justified by the general argument
that degrees of support correspond to reasonable degreen of beliefl given

the evidence and hence should obey rules that are appropriate for degrecs

Deeree of Pleusibility 1-3(4)

o

of belief,
Subjective ' Togleal
. - { \ ’ ‘ LY
Degree of Belief Bel{A) i Degree of Support s{4)
Degree of Doubt Bel(%) | Degree of Dubietly s(X)
|

- Y- a rarel
Upper Probability 1-Bel{l)

wo Vocamlaries
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5. Probabilities as Degrees of Belief

The examples of Bernoulli and Lambert would provide some historical
justification for the clajm that degrees of beliéf satisfying our sxioms
for belief functions deserve to be called “probabilitiés,” and I am tempted
to make such a claim, But it is doubtful that such a claim would be
'accepted, Since the time of Laplace probabilities have had o be additive,
and it seems likely that they will remain under that cénstraint for a good
while,

A probebility function on a Boolean algebra Cz , then, is still

a function P: () —30,1] that obeys the rules
(1). p(L)=0,
(2). PV )=,
and (3). P(a)+P(B)=P(4vB) whenever A,Bc (! eand ArB=A,

Bince belief funciions do not need to obey (3), they need not be probability

functions. On the other hand, a probability function always gqualifies as
a belief functicn, To prove that this is so, it is only necessary to show

thet e probability function alvays cbeys the inequslities in Axiom I

for beliof functions. Actvally, a probability function always salisiies

. aaas ‘- c o
. those incguzlities with egualiiy,

Theoyem, If P: 3 -{0,1] is & probebiiity funciion and Ag,...,4 are any

-~

elements of (!, then

wrantars el - el Thnt annd
BCLOTE I\ yece 1 =n BUCh wvhantv &4l
3 4.

¥ s ogurl to either zero or one. For esch evch z, sed A =B Ao
e




where B,=A, if x,=1 and B,=R, if x,=0. Then all the A, are in o,

i i
and they are pairwise incompatible, Further, Af/“'VAn=\/£Axfsome zi={}

and AA AL =V |x, = =x, =1}, Thus
11 lk [xl 11 ik }

P(Ay VA )= Z{P(Ax)) some X f’} ,
and
n+l
ZP(Ai)-ZP(AiﬂAj)+-a' I Dhids IIWEIT Y
n+i i
=S TR x =)= T (s )] == j.-.1}>+-.”+(-1) P(AAA A ).

The number of times that any particular x appears in this summation
is evidently determined by the number of ones in x, In fact, if x
contains r ones, then A_ will occur (f)~(§)+n---+(-1)r+1(i) times,
But this is equal to 1 unless r=0, Hence P(Ax) occurs the same number

of times in this formule as in the formula for P(Af#-'VAn), and the

equation is correct, 777

C—i)viously9 a belief function is & probadbility function if and only if
it obeys the axiom of additivity. More interesting, in light of the dis-
cussion in Part I, is the fact that a belief function is a probebility
function if and only if it cbeys the special case of the axionm af‘additivity

that relates the belief in & proposition to the belief in its negation,

The proof of the non-irivial part of this asseriion is given below:

- . 3 e’ e, s ms
Theorem. If a belief function Bel on a Boolean algebra (L satlsiies

s provatility funcilon.
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Proof: We necd to show thet Bel{avB)=Bel(i)+Bel(B) for wy tweo

elements A,B: (! such that AiB=i, But we slready know, oy the
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only show that Bel(AvB) ¢ Bel(A)+Bel(B)., But if we apply Axiom III

to A and 5} we obtain

Bel(Z)+Bel(EB) < Bel(AvB)+Bel(ArB),
and substituting 1»Bel(§) for Bel(X) in each term of this inequality
yields

1-Bel(A)+1-Bel(B) £ 1-Bel(ArB)+1-Bel(AVB).

Since Bel(AAB)=0, this becomes Bel(AvB)< Bel(A)+Bel(B).
' %G|

So & belief function Bel is a probability function if and only if
it satisfies Bel(4)=1-Bel(Z) for all A. But in general the upper proba-
bility function associated with a belief function Bel is given by
p*(A)=1-Bel(X). So a belief function is a probability function if end
only if it is identical to its upper probability function,

It is worth noting that the rule

P&, v )= TPk )= TR(AL A Yo oo 4 (1 Y plagneah )

for probability functions also implies the rule

< ; n+1? P
P(A.i'\ f‘An)zZP(Ai)»)”P(Ai\Aj)a:w-'--+(-1) 9(A1v VAn).

To derive the second equation from the first, one need only replace ench

Ai by Aie Hence probability funciions slso satisfy rule (3) for vpper

prebability functions with equaliir.
From the point of view of our theory, then, & probability function
il 4

is e special kind of belief funciicn, &nd & "subjective probabiiity® is

a special kind of degree of belief, Iandeed, it might be called a two-
sided degree of velief, for it supplies & degree

P LA y - L ey B P FE S s I 2 g
proposition and for the negaticn of thal propositicn,




6. Discounting Belief Functions

It often happens that we obtain our opinions and beliefs on a topic
from someone else in whose judgment we have'g reasonable degree of confi=-
dence, In most cases, of course, we will not have absolute confidence in
this other person's opinions and hence will wish to discount thoge opinions
at least slightly before adopting them as our own. This process of dis=-
counting can be represented quite simply in the theory of belief functions,

Suppose, indeed, that the other person's belief function is BelO:(I—QGD,{Y,
and that one's degree of confidence in the other person's judgment is o,
yhich is some number beiween zero and one, Then the natural thing to do
is to adopt thé quantity c<-Belo(A) as one's degree of belief in sny
proposition AS(@ that is not the sure proposition Xf. Formally, one
would adopt the belief function Bel: () — [0,1] defined by Bel( V)=f snd
Bel{A)= « Bely(4) for all ALV, It is essily verified that the funciion
Bel defined in this way is indeed a belief function,

The pfoeess of discounting a belief function is a special case of
’the process of taking a linear mizture of two or more belief functions,

£ functions on the came Boolean

(o]

Iir Bel1 and Belz are twe different bell

algebrs of propositions Q@, and if < is s number beiveen zero and ong,

then the function Bel: 1 ->10,1] defined by Bel(a)= x Bel, (&)+(1= =)Bel, (4)
0,1, i 2

for all AE:{B will be a belief function; it is seid 14 be & linear nix-

P 4

ture of 3611 ané EelQ. It is evident thai discounting & bvelief function

q

Belo by the factor « iz the same ng teking a linecar mizture of Bel? &nd,
the vacoous bellef function, wsing coefficicnts ' and {1=20),
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When & belief function is passed from person to person, being dise
counted each time, the dégrees of belief accorded to the non-sure prow-
positions c§nstantly decrease. Hence the notion‘of discounting belief
functions can be used to represent the diminishing credence that we
lend to hearsay or to any tradition of testimony as its source becomes
more remote,
| These. ideas are hardly-novel.' Inrfacf, they were quite‘ébmmon in
the eighteenth century discussions of the probability of testimony, which
~were much concerned with the bothersome idea that the probability of the
" geriptures diminishes with time, By and large, though, the notion of
_disCounting'?probabilities" did not survive into the nineteenth century.
Its failure tévsurvive can be attributed to its conflict with fhe rule of
additivity for probabilities; for once additivity is“assumed,ufhe dimin-
ishing“probability of the tradition comes to imply an increasing probs-

bility for the denial of the tradition--and this seems less reasonable,

~

e

~.

7. A Counterexample

In Part I, I strongly criticized the attempt by some students of
subjeétive probability to insist thaf "rationzal" degrees of belief ought
to obey the rule of additivity. In fact, I questioned the very idea that
abstract considerations could lead to rules that were absolutely obligstery
for all reasonable systems of degrees of belief., But what about the rules
that I have offered in this chapter? Are there ressonsble systems of

degrees of belief that would violate them?
Theve are, and it is easy to coasiruct examples, Ouwi general metiud
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law., An aleatory law P on a set ¥ is a function P: 7 (%) —[0,1],
yhere P(¥) is the set of all subsets of a set X , and P(4), for each
Ac:¥‘, isvtéken to be the chance or objective probability that the out-
come of a certain experiment or process will be»in A, It is a commonplacé
that if we were‘realiy certain that some process were governed by an
aleatory law'fhen we would be-justified in adopting as our degree of
belief in the occurrence‘of a given event the chancé aséigne&'to that
event by the aleatory law.. The set 77(35) can be interpreted, of course,
as a Boolean algebra, and the resultlng system of degrees of belief would
be & probabillty function and hence & belief function. More generally,
tho;gh,‘we ﬁight contemplate the situation, hoﬁever fictional, in which
ve are abéolutel& certain that the procéss is goierneé Ey one of a given
collection {Pé}p(g of aleatory laws, In such o c&qe we might be justified
in adopting as our degree of belief in the given event the infimum of the
" chances assigned that event by the various iaws P,ﬁ. More precisely, if
the aleatory laws were\on an observation apace £ » we~mlght define
B:of (¥ ) —[0,1] by B(4)= éf@>PH(A). Such & function B will in geneval
not be & probabllity function. And while it will satisfy B(ﬁ)zo and
‘B(Y )=1, it will not satisfy Axiom III for belief functions unles& the
Iclass of aleatory laws EI@}0§G> is chosen Lwth navtzcular care,

Dempster‘has given the followlng example where the function B does
not séfisfy Axiom IIXI, Letting I' congist of the four possibilities

\bb, bw, Wb, ww}, we contemplate the three alentory laws given by

L

P (vb)=t, Py (bw)=t, P, (wb)=t, Py (we)=ss

Pe(bb)xg,‘ P, (bw)=0, ?,(wo)=x, P, () =0

- / 1 hY ~ s ‘o H"‘, .
e Foawbhisl, P ey
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We could imagine this situation arising if X comsisted of all the possible
results from drawing balls succe531vely from two urns, the first of whlch
vas knOWn to contain one black and one white ball, and the second of which
might contain either one of each color or else two of the same color.
The aleatory law P, would then correspond to the case where the second
urn containgd one black and one white ball, P2 would correspond»to the
case where it contained two black balls, and P3.to the case where it con;
tained two white balls., Setting A1=§}b, bw} and A2=gsb, ww}, wé obtain
B(A,)=B(4,)=B(4,VA,)=} and B(4;"4,)=0; and this violates the requirement

* that B(4,)+B(4,)-B(ANA,) should not exceed B(4,VA,).

'8, Axiom III

In a sense, the'third axiom for belief functions includes an infinite
number of azioms, one for each natﬁral number n., One might hbpe et Tirst
that it should be unnecess ary to have s0 many axions; perhap$4the first
féﬁvvould imply the othere. Unfortunately, though, it ia necessary to
state the axiom for an infinite number of different integers; for while
the truth of the axicm for a‘given value of n implies its truth for
smallér values, it dosg not imply its truth for larger velues, This

section is devoted to establishiag these facts,

STheorem.  Suppose C; iz & Boolesn algebra, n is a natural number, and
Potaehhadie et ’ ¥

B: (L ~>[O, i} satisgfiss
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> - SRS ‘s :
B(&yv---vA _ )2 ZB(A,)=) B(ANA J4+=-o- +( 1)7B(a2 A4 )
for all sequences Al""’An-‘l of n-l elements of Q.

Proof: Suppose A1"“’An-1 are elements of a , and set Anc_,’\.

Then by (iii),

- n+i
B(AN--- VA, )=B(&V-- vAn)éz B(Ai)-ﬁ‘gg(AiAA j)+. cot(=1)"B(A An )
= B(A, )=TB(A AL J4=r-- +(=1)"B(AA AR ).
1$n-1 1 7‘9'5“.' iJ 1 n-1 '

‘Theorem. Lef n be a natural vnumber, Then there exists a Boolean algebra
| da.nd a function B: @;““[0,1] such that
(1). B(AN)=0,
(i1). B(V)=t, .
(iii), B(sy-vs )2 X B(S,)-ZB(5, S Y=ot (=1
for all seguences S1 ,‘..,Sn of n elements of @ o gnd yet

(iv). B(AY-VA_ )< T Bla )= TB(A A Mmn - 4(1)42

of n+! elements of f@ .

)n+1

)

«Q RN
B(u1l\ ’Sn

B(A‘iwu!\‘&n-!-‘i)

“for so;ge sequence A1 roo "An v

. The rest of this section is devoted to an example esiablishing this

theorem, Set xg equal to a set of n+2 elements:

j ""E&‘ goes ;an+2}s

end set (}, = 7”(,3 ), the set of all subzeis of /J? interpreted as & Boolean

glgebra, Define B: (] )—>]0,1] by setting B(4) equal to

i i a=f,
2/n+1) if A includes ay and n of §a29..e ‘%-%2}”
i /(h+1) if A includes a, put fewer than n of {azu.-u&n_,e}s
. and 0 - if A does not include Be0

Since V= and Q,‘- conditionz (1) and '31) of the theoren are irue
Yy = X - $ /

F R T T T . T SN AU N, F. [T - TR
for thiv erawpic. The eilsry Two and pios TING vut oore didficuld o

5
N g e
h.vu;.\;l;sa WA bw W 4
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First, let ﬁs establish (iv). To this-ené«, .note that é. subset A
of j satzsfles ‘B(A)=2/n+1) if and only if A= 3-;%1} for some i between
2 and n+1, Hence there are exactly n+! distinct subsets of /(f that
have a value of B equal to 2/{(n+1). Denote these by 4, ""’An+1 O
Then B(A,v-~VA_,)=1, while - |

3 B(ag)- TB(ARA Yoo (V2B AL )

(n*‘xz/(nm) (P (1/ 1))+ (5 (1/ (a1 )= o= (M2 CH (1/ (1))
=14(1/(n+1)) [ (% >--<“;_'1 Yo rer +(=1 )"*2(3:} )]
=1+(1/(n+1)).

" Hence (iv) is satisfied by the sequence A;,e.e,A 4.

" Now let us establish (iii). Actually, we will establish that
vhenever 1<k <$n and 31,...,3k are gubsets of ,<€,
k1
B(S1va--vSk)BZ B(Si)-»Z_B(SiASj)%m +(=1)""' (8,28, ). (1)
Case 1. B(Si)==2/(n+1) for i=1,...,k. Let A ,...,A ., be as above,
and for each j, ;j=1,...,n+1,

_let kj be the number of the Si squal to Aa..

Thenk.-k1+ +1 . And S

55, =2/ (1) i1/ (o ))%Q‘(‘%ﬂ |
B(s5,)=(2/ (ast DL+ (1/ (D] ()= 3 (5] =1/t >>}<§>+ S ﬂg

etc. Hence
S B(S Yo ZB(s AS; )+« --+(»1 )L+1B(S Arng ) .
‘=(‘f/(n+1))[( )= <k>+- +(1 )“‘(“)ﬁ(u(mx))b( 3)= (53)4= oo (=1 I

=(1‘+1 )I/\ﬁ""’ )9

vhere r is +the number of j for which kj? 0, and 1 <r<mn, If there is only

_one such j, them the above becomes 2/(nt+i), which will be equel to
'B(u Ve vS )«“\A V., If thereis more thex one, then B(Siv-nvsb)ﬂ , but

U
(z49)/{ne1) w222 59333 not oxeeed 1, e (1) wiil ¢
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Case 2. Some of the S. do not have B(3;)=2/(n+1). Llet s be the
pumber of the i, i=1,...,k, for which B(Si)£2/(n+1). Then let us estabe
1ish the inequality (1) by induction on s, The case s=0 was established
in the preceding paragraph. So suppose 8 z{, and suppose (1) nolds for
all smaller values of s. We may also assume that ¥ is one of the i for
which B(Si)# 2/(n+1). And the right-hand side of (1) becomes
> B(s;)=23B(sp sj)—s-- - )k+1B(S1/\ A8, )

=B, +B

17020

vhere
B,= ZB(s )= }“B(sjf\s Yo oo - 4( =1 )kB(S PN Sy 1),
ke P4k

and

B,=B(5)~( T B(5,28;)=2 B(SAS1S )= NED CYE ST M)

18k Kj‘k‘ﬁ

By the inductive hypothesis, B(S1!' k-i)"B1' Yow consider sepavately

the cases where B(Sk)u1 and whers B(Sk) ig lesg than 2/{n+1). In the

first case, B(S1V'~v sk)-.=1 and B,=1-B,, 80 B(sv v sk):1=}31+32, and (1)
holds. In' the second case, B,=0, and B(S,v- V8, ) 2 B(Syv- vy 4 )% By=By+By,,
snd again (1) holds. This completes the demonstration.

V74

ad

Axiom IIT for belief funciicns wag derived by A. P, Dempster for

i

"lower probabilities induced by a multivariate mepping® in his 1907

of Vnthematicsl Stotistiics., Darler, Gustave Choguel

apoy in the Annals
iy

had used Axiom TIT to define a “"monotone set funciicn of order «,% (Jee
pp. 169=71 of his "Theory of Copucities.”) To my knowludge, though, no
oo Satvitively oppociing

one hax proviocusly adduced these incopalities oo Intvilively oppooliing

T PR A
?‘L’,:’.ﬁf@ T GEFSGEs Ui DUddv s
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The example involving the first United States Senate takes some
1iberties with history. Actually, only twelvé of the twenty-two Senators
were present on April 6, 1789, when the Senate elected John Langdon of
New Hampshire as its President pro tempore. (See De Pauw, p. 8.) Further~-
more, the division into the two parties was not clearly established at
that time, so that the affiliations I have imputed to the various Senators
are open to dispute. They are based on the votes of July 18, 1789, on
the bill establishing a Department of Foreign Affairs, and the votes of
August 4, 1789, on the bill establishing a Department of ¥War, (De Pauw,
pp. 86=7 and 104=6.)

For more information on the "non-additive probabilities” obtained
by Jamés Bernoulli and Johann Heinrich Lambert, the reader may éoﬁéﬁit

pp. 218<220 of Bernoulli's Artis Conjectandi and pp. 318=421 of Volume 2

of Lambert's Neues Organon. Bernoulli's and Lanbert'n ideas are discussed

in detsil in Part I of this essay. References to the eighteenth century
discussion of how the probability of bestimony dimiuishes with its ivanse
mission,cén ve found in Tedhunter's history, pp. 54, 462 and 500, The
matter vas also discussed by Diderot in the article “Probabilité“ of

. 1. —, >
his famous Encyclopedie.

il

The cxample revproduced in section 7 was given on pp., 51=3 of Dempater's
-2 <) & &

The Theory of Statistical Inference.
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CHAPTER 2. ALLOCATIONS OF PROBABILITY

This chapter develops explicitly the intuitive picture underlying

the axioms for belief functions. This results in the mathematical notion

of an allocation of probability, and in the theorem that every belief

function can be represen‘éed by an allocation of probability.

1. Constraint Relations

I used the term ''portions of belief' in the preceding chapter so
as to emphasize the differe'nces between the theory developed there and
pfobabilify theory,v but it is evident that the intuition involved is really
| quite close to the intuition of students of subjective.probability, who
are accustomed to thinking of their probability as a measurable substance

that can be divided into various pieces and distributed over a Boolean

algebra of propositions. Indeed, itis in the method of distribution rather

than in the nature of the abstracted probability that the differences will
be found between the theory of belief functions and the more special
theory of probability functions. Hence I find it entirely appropriate to
follow the probabilist in using the word probability in place of the word
belief when I am thinking of belief as something admitting of degree, and
in the rest of this essay I will speak of pieces of probability or of

- probability masses rather than of portions of belief.

In this vocabulary, the intuitive picture developed in the preceding
~chapter involves the division of our probability into various probability

masses, each of which may or may not be associated with or committed
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to a given proposition. There are of course restrictions on our freedom
to commit probability masses to propositions; when I was adducing the
rules for belief functions I mentioned the following ones:

(1) No probability mass may be committed to 4.
(11) Every probability mass must be committed to V.

(I1I) If A1 <Ay, then any probability mass committed to Ay

must also be committed to AZ'
(Iv) Any probability mass that is committed to both A1 and

A2 must also be committed to AlAAZ'

This list is not exhaustive, though; we can easily extend it if we think

a little more about the relations among our probability masses.

Our various probability masses are not conceived of in isolation;
they are all pieces of the sanr‘lekfixed quantity of idealized substance
representing our probability, and hence they can bear various relations

to each other. For example, one probability mass may be part of

another, Or one may consist precisely of the overlap between a pair

of others, or perhaps of all the probability that is in either one or the

other of a pair of others. I will write M, < MZ to indicate that 1\/11 is

part of MZ’

of M1 and MZ’

that is in either 1\/11 or MZ'

or is contained in MZ; and I will denote by MIVI\/I2 the "union"

or the probability mass consisting of all the probability

On‘ce we have established the ideas of containment and union for
.probability masses, the following additional rules imf)ose themselves on
the relation of ""commitment' between probability masses and propositions:
(V) If the probability mass M1 is committed to A and M2 <My,
‘then M, is also committed to A.

2
(VI) If the probability masses M, and M, are both committed
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to A, then the probability mass MlVMZ is committed

to A.

Evidently, the collection of our probability masses is beginning

to acquire the same formal structure possessed by the collections of

propositions we have dealt with; it is beginning to resemble a Boolean

algebra.

In order to develop this structure further, let us denote the collection
of our probability masses by the letter M. we already have the relation

ng of containment which holds between some pairs of elements of 771;

and for any two elements Ml’ MZ’ we have an element MlVMZ which is

their union. Intuitively, we should also have for each pair Ml’ M,

a probability mass Ml/\szm representing their overlap or "intersection. "

And for each element Mc?)( there ought to be an element Mel which

consists precisely of the probability that is not in M. There are

difficulties, though, with the symbols "A" and "—'". The difficulty with

writing I\/Ilf\M2 is that Ml and Mz might be ''disjoint' -- they might fail
In such a case there would be no probability mass for

to overlap.

Ml/\l\/I2 to denote. Similarly, if Mf?/( is the probability mass consisting

of all our probability, then there will be no probability left over to

constitute the probability mass M. Both of these problems can be met

by the invention of a 'null" probability mass, thought of as consisting
of no probability at all, If we denote this null probability mass by A
or ,w,.énd dénbté the probabiiity mass consisting of all our probabil-
ity byv or V% , then we will be able to set Ml/\ 1\/12 = '/\"/Yf\/
whenever I\/[1 and M2 do not overlap, and we will be able to set

\F%:_/\ . It will also be convenient to establish the convention that
"

A-M <M for all Mcm.
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QOur collection M ot probability masses is now endowed with all

symbols we have used for Boolean algebras of propositions. It has a

relation ''<', operations "A", 'v' and " ', and distinguished elements

't and "V, Furthermore, these symbols have all the properties that
we have been accustomed to in Boolean algebras of propositions. For
example, A < MSV for all Mf?/l; and for any Mf?/{, MAM =A and
MvM =Y . In the following pages I will call 7la '"Boolean algebra of
probability masses'' or a "probability algebra, ' and I will use these
symbols and their properties freely.

In assuming that our probability is represented mathematically

as a Boolean algebra 7, 1 am again taking for granted that the structure

of Boolean algebras is intuitively clear. The reader who is dissatisfied

with this intuitive approach may wish to turn to the first two sections
of Chapter 3, where Boolean algebras are defined and studied abstractly,
We are dealing, then, with a Boolean algebra of probability masses
‘?)( and a Boolean algebra of propositions ((, and we have six rules that
govern the relation of ''commitment” between a probability mass Me
and a proposition A€ (,? If we write "M ct A' to signify that M is committed
to A, these rules can be listed more neatly as follows:
(1) (a) If Mct Ay and Alg A'Z’ then M ct A,
(b) If M ct Al and M ct AZ’ then M ct Al/\AZ.
(c) M ctVé for all M(?](.

(2) (a) If I\/I1 ct A and MZS Ml’ then M2 ct A,
(b) If M1 ct A and I\./I2 ct A, then 1\/11VM2 ct A.
{c) -A'M ct A for all A¢({.

(3) If M ct Aa then M = _lg.
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The last rule above, rule (3), has been slightly modified from its form
as rule (I) in the first list; instead of saying that no probability mass can
be committed to f\_Q. I now say that orﬁy the null probability mass can
be so committed. And I have added a new rule, (2c), which says that
the null probability mass is committed to any proposition. This is a
harmless convention, and it rounds out the mathematical picture.

Both for reasons of euphony and for intuitive reasons that will
emerge later, I will usually read "M ct A" as '"M is constrained to A"
rather than as "M is committed to A,'"" And I will call a binary relation
et between a Boolean algebra of probability masses 7t and a Boolean

algebra (Q a constraint relation if it satisfies the three conditions just

listed,

Thus far, I have argued that our collection M of probability masses
should have the structure of a Boolean algebra, but it also has a further
structure: every probability mass Me¢ M has a measure. We need,

evidently, a function p:)—[0, 1] that assigns to each element M its

measure H{M).

Definition. If / is a Boolean algebra, then a function /1:%7-,—[0, 1]
is a. measure if
(1) KAy =0,
@) (V) =1,
and (3)  p(M[) + p(M,) = p(M;VvM,) whenever M, szm
and Ml/\l\/I2 = fLm
If 7 is a Boolean algebra and u:7/=+[0,1] is a measure, then

the pair (7, u) is a Boolean algebra of probability masses, or a

measure algebra,
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Conditions (1) - (3) in this definition should be intuitively evident.
Formally, they are the same conditions as those used in the previous
chapter to define a ''probability function' on a Boolean algebra, Hence
a measure will have all the same properties as a probability function.

It may occur to the reader that the preceding definition of a
measure algebra does not capture all the properties that we might
intuitively ascribe to the idealized substance that represents our
probability. The definition does not exclude, for example, the possi-
bility that a probability mass M not equal to .A_m might have p(M) = 0;
yet intuitively a probability mass M ought always to have positive
measure unless it contains no probability at all and hence is equal to
_A_m . Another inadequacy of the present definition is the lack of any

requirement of 'additivity' for the measures of infinite disjoint
collections of probability masses. Later we will find that we can
impose further conditions on measure algebras so as to correct these

inadequacies. The present definition, though, will serve us well in

this chapter.

2. Allocations of Probability

The mathematical notion of a constraint relation still does not
quite do full justice to the intuitive picture that I used to derive the axioms
for degrees of belief in Chapter 1. For in that derivation I spoke
repeatedly of the ''total pbrtién of belief associated with a given proposi-
tion.' In the present vocabulary, this would be the total probability
mass constrained to the proposition; and it is not clear how this "total

probability mass'' can be identified in terms of the constraint relation.
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Intuitively, the ''total probability mass'' constrained to proposition
Ae[f would be a probability mass Me//{ with the properties (i) M ct A
and (ii) if M'e/{, then M' ct A if and only if M < M. But unfortunately,
nothing in our mathematical definition of a constraint relation requ-ires
the existence of such a probability mass M for each proposition A,

We need, then, to insist that such a probability mass Me/l should
exist for each Ae¢ Q The natural way to do this is to postulate the
existence of a mapping p:ﬁ?.»?){ that assigns the appropriate M to each
A. The constraint relation ct can then be defined in terms ol the
mapping pP.

What properties should the mapping p have? As it turns out, the
essential proper;ties of p are those determined by the facts that (i) No
probability mass except ‘A‘?’? is constrained to _.A.Q, (ii) All the probability

(i.e., ”\/?,,1 ) is constrained to Ya, and (iii) The total probability mass

constrained to AIAAZ consists precisely of the intersection of the total

probability mass constrained to A1 and the total probability mass

constrained to AZ'

Definition. A mapping p: (LM from a Boolean algebra of propositions a
to a Boolean algebra of probability masses /)/)/) is an allocation

of probability if p satisfies the following three conditions:

(i) p(_AQ) = .A.m »
(i1) p(Yg) = Vo,
= p(A)Ap(A,) for all A}, Aje Q.

(iii) p(AAA)

Since p(A) is the total probability mass constrained to A, a given

element Mt'?;/{ should be constrained to A if and only if M < p(A). Itis
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easily demonstrated that a binary relation defined in this way actually

is a constraint relation. I will refer to it as the constraint relation

given or specified by p.

Theorem. Suppose p:{2 -»77?15 an allocation of probability. Then
the binary relation 'ct' between M and [() defined by "M ct A
if and only if M4 p (A)'" is a constraint relation.

Proof: Itis necessary to establish conditions (1), (2) and (3)
in the definition of a constraint relation. Condition (2) is
ir‘nmediate; and the others are implied by the three conditions

in the definition of an allocation: (i) implies (3), (ii) implies

(1c) and (iii) implies (la) and (1b). E;Zj

It should be reiterated that not every constraint relation is specified
by an allocation. But when there does exist an allocation specifying a
given constraint relation, that allocation is unique.

Since p(A) represents the total portion of our probability that
is associated with the proposition A, its measure u(p(A)) ought to be
our degree of belief in A. Hence the function ;Lop:(t/}-a—[l,O] gives our
degree of belief in the various propositions in (L} Will pep always
be a belief function? It certainly ought to be, for the notion of an
allocation of probability is a mathematical abstraction of the very intuitive

picture that I used in deriving the axioms for belief functions,

Theorem. Suppose (7, p) is a Boolean algebra of probability masses,
(Q is a Boolean algebra of propositions, and pﬂ—»?/] is an

allocation of probability. Then mop is a belief function on [(
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0.

Proof: (i) (POP)(_L&) = #(J\m)
(ii) (“OP)(—\%) = u(V;)

1

1.

(iii) Mathematically, the function pu qualifies as a
probability function on M . Hence, according to
section 5 of the preceding chapter, p itself satisfies
the inequalities for belief functions with equality. And
in is a simple consequence of the definition of an
allocation (cf. Chapter 3, section 3) that p(Al) A p(AZ)

whenever A. & AZ. Similarly, u(Ml) S/J(MZ) whenever

1€
le MZ' Hence for any elements Al’ AN Ane C@,

p(Al)v. RV p(An) a p(A1 Voeeo V An), and

pop(A v v A )2u(p(ay) Y vp(A))

=2 kptay) - 2 ko(ADA(AN oot (DT R(e(8 DA np(8 )

i i<j

+1
> wop (8 - 2 mep(apA) ¢+ (-1 pep(aa Ak ).
i i<j
Since it provides a mathematical representation for the intuitive

picture underlying belief functions, the notion of an allocation of probability
is the mathematical core of the theory of partial belief presented in this
essay. In the bulk of this theory, the notion of an allocation will in
fact be taken as basic. This seems to me to be appropriate, but it
throws into question the adequacy of our axioms for degrees of belief.
For it might be that some functions satisfying those axioms could not

be represented by an allocation of probability. In fact, the axioms are

adequate, and there are no such functions. In other words, if d is a
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Boolean algebra and Bel:([—{0, 1] is a belief function, then there must
exist a Boolean algebra of probability masses (#, u) and an allocation
of probability p:(l — such that Bel = pop. Most of the rest of this

chapter is devoted to the proof of this fact,

3., Four Examples of Allocations

The simplest way to prove that a function Bel on a Boolean algebra
(E is a belief function is usually to construct an allocation that represents
it. In this secicn I will provide such corstructions for the examples of
belief functions that were given in Chapter 1.

A. The Vacuous Belief Function

Recall that the vacuous belief function on a Boolean algebra ( is

given by

0 if A=+ Vg

Bel(A) = {
1 if A = Vg,

In order to represent this belief function, we construct a two-element
measure algebra = { Ly, V) » with u(Ly) = 0 and p(Vpy) = 1. We

then define an allocation p:({l =7 by

\ it A~
pa) = {J 7 ' V:Z
~ Vo A =7

It is easily verified that (7], n) is a measure algebra, that p is an

allocation of probability, and that Bel = pop. The construction can be

kdescribed intuitively, of course, by saying that all one's probability is
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committed to v}g , while none of one's probability is committed to any

other proposition in &

B. Belief Functions on a Four-Element Boolean Algebra

In Chapter 1, we saw that when q= ” , A, A, "Y"}, any function

Bel:({={0, 1] satisfying Bel(l) = 0, Bel (v) = 1 and Bel (A) + Bel (A) &1

is a belief function. In order to represent such a belief function, we
require in general an eight-element measure algebra 7.

Suppose, indeed, that Bel(A) = a, and Bel(A) = as; al + a,

<1,
Then we can construct 77 by postulating first that 7/ contains disjoiat
probability mass Ml’ M2 and M3 with measures a;, a, and | - e, - a2

respectively, and thetincluding all the unions of pairs of these three,

More explicitly, say that M consists of:

<

o “dm with uMy) =0,

Adl wdﬂm;dkdl): al’

MZ with [L(MZ) =a,,

M, with u(M;) = 1 - a, - a,,

M4 :MIVMZ with u(M4) :al +a2

M, = M;vM, with p(Mg) = l - a,

M, = M,vM, with u(Mé) =1 - a;

M, = MVMvM, = Vyp  with p(M,) = 1.
Intuitively, 7l consists of all the probability masses that can be
constructed from the three "basic probability masses, " Ml’ M2 and M3.

The allocation p@—»?/(’ is given, of course, by p(j\a) :J‘Wl , p(A)

=M, p(&) = M,, and p(Y) =Y, - Bvidently, Bel = uop.
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C. The Senate Example

The measure algebra in this example is easy to describe
jntuitively: there are eleven disjoint basic probability masses, each
with measure 1/11. It would be a bit tedious, though, to enumerate
all the probability masses, for there are Zn = 2,048 of them.

Suppose we number the States shown in Figure 1 of Chapter 1
in the order they are shown there -- New Hampshire being number 1
and New York being number 11. Then we can suppose that our i'th
basic probability mass, M., corresponds to the i'th State. The
allocation p: 3 a7 can then be described by saying that it maps the
proposition A =“The Senator chosen will be in the subset A of the

twenty-two Senators'' into the probability mass formed by the union

of all the basic probability masses corresponding to States both of

whose Senators are in A. If there are k such states, the measure of

p(A) will be k/11,

D. The Kansas Example
For this example, we need six basic probability masses and

26 = 128 probability masses in n altogether. Five of the basic
kprobability masses, say, Ml’ e ey M5, have measure 1/7, while a
sixth, say, M/, has measure 2/7. The allocation p: i =~7)| can be
described by saying that p(V&) = T’??’Z = Mlv. . 'VM6’ whereas if R is

a proper subset of Kansas, p maps the proposition '""The base will be
located in R'' into the probability mass consisting of the union of those

probability masses I\/Jli (i between one and five) such that the i'th

Congressional district lies within R.
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4, The Allowment of Probability

Let us pause to describe the upper probability function P* in
terms of the allocation p. Whereas Bel(A) can be understood as the
measure of the total probability mass that is constrained to A, P* (A)
can be understood as the measure of the total probability mass that is
not constrained away from A, For p(A) is the total probability mass

that is constrained to A, i.e., away from A; and its complement

p(A)is therefore the total probability mass that is not constrained away

from A. And p(p(A)) =1 - 4 (/’(A)) =1 - Bel(A) = P (A).

Let (: &-—»’m be the mapping defined by [(A) = p(A). Then
P* = po(. In the sequel we will often be interested in the upper
probabilities of propositions and hence in the mapping . Since ((A)

can be described as the total probability mass that can be allowed to

A, I will call { an allowment,

Definition. Suppose p: ([ =7/ is an allocation of probability. Then

the mapping é’: L —-—m AMp(—A_) will be called the allowment of
probability corresponding to p.
Theorem, Suppose C@ -7 is an allowment of probability. Then
@ LChg) = A
(i) £(Va) =V
(i) {(AVA,) = L(A))V{(A,) for all A}, A,e a.

1
Proof. (1) ((hg)=p(le) = p(Ya)= V=L
(1) ¢0a) = P0G ) = Plla) = <bw = Y.

(ii) {(AVA,) = pAVA)) = p(ANA,) = p(A]Ne(R,)
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5. Some Simple Consequences of the Axioms

Our present task is to justify the claim that the axioms for degrees

of belief actually force conformity with the intuitive picture involving

allocations of probability. Our first step will be to explore some of the

jrmmediate consequences of those axioms.
First, let us verify that a belief function Bel: (1 —[0, 1] does
indeed obey the rule of monotonicity, i.e., that it satisfies Bel{A) £ Bel(B)

whenever. A, Bea and A< B. To do so, we need only substitute A and

B-A for Al and A2 in axiom III for n = 2, obtaining

Bel (AV(B-A))> Bel (A) + Bel (B-A) - Bel (AA(B-4A)),

or Bel(B) 2 Bel(A) + Bel(B-A).

Secondly, let us investigate in detail the quanﬁties
BlA., ..., A)=3Bel(A,) - X BellANA) + ... (—l)n-HBel(A A
1 n 3 i’ S 1] 1

for various collections {Al, v An} of elements of (. Obviously,
B(Al, Cees An) depends only on the collection {Al, ey An}’ and not
on the order of the Ai' According to our intuitive interpretation,

B(Al, C e An) should measure the total probability that is constrained
to at least one of the Ai’ and one can easily adduce many conditions that

the quantities ﬂ(Al, R An) should satisfy if they are to conform to

this intuitive interpretation. For example, they will have to satisfy
BAL, .oh A)<BAL oy ALY (1)

for all collections {Al, vy An+l}c G -

Actually, (1) is easily deduced from the formula
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BAL, vovy Ai) = BlAL oy A+ BA L)
(2)

- I
B(Al/\A ey An An+1):

n+l’
which in turn follows from a simpie calculation:

BA, ..., A .)=%Bel(A) - X Bel(A,AA,) + £ Bel(ANAANA ) - + ...
1 1 Vg 17 GGgex P Tk

(2 Bel(A;) -  Bel(AnAL) + 2 Bel(A. /\AJ/\Ak) cee )

i<n i<jgn t i¢j<k<n
+ (Bel(A ;) - Z Bel(ANA ni1) + X Bel(A, /\AJ/\A Lp)tees)
i%n i<j<n
= B(Al, ce e ) + B(A n+1 B(AIAAn+1’ cees AnAAn+l)'

“To deduce (1) from (2), we need only use the rule of monotonicity and

axiom III to conclude that

BA_ 1) = Bel(A 1) 3Bel((A)AA L )ve VIAAA )2 BANA Ly, ey
AnAAn-i—l)'
Of course, for‘mula (2) itself has a simple intuitive interpretation; it says

that the measure of the probability constrained to one of the Ai’ i=1,

..., ntl, is equal to the measure of the probability constrained to one of

the first n Ai plus the measure of the probability constrained to An+1’
less the measure of that probability which is constrained to both An+1 and

one of the firstn Ai and thus is counted twice.

If the element An+1 were actually a subelement of one of the elements

Al’ vee, A, say, A i1 S <A o’ then any probability constrained to An+1
would already be constrained to An’ and it would seem that equality should

hold in (1). This is obviously true for n = 1, for if A2 < Al’ then
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i

B(A,, A

[+ A,) = Bel(A)) + Bel(A,) - Bel(AAA))

Bel(Al) + Bel(Az) - Bel(AZ)

= B(a)).

And it follows for larger values of n by induction: if it is true for n <k-1,
and Ay, oo A€ [ and A <A then ANA L SANA L, fori=1,

., k, and
= . = )
Bley,y) = BANA ) = BBy Mgy AP Ay
= BA My A iMrgr A )

= ... = B(Alf\A

T L

and from (2) it follows that

. ! -
It follows from (1) that whenever {Al, cees Anfc{Bl’ e Bm}cg,
B(Al, e An) < B(Bl, e Bm). Actually this inequality will hold
even when {Al, ey A } is not contained in {B y ve., B } provided
. n 1 m
that for each A, f{A s ee., A } there is a B.({B , ..., B } such that
i 1 n j 1 m

Ai < Bj' For if the Ai are subelements of the Bj in this fashion, then it

follows from the preceding paragraph that ’B(Bl’ R Bm) = B(Bl, e

B , A An), and since {Al, C e, An}C{Bl, cees B, Al’ cees An},

m 1 2

BAL, ...r A)<B(By, <oy By AL o, A,

1f two collections {Al, c e An} and {Bl, RN Bm§ are related

in the fashion just described, i.e., if for each Ai there is a Bj such that
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Ai < Bj’ then it is convenient to say that {Bl, v Bm} majorizes

. An} . In this vocabulary, the assertion of the preceding paragraph

is simply that B(Al’ A An)—<— BB o) Bm) whenever {Al, ce s An} is

majorized by {Bl, ce s Bm}. Similarly, B(Al’ e, An) = B(Bl, e, Bm)

whenever {Al, ey An} and { Bl’ e Bm} majorize each other.
The following proposition may strike the reader as a bit too technical

to provide any further insight into belief functions, but it will be useful

to us later,

Theorem. Suppose {Al, cees An} , {Bl, ce e Bm} and {Cl, cees Ck}
are finite subsets of (. Suppose further that {Bl, cees Bm}
majorizes {Al, s An}, and that {Al, cs An} majorizes
gB A"C.,, ..., B /\C.} for eachi, i=1, ..., k. Then

1 74 m i .
B(Bl""’Bm)-B(Al"."An):B(Bl"",Bm’cl}"‘,ck)
~B(Al,...,An,Cl,...,Ck).

Proof. It suffices to prove the proposition for k =1, i.e., for

the case where {Cl, e Ck} = {C} By (2),

B(Bl, e B C) = B(Bl, ceas Bm) + B(C) - ﬁ(Blf\C, e Bmf\C),
BAy, ooy AL, C)=BlA, ..., A+ B(C) - BANC, ..., A NAC).

n

Subtraction of the second equation from the first gives the desired
result provided that
B(Bl/\C, vees B:m/\ C) = B(AI/\C, C ey An/\C).
But this equation does hold, for it follows from the hypotheses of
the theorem that {A AC, ..., A /\C} and {B ANC, ..., B /\C}
1 n 1 m

majorize each other.

v
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6. The Representation Theorem: Finite Case

Thebrem. Suppose @ is a finite Boolean algebra and Bel: a —[0, 1] is
a belief function. Then there exists a Boolean algebra of probability

masses (7, #) and an allocation of probability p: Q —7 such that

Bel =pop.

In order to prove this theorem, I will construct the measure algebra

MM as a field of subsets. (See Chapter 3, section 6) More precisely, I
will take 7] to be the field of all subsets of T - (i-{JLa}, and define a
constraint relation between /| and Q by saying that M is constrained to
A if and only if A' < A for each A'eM. This is indeed a constraint relation,

and it is given by the allocation p: (} -»—772 A»~>{A‘|A' <A, A’i_.\,a}.

In order to define the measure p on M, first define the basic

probability number m for each Aed by

where Al’ R An are all the proper subelements of A, and 8 is defined
as in section 5. The function p is then defined by
p(M) = Z m, .

AeM

Since the quantities m, are non-negative, p is evidently non-negative and

A
additive; in order to show that uis a measure on N, it therefore suffices
to show that p(‘:}/) = 1, This, however, is merely a special case of the
relation Bel(A) = f(p(A)), which we need to establish in general.

In order to verify that Bel(A) = p(p(A)), it is convenient to appeal
to the fact that ( is isomorphic to the field of all subsets of the set ,j'}

of atomic propositions of 0 . (See Chapter 3, section 6.,) Thinking of
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‘eac‘h element A of a as a subset of .5 , let ¢(A) denote its cardinality,
and set Par(A) = (—l)C(A). In other words, the parity of A is taken to be
+1 if A has an even number of elements and -1 if A has an odd number of
elements. Considering a fixed non-zero element A of /(' , denote as
before by Ay, .., An the proper subelements of A, Now, in general
c(A) 1. Exactly c(A) of the elements Al, e An’ on the other

hand, will obey C(Ai) = c{A) - 1; if we suppose that these are the first

c(A), then {Al, cees An} is majorized by {Al, ce s Ac(A)}' Hence
ﬂ(Al, cees An) = B(Al, s Ac(A))' Now
A ... A )= D Bel(A,) -2, Bel(ANA) + - ... +
B 1 c(A) i<o(A) i i'<j_<_c(A) i)
c(A)

+(-1) +1Be1(A1ﬂ...ﬂAc(A))

and it is easily seen that for each i, i =1, ., n Bel(Ai) occurs exactly

once in the right-hand side of this equation, with sign equal to

Par(A - Ai) = Par(A) - Par(Ai). Hence

(A, ..., A )y = - Par(A) Z Bel(A') Par(A'),
BAy c(A) A <A KL A
and
m, = Bel(A) - B(A,, .., A } = Par(A) Z Bel(A') Par(A').
A B(A, - Se(a) Aea

With this expression for m,, it is easy to verify that

Bel(A) = u(p(A)): Setting my = 0, we can write

i

p(p(A) = p({a'|aca, AT =N}

‘ my = 2. m
A !
A'CA, A" FA Aga

1

Z Par(A'") ( Z Bel(A') Par(A')
Al\(A Al!sAI

1
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= Z Bel(A'") Par(A") ( Z Par(A')).
AH\<A AH\<AY$A

But
0 if A £ AU

Z Par(a) = (1-1)°A" ¢ paria) = {

ASA'CA Par(A) if A = A"

Hence

p(p(A)) = Bel(A).

7. Measures on Semifields of Subsets

In order to prove our representation theorem in the general case,
we need to know how to extend a measure from a semifield to a field of

subsets. The exposition in this section is adapted from Kolmogorov and

Fomin, pp. 17-22.

Definition. A non-empty collection £ of subsets of a non-empty set .J

is called a semifield of subsets of ,3 if it satisfies the following
conditions:
i) E contains the empty set § .
(ii) 5 contains the set ,(? itself.
(i) If A, Bel, then ANBe .

(iv) If A and AlCA are both elements of 5 s, then
n
a= U a,
. i
i=1

where the sets Ai are pairwise disjoint elements of g , and the

first of the sets Ai is the given set Al'
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The following example will make condition (iv) more intuitively

accessible: Let 1? be a rectangle in the plane whose sides are parallel

J
to the coordinate axes and let ~ consist of the empty set § together

with all the rectangles that are contained in /] and whose sides are also

parallel to the coordinate axes. Then gwill be a semifield of subsets

of)}

Suppose that (,615 a semifield of subsets of }; and denote by J

the collection of subsets of j of the form
n
a= U a,
. i
i=1

where n is a positive integer , and the A are pairwise dlSJOlnt elements

of g Then it is easily shown that 9/15 a field, i.e., that 7‘4 is closed

intersection and complementation. In order to show that
e

r}' , then

under union,

g:/is closed under intersection, for example, note that if A, Be

n
/
U Ai for some pairwise disjoint elements Al’ . An of < and

A=
i=1
: m 2
B = u B; for some pairwise disjoint elements By, ... B ofé. So
i=1
m n m
ANB = u A)N( UB)= U U @ANB).
i=1 j=1 0 4=l j=1 7 J

0
But the A, ﬂBJ are certainly pairwise disjoint and are allin © , by clause

(iii) of the definition of a semifield. Hence AMNB is an elernent of I
On the other hand, it is evident that any field of subsets of J that
It
contains g must con‘cain?«/; hence r}‘ must be the smallest field of subsets
of )3 containing g, which is sometimes called the field of subsets of J

generated by é We are led, therefore, to the following theorem.
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Theorem. If f is a semifield of subsets of j, then the field of
T

subsets of}) generated by C consists of those subsets of jthat

admit of a disjoint navtition into elements of g

We are now prepared to attack the problem ot extending 2

measure on f

Definition. A function u: —»{0,®] on a semifield f of subsets of a

set 3 is a measure if whenever

is a finite partition of A, and A, Al’ cees An €0,

n
BA) = ) KA.
i=1

It is easily seen that if g is a measure, then u($) = 0. Hence if

g is actually a field and u(j) = 1, then the measure g satisfies the usual

rules: p(d) =0, #(/Z) = 1 and P(SIUSZ) - "(Sl) * P<SZ) whenever SlmSZ = 4.

Theorem. If é is a semifield of subsets of j, and u:é-—»[o, o] is a

measure, then p has a unique extension to a measure on the field

T ¢
UL generated by C.
l{\/

Proof: According to the preceding theorem, any element A€ 71\ admits

| :
of a finite partition A = L; Ai into elements of (Cj Define a function

o~
yid —[0, ®] by
v{(A) = Z}L(Ai).
1

In order to see that the value v(A) is independent of the partition,
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notice that if A = L§ Bj is another partition of A into elements of g,
then since «Ai = U (AinBj) and Bj = Llj (Aiﬂ Bj) are partitions of the
elements Ai and Bj into pairwise disjoint elements of g,

> uiag) = 2. B MOGEREDD > kanB))
1 1 J

i

i

i

23_: Y anm) = % k(B

Py
The additivity of v for elements of < is evident, so v is indeed a

measure onj‘/. To see that v is the unique muzasure on ’;(that extends

4

i, notice that if v' were another measure on ¢ that agreed with pon c,

-

then v' would have to satisfy

JA) = Dvi(a) = 2uvia) = v(A)

1 1

for any element A of J/admitting a finite partition into elements Ai

ofg. m

8. The Representation Theorem: General Case

Theorem. Suppose Bel:&—»{O, 1] is a belief function. Then there

exists a measure algebra (?72,;1) and an allocation p:ﬁ» 771 such

that Bel =pop.

The rest of this section is devoted to the proof. of this theorem.
The corresponding theorem in the finite case was proven by constructing

M as the field of all subsets of the set of non-zero elements of[('. In the

present préof’, we will have to content ourselves with a smaller field of

subsets of that set.
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N -
LetJ = a«— {./\ }, and for each non-empty finite subset @of
2 pty

dset

R(£)

i

o
[A,Aed ; A <C for some Cg 6}CQ?/,
and set

B(Ays »--s A

B

where Al’ e ey An are the elements of £ and B (Al’ cen, An) is defined

1

as in section 5. If & = b, set R(E) = 4 and B(E) = 0. Set

R = (RE)€ca; Cnite] .
There is a natural way to map & into 76; one simply maps A to R({A }).
The strategy of this proof will be to develop this mapping into an allocation
by extending %to a field of subsets ofgj and using the quantities B (€) to
define a measure on that field. .

Throughout this proof, the letters 6), a&, _“{’/ and %will always
denote finite subsets of @ and the letters A, C and D will always denote
elements of (. é A will denote the finite subset of (Lgiven by

ﬁA ={anc|cel},
and f,ﬁ,;ewill denote the finite subset of (U given by
o Caf = {cAD | cel,Ded ],
Evidently, ex&}rgﬁﬂ é, andén [A} = % Notice also that a distributive
iaw holds for = and U

Ul 8 = (Ea, U (La$).

Let us say that 6 majorizes&é‘ if for each non-zero Deg@ there

exists an element C ¢ (& such that D £ C. I will use the notation npla En

‘to indicate that @majorizes gé' The following facts follow from section 5:
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(1) If @&, then 0SB (&) < B (&) = 1.

2) B (EUlal)=B@) +B ([A]) - B(&y)

(3) 1 el and C, a A for each A €Y, then
BIE U - BLOUY) = BIE) - BEO-

Now it is obvious that R(CR(2) if and only ifc@ C. This implies
in particular that if R = R(£), then B (/9) = B(@) So we can define a
mapping
by: K —=[0, 1]
by setting
bo (R(€)) = B(E).

Now the collection Zgof subsets on';’Jis closed under the operations

of union and intersection. As a matter of fact,

R(E)YUR ) = R(EZU

and

il

R(CO)NR(L) = R(Cadb).

Notice that these relations imply in particular that
R(£) - R() = R(EUD) - R(O) = R(E) - R(Eaf) for all
finite subsets fi, A of @,
QOur first step in enlarging 7€wi11 be to include all differences. Set:

&= {R; - R,|R,, RZeZQ} = (R(@) - Ri&)| €, AV are finite subsets of (L],

Notice that if E = R(&) - R{&) is iné, then E can also be expressed in the
form E = R(EUA) - R(). Hence every element of(f is of the form

R1 - R2 where RZCRI’ i.e., of the form R(&) - R{{), where Ho €.




_56-
Lemma 1. & is a semifield of subsets ofJ .
Proof: (i) 6 =R() - R(4) is inf.
@) J =RV} - R(4) is iné .
(iii) Suppose E; = R(C;) - R(«f) and E, = R(&) - R (%)

are in_ .

Then

= aa(é INRGG) R(é%rﬂ RGA5))

(R(@l)ﬂR(Q))ﬂR(#l)UR(%‘@)

=
)
=
!

H

N

R (€qm &)NRTERUL,)
R(CuE,) - RUEUE)

i

is iné.
(iv) Suppose E; = R(£;) - R(£)) and E, = R(£,) - R(E)

are in é, and E1CE2. Then one may assume that

R (#)CR(E,), so that

E,

[ = R(EONR(E)) = RIEHURMY)

will be a disjoint partition of El' Then

E, - Ej=E,NE, = E,NRENUE, NR(A4))

will also be a disjoint partition. But

E,NR(E) = R(E)NRTGINRIE,)

2
R((,)MR(E,UC))

3

is in(,, and

E,NR(A]) = R(C)NRG,INR(B))

H

R(E, ua9)NR ()
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is ing, so we have expressed E2 - El as a disjoint partition of elements

ofé, as required. 777

Lemma 2. If fbeCand R(E) - REE))NR(E) = 6, then

1) REUHN - RIEUY = RIE) - RiO)
and (ii) B (CUY) - B WUY) = B (&) - B (&)

Proof. From the hypothesis it immediately follows that

(R(C)UR (&) - (R(AUR(H)) = R(€) - R{Y),
- whence (i). Consider now any elements ce€ and A.Elwc/. If CAA#HA,

then CAA is in both R(€) and R({/), and hence must be in RE);
hence there must exist an element DegSsuch that CAAS D. If CAA

=], on the other hand, then CA A= D for any D&é’ In any case,

€. affor all Aey/, and (ii) follows from (3) above.
A A uv,

Lemma 3. If o, J/ a2/, and
R(C) - RO = R(Y) - R(RD,
then B&) - BLY) = B - B(M.
Proof: Since R(MNER(E) - R(¥)) = 4, the hypothesis of the lemma
implies that R(ZHNR(E) - R(A) = 6. By Lemma 2,
(i) R(&) - R = R(CUY - RHUH)
and (i1) B(E) - B = BIEUM) - BbUM.
Symmetrically,
(iii) R(H) 2 R(}) = RIUD) - REUD
and (iv) B - B(R) = BAUD - BHUD.
It follows from (i), (iii) and the hypothesis of the lemma that
R(HUL) - REUE = RIEUF) - RBUM),
whence R(#UY) = R(EUY). Hence BFUY) = B(EUY). From (ii)
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and: (iv) it then follows that

B (B) - B = B(Y) - BIM).
Lemma 4. If ,» o€ and (R(€) - R(/NCRY), then

(i) R(€md) - R(Dal) =R - R
and (i) B(Csud) - B =) =8(0) -B .
Proof: From the hypothesis it immediately follows that
RIONRH) -RE)NR(G) = R(C) - R(A,

: . 3.
whence (i). The second relation then follows by lemma B

Every element of é can be written in the form R(£.) - R(8), with
JGCYE ; and according to lemma 3, B(E) - B(&) does not depend on the
choice of € andJG . Hence a function b: é-»[o, 1] may be defined by setting
b(E) = B(£) - B(H) when E = R(2) - R(49 and FoC. The function b is
obviously an extension of the function b, A =[0,1].
Now letf’)Ybe the field of subsets of\:j/generated byf/, and define
a mapping p: (7] by p(A) = R({A}). It is easily verified that
W) el =RIVH =7
(i) p(A) = R(AD = 4.
(i) p(A;NA,) = R({A;NAD) =R({A ] = [A,} = R({A DNR({A, )
= p(A NP (A,).
Hence p is a non-singular allocation. Furthermore, for each Ae(l,
Bel(A) = B( {A}) = b(R({A])) = b(p(A)). Hence if b could be extended to a
measure W on 777, then Bel would be the belief function induced by the
allocation p into the probability algebra(%f, 1), and the proof would be
complete. But we learned in section 5 that b can be extended to a probability
function W on?ﬁ provided that b is a measure on 8 Hence our only remain-

ing task is to show that b is a measure.
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In order to show that b is a measure, one must show that if
E = E\U...UE_is a disjoint partition of B and if E, Ey, ..., E ¢ £,

n
then b(E) = X b (E.). In order to carry out such a demonstration, let

i=1
us fix E and the Ei and express them in the form

E =R(E) - RO

and

fori=1, ..., n. We may assume that,/(,ca/é and thiQ’ 61 fori=1,..., n.

We may also assume that 6ia€. fori=1, ..., n, for if this did not hold

then the éi and the f-‘@i could be replaced by the sets (fi s £ and /&ﬁ ¢(9,
X

respectively.
Set
W=CU...uCUu.. U UL,
and set
V: {A AL AA anl and A, ..., A E?f/}
1 n 1 n
Then 7/15 finite, M 7/, 7/0/ (f, and ///15 closed under conjunctions,
i.e., if A and A' are in 7/, then AAA' is in ¢, The partial ordering that
I]/inherits from @(see Chapter 3, section 1) can be extended to a total
ordering onﬂf; i. e., the elements of ’}/can be indexed Vl’ cee Vr S0
that if Vs = Vt’ then s = t. Suppose this is done, and set ///s = {thtS s}
fors=1, ..., r. Set VO = @,
For each s, s =1, ..., r, set
-~ -7
R, =R(HU 70 - REAUT D
and

s lu :
B, =BV - QUYL ).

s

Notice that RSCE fors =1, ..., r; for /‘\(}U ’Vs-af [i and ﬁ\%‘.ﬂQU?/S”I.
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Lemma 5. For eachs, s=1, ..., r, there exists an integer k between

1 and n such that RSCE .

Proof: Since R(,@U }; R(AHAU 7/ YUR( {V h,

_ _ )
=R({V_H - RAHUT_ -
1f RS = ¢, then the conclusion of the lemma follows trivially, so it

may be supposed that RS = ¢. In this case, Vs must be in RS and

hence in E. Let K be the integer for which V€ EK' Then there must

exist an element Ce such that V. < C, but V_ cannot satisfy V.SV
’ K x s Y Vg

for any Vep@K. We must now show that any other element Ae¢ RS must

also be in EK' But if AE:RS, then A satisfies ASVSSC and fails to
satisfy A= Vt for any other element Vt such that t < s,
) -- i.e., that ASD

Since C¢ BK’

AeR(eK), and it suffices to show that Az R(/QK

does not hold for any D ¢ &QK
Let us suppose that A < D does hold for a given D¢ Vi and

derive a contradiction, Indeed, if A = D, then AS VS A D, But since

v GEK, V <D does not hold, and hence V /\D must be a proper sub-

element of Vs and is therefore equal to Vt for some t <s, Since we

have A < Vt for some t such that t <s, this is our contradiction,

It follows from lemma 5 that the set {1, ..., r} can be partitioned

into n disjoint sets N,, ..., N_such that R CE, if s¢ N..
1 n s i i

If SENi’ then RSC Ei and R(dgi)ﬂRs = ¢ and RSCR(@i), SO0 successive
applications of lemmas 2 and 4 result in

R_ = RU(SULVT ) s €) - RULUAUTY, )= E))

and
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If, on the other hand, s ¢ Ni’ then either RS = ¢ or RS is not contained in
Ei' In either case,

¢ = RNE,

= RPUT) - RPUT L DINRIE) - RIA))
- RULUY) = Cy) - RI&EULHUY, D
= R((ﬁuﬁiu']/”s) m () - RUHULHU Y ) = é:‘L)‘
Hence the quantity
BUAULUYV D=L -BUEUAUY, =E)

is eaual to Bs if seNi and zero if s ¢ Ni' Consequently,

I
2 By = 20 BUAUBUY) = &) - BlbUAL Y, Pm £))

s€ N. s =
= BULULGYVV Vs €)) - BULULUY ) =l )

= B(C;) - B(AY,)) = b(E).

1

On the other hand,

iy I

38, - Z BEBU T - BAHU T, )
=

s =71

=BV - BL) = BIC) - BLO) = b(E);

hence

i b(E,) = 2 D B = i B, = b(E),
£

i="1 seNi s =1

and b is indeed a measure on é This completes the proof of the theorem.
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9. The Constraint Mapping

Recall that an allocation of probability p:l——7){ is said to specify
the constraint relation ''ct' between 77and W whenever " Mct A ' is

equivalent to M= p(A). Obviously, p and ct are two different ways of

conveying exactly the same information, but our attention is concentrated
on p whenever we attend to a particular proposition A€  and ask about the
probability that is constrained to A. For p(A) is the '"largest' probability

mass constrained to A, in the sense that the probability masses constrained

to A are precisely those which are subelements of p(A).
But suppose we fix our attention on a particular probability mass
Me Mand contemplate all the elements of & to which M is constrained.

Then there may or may not be a "smallest' element A(M) among these. In

other words, there may or may not be an element A(M) el such that M is

constrained to any given element A ea, ifard only if AM) <A, If there is
such an element A(M)¢€ (1 for each Mum, then I will call the mapping
-~ L,/(:I\/I@}x(l\/i) the constraint rnépping for p and ct ; for the mapping A

will specify the ''tightest' constraint for each probability mass,

The following definition lists the properties of constraint mappings.

Definition. Suppose (lis a Boolean algebra of propositions and /is a
Boolean algebra of probability masses. Then a mapping A: e (L

is a constraint mapping if

6 AN =g

(i1) If A(M) :._/l s then\l\'I :'/L}?’I'

(iii) A(M,VM )V A(M

M) = MM

1 2)'

One immediate consequence of rule (iii) in this definition is that a

constraint mapping A is monotone, 1i.e. /\(Ml)ﬁ AM(M3) whenever Mj = Mp,
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(See Chapter 3, section 3 below.) This formal definition for constraint

mappings is justified by the two following propositions.

Theorem. Suppose ct is a constraint relation between a Boolean algebra
of probability massesmand a Boolean algebra of propositions ﬁ.
And suppose A: /- (Z is a mapping such that M ct A if and only if

Proof: (i) By rule (2c¢) for constraint relations, _A,ﬁ:t 2

Hence we must have A(A,) <A , or }\(,/\777\ :JL,./

(i) A =/, the M ct_j{_a./ Hence, by rule (3)

A(M)<A. Then ) is a constraint mapping.

for constraint relations, M :J(Lm.

(iii) By hypothesis, M, and M2 are both constrained to
a proposition A if and only if MMI) v MMZ) < A. But from rules
(2a) and (2b) for constraint relations, M1 and MZ are both constrained
to A if and only if 1\/11\/1\/12 is constrained to A, Hence I\/Il\/l\/l2 is
constrained to a proposition A if and only if }\(1\/11)\/)\(1\/12) < A,

Hence K(MIVM y = A(M,)VA(M

2 1 2

Theorem. Suppose A: % (¥ is a constraint mapping. Then the binary
relation ''ct'' between Z7and (L defined by "M ct A if and only if

A(M)= A' is a constraint relation. (I will call this the constraint
relation given by A)

Proof: It is necessary to establish conditions (1), (2) and (3) in
the definition of a constraint relation. Condition (1) is immediate;
and the others are implied by the three conditions in the definition

of a constraint mapping: (i) implies (2¢), (ii) implies (3), (iii)

implies (2b), and the monotonicity of A implies (2a). —
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It should be reiterated that constraint mappings do not always exist,

even when an allocation of probability does. In other words, if a constraint

relation ct between ¥ and (Z is given directly or by means of an allocation,
p: (Les-7], then there does not neces sarily exist a constraint mapping

)\:7)7—»& which gives ct. If such a constraint mapping A does exist, though,

it is necessarily unique,.

Theorem. Suppose (£is a finite Boolean algebra of propositions, 77
is a Boolean algebra of probability masses, and ct is a constraint
relation between 777 and (L. Then a constraint mapping A exists
for ct.
Proof: We can define A as follows. For each Me 7/, let Al’ s An
be all the elements of([ to which M is constrained -- by rule (lc)
for constraint relaﬁons there is at least one of these, and since
(! is finite there can only be a finite number of‘ them. Let A(M)
equal to Al/\ eee /\An. it then follows from rule (1b) for constraint
relations that M ct A(M); hence for any A¢ (L, M ct A if and only if

A(M) < A, It follows from the first theorem in this section that A

is a constraint mapping. 77

In the preceding section we began with an arbitrary belief function
on an arbitrary Boolean algebra of propositions ¢l and constructed an
allocation p: Cl...,?‘z‘fthat gave that belief function. It is natural to ask

whether a constraint mapping A:W{—»Q exists forthe allocation p so con-

structed.
The answer is that a constraint mapping does exist. Indeed, if

,Mem, then M is the union of a finite number of disjoint subsets ofJI

of the form R(E i) - R(¢(Qi) with ;(}11 e i Suppose, indeed, the
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Il) . :
M = i(;l (R( L) - R(L,)), where L, « €, and the R(L,) - RUY) are
1, ..., n, set @‘i equal to the subset of 61

disjoint., For eachi, i =

consisting of elements not majorized by y@i; i.e., set

6'1 = 61 - {CHVC e@iand C<Dfor someD 6/01}'

Then
R(C,) - R(L) = R(E,) - RO

1

n
set €= U .. Then Cisa finite subset of (I, and CCM. Set A(M)

i=1
equal to the disjunction of all the elements of €. Inother words, index the

elements of (5, say Cl’ v Ck’ and set A(M) = Cl\/. "VCK' if 6: ¢

set A (M) :V/\w Then {A (M)} majorizes ¢, and

p(A (M) = R({C V. ..vck}bR(e) = R(@i)u...UR( ¢ )DOM.

Hence M ct A (M), and M ct A for all A such that A(M)S A, On the other
hand, if Ae(? and M ct A, then & CMCe(A) = R({A]). This implies that
{A} majorizesd , whence A(M) < A. Hence an element A of (I satisfies

M ct A if and only if A(M) < A. Thus the mapping Ny > K:MMI‘L(I\/I)

is indeed a constraint mapping w rresponding to the constraint relation

between Jland /L.

10. Toward a Better Representation of our Probability

We have now arrived at the conclusion that any belief function on
a2 Boolean algebra (f can be represented by an allocation p: (2,—>7??that
maps (L into a "measure algebra 77/. But as I remarked in section 1,
our formal definition of a measure algebra falls somewhat short of

imposing all the properties that we might want our idealizec "probability"
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to have. The following three properties are the most important of the
additional properties that we might want to require of (777, 1)
(i) Positivity: If Me 7/ and M ;éfgm, then M\ought to have
measure: K{(M)> 0.

(ii) Completeness: If {M',v}'yef is any collection of elements of

7%, then there ought to be an element of 7 representing their
union and another representing their intersection.

(iii) Complete Additivity: Suppose [M?}yer is a disjoint collection

of elements of???. In other words, suppose M'yAM'y’ :a/]_mfor
all distincts pairs, %,%' in . Then the measure of their union

ought to be equal to & ;.!.(My).
Y

These three properties may seem too strong for us to expect that
our measure algebra 7%/ should have them. But in fact we can always
arrange that MShould have them.

Unfortunately, though, the demonstration of this fact can hardly be
carried out without a more thorough knowledge of the mathematics of
Boolean algebras. Hence we must turn to an examination of the theory
of lattices and Boolean algebras, an examination that is already long

overdue.
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CHAPTER 3. THE THEORY OF BOOLEAN ALGEBRAS

This chapter is intended as a brief and sketchy introduction to

the abstract theory of Boolean algebras. Almost all its vocabulary,
assertions and theorems are standard in that theory. For a more thorough
study of the subject, the reader may wish to consult Garrett Birkhoff's

Lattice Theory, Roman Sikorski's Boolean Algebras, or Paul Halmos'

ILectures on Boolean Algebras.

1. Partially Ordered Sets

A binary relation between two sets Q and @ is a subset r of the

Cartesian product &X(B . If (A,B) ¢ r, then one says that the binary
relation r holds between A and B, and one writes "A r B.'" A binary

relation ''<'" between a set (I and itself is called a partial ordering if

(1) A<A for all A ¢ (.

(2) If A< B and B=< C, then A= C,

(3) If A< B and B< A, then A = B.

If a non-empty set has associated with it a partial ordering, then it is

called a partially ordered set. If A and B are ina partially ordered set

and A = B, then A is said to minorize B or to be a subelement of B, while
B is said to majorize A, If A= B, and A == B, then one writes A < B and

says that A is a proper subelement of B.

Examples of partially ordered sets abound in mathematics, For
example, any set Q of sets becomes a partially ordered set if it is

endowed with the partial ordering
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<-{(4,B)|a,B e (A ; ACB],

i.e., if it is partially ordered by set inclusion. Other examples are

provided by the usual 'less than or equal'' orderings of numbers.

A partial ordering < on a set & is a total ordering if for every

pair A,B ¢ Q, either ASX B or B A,

Theorem. A partial ordering on a finite set can always be extended

to a total ordering. More explicitly, if .<_O is a partial ordering

on a finite set @, then there is a total ordering = on -such that

= C=,
o

Proof: Suppose SO is not a total ordering on @ Then let A, B

be elements of Q such that neither A < B nor B < A, Then set

< ==, ul(c,D)|ce; De (1 cs<_A;B= Dl

It is easily verified that = is a partial ordering on &}and that
1
Hence a partial ordering can always be extended to make a given

""non-comparable'' pair comparable. Since (? is finite, one can

have only a finite number, say n, of non-comparable pairs; hence

the theorem follows by induction. 7

If C is a subset of a partially ordered set CZ, then there can be at
most one element Ce € such that for all Beg, C €£B. For if there
C , then they would satisfy C1 =

were two such elements C1 and C2 in

C and C < C and hence, by (3), = C If such an element

does exist it is, quite naturally, called the least element of C

Similarly, G may or may not have a greatest element -- i.e.,

an element C ¢ 6 such that for all B ¢ C, B < C:; but if there is such
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an element, it is unique. If the partially ordered set Ci itself has a least
element, that element is called the zero of &, and denoted JL& or J_; if
it has a greatest element, that element is called the unit of (l and denoted
V& or V/

If él is a subset of a partially ordered set ﬁ, then an element A ¢ Q
is called a lower bound of C if A< C for all C ¢ C, and an element A ¢ 62

is called an upper bound of C’ if C< A forall C ¢ C? It is possible for a

given proper subset C of A to have many lower and upper bounds in &;‘,
but & itself can have at most one lower bound and one upper bound. For
the lower bound of ((, if it exists, is its zero; and the upper bound, if it
exists, is its unit., The zero and unit of [2 are sometimes called the

universal bounds of @

Let C be a given subset of a partially ordered set C?, and let

;’fC @ be the collection of all the lower bounds of K The set ;i may or

may not be empty, and if it is not empty, then it may or may not have a

greatest element. If :fis non-empty, and does have a greatest element,

then that element is called, quite naturally, the greatest lower bound of

C; it is also called the meet of the elements of c. Similarly, if the
collection Z( of all upper bounds of f is non-empty and has a least element,

then that element is called the least upper bound of f, or the join of the

elements of f

The notions of meet and join are of central importance in lattice
theory, and it may be worthwhile to repeat their definitions in a less verbal
way, replacing the set Ci with an indexed collection {A'y}'yaT of elements of
C(: The meet of a collection £A'}’}7€T is the element Az (@ , unique if it
exists, such that A< Ay for all yel’ and B <A if Be [C is any other element

satisfying B < Ay for all Yel'.  The join of a collection {Ayf ~ is the

Yel
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element Aea, unique if it exists, such that Ay < A for all yel' and A <B

if Be Q is any other element satisfying A, < B for all yel.

It should be borne in mind that the notions of meet and join are
relative to a fixed partially ordered set (Z For it is possible that a
subset (,0 of a partially ordered set d might also be a subset of a different
partially ordered set @; in such a case, é) might have, say, one meet in
Q and a different one in -B -- or perhaps a meet in @ and no meet at all
in 8.

The symbol '"A"" usually is used to denote a meet: the meet of

6(: CZ is denoted by /\6 , the meet of a collection {A'y}yef of elements of
& is denoted by /‘;/ A'y or AA'y’ and the meet of a pair of elements A and B of
(3 is denoted by AAB. The symbol "V'" is used analogously for joins; one
writes Vf , ¥A7 or VAy, and AVB. The similarity between this notation
and the notation for intersection and union in the theory of sets is justified
by the fact that if @ is a collection of subsets of a given set and A is
closed under the operations of union and intersection, then A is partially
ordered by set inclusion and every collection {A'y}'yaf of elements of

has a meet and a join, which are given by the intersection and union
respectively.

A partially ordered set (i is called a meet-semilattice if every pair

of elements in a have a meet in @ Similarly, it is called a join-semilattice
if every pair of elements has a join, and simply a lattice if every pair

of elements has both a meet and a join,

It is easily deduced that meets and joins exist for all finite collec-
tions of elements in a lattice, They need not exist, however, for infinite
collections. A lattice for which they all do exist is said to be complete.

A finite lattice is necessarily complete. Actually, the existence of meets
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for all collections of elements in a lattice implies the existence of joins
for all collections and hence implies completeness; similarly, the

" xistence of joins for all collections implies completeness.

If meets and joins exist for all countable collections of elements in
lattice, then the lattice is said to be g-complete. Of course, a complete
attice is o-complete. The existence either of meets for all countéble
ollections or of joins for all countable collections is sufficient to assure
-completeness.

Notice that a complete lattice necessarily has universal bounds, for
e meet of all the elefnents of the lattice will be the zero, and the join

of all the elements of the lattice will be the unit.

If a partially ordered set has only one element, then that element

i1l be both the zero and the unit, but if the set has more than one element,
en the zero and unit must be distinct if they both exist. It is easily seen
at if L is the zero of a partially ordered set @ and A € ﬁ , then AAA

J and AV.A = A. Similarly if Vif the unit of &, and A ¢ (1, then ANV

A and AVY =7V

IfA, B andVC are elements of a lattice and B < C, then BVA =< CVA

nd BAA < CAA.

A lattice is distributive if all triplets of elements A, B, C in the

lattice satisfy

1t

(1) AA(BVC) = (AAB)V (AAC)

(2) AV(BAC) = (AVB) A (AVC).

b

ctually, either of rules (1) and (2) implies the other, They also imply

arious infinite distributive laws. Among them:
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AA(VA)=V(AAA )
Y v Y Y

and

(VA IYAN (V Bg)= V (A A Bg).
o o B B o, B o B

These equations are fo be interpreted in the sense that if the left side
exists, then so does the right, and the two are equal.

If A and B are elements of a lattice with zero and unit and AAB = /|
and AVB =Y, then B is called a complement of A, Complements in a
distributive lattiée are unique if they exist, the unique complement of
an element A being denoted by A . A distributive lattice with distinct
zero and unit that includes complements for all its elements is called

2 Boolean algebra.

2, Boolean Algebras

The definition of a Boolean algebra is based on the whole series

of concepts and definitions set forth in the preceding section. It is

possible, though, to translate the definition into a list of conditions that

aset Q of objects must satisfy in order to qualify as a Boolean algebra:

(1) Existence of a partial ordering: { must have an ordering
that obeys the rules for partial orderings.

(2) Existence of a zero: [@ must have an element that minorizes
all the other elements. (Such an element is necessarily
unique and is denoted A..)

(3)  Existence of a unit: & must have an element that majorizes
all the other elements. (Such an element is necessarily
unique and is denoted ¥ .)

(4) Non-identity of the zero and unit: Land V must be distinct,
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(Equivalently, Q must have at least two elements.)

(5) Existence of meets: For every pair of elements A and B
in a , there is a greatest element among those that
minorize. them both. (This element is denoted by AAB..) "

(6) Existence of joins: For every pair of elements A and B
in & , there is a least element among those that majorize .
them both. (This element is denoted AVB.)

(7) Distributivity: For any triplet of elements A, Band C
in Ce, AA(BVC) = (AAB) V (AAC) and A V (BAC) = (AVB) A (AVC).

(8) | Existence of complements: For every element A there is
an element B such that AAB =L and AVB =V . (Such an

element B is necessarily unique and is denoted A.)

¢

This list of conditions should enable us to decide whether our

'Boolean algebras of propositions'' and ""Boolean algebras of probability
rﬁasses" really pass muster to qualify as Boolean algebras in the
mathematical sense.

’ Considef first a "Boolean algebra of propositions.' Ihave been
1sing this term to refer to any non-empty collection of propositions thét
)ncludes the negation of each of its elements and the conjunction and dis-
unction of each pair of its elements. Such a collection does indeed satisfy
he eight conditions listed above when it is partially ordered by implica-
’;i,on -- i.e., when one proposition is said to minorize another if and only
f it implies the other. The third rule for partial orderings then
corresponds to the fact that propositions are held to be identical when
hey are logically equivalent. The zero and the unit are the impossible

nd sure propositions, respectively; the meet and join of two propositions
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are their conjunction and disjunction, respectively; and the complement
of a proposition is its negation, The only one of the eight conditions that
might cause any head-scratching is the requirement of distributivity, and
careful thought will show it to be satisfied. So a '"Boolean algebra of
propositions' is indeed a Boolean algebra.

Since a Boolean algebra of propositions & contains the conjunction
and disjunction of any pair of its elements, it also contains the conjunction
and disjunction of any finite number Al’ e An of its elements -- and of
course the conjunction of the elements A,, ..., An will be their meet in
a and their disjunction will be their join in & . It should be noted,
however, that Q need not contain propositions corresponding to the

logical conjunction or disjunction of any given infinite collection of its
elements, If (2 does contain a proposition corresponding to the conjunction,

say, of an infinite collection £A'y} T of its elements, then that proposition

ve
~wwould be the meet of the collection {A'y}-yef . Butif C?does not contain

such a proposition, then the collection might not even have a meet -- and

if it does have a meet, that meet might not be the conjunction of the elements
£A‘y}'y€l“' In short, finite meets and joins can always be interpreted as

conjunctions and disjunctions, respectively, but infinite ones cannot

always be.

How about ""Boolean algebras of probability masses'? Do they
qualify as Boolean algebras in the mathematical sense? As it stands
now, our notion of a Boolean algebra of probability masses is based
merely on the intuitive idea that probability masses are pieces of an
idealized substanced called our "probability' -- an idealized substance

that may not even consist of points. But it is evident that this intuitive
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idea readily fits with the eight conditions for Boolean algebras. The

partial ordering is provided by setting A < B whenever the probability

mass A is part of the larger probability mass B. The unit, of course,

is the entire probability mass. The existence of a zero is not so

obvious: one might not at first contemplate a single probability mass

that is part of all the others. But it is possible to invent a "null"

probability mass and make it part of all the others by convention. The

meet and join of two probability masses correspond intuitively to their

"intersection'' and '"union''; while the complement of a given probability

__mass consists of precisely what is left over. The distributive laws are

_also intuitively valid.
There are a great many relations that are always satisfied by
meets, joins and complements in a Boolean algebra, and I have taken

several of them for granted in my discussions of Boolean algebras of

propositions and Boolean algebras of probability masses.

Notice, for example, that for any two elements A and B of a

Boolean algebra, B < A if and only if BAA ={ . For if B <A, then

BAA < AANA = ). And if BAA= L, then
(BAK) V (BAA) = LV (BAA) = BAA,
But by the first distributive law, the left-hand side of this equation is

equal to BA (AVA) =BAY=B. So B=BAA, and hence B< A. If

AAB =AM, then A and B are said to be disjoint; hence the preceding
fact can be expressed by saying that B < A if and only if B and A are
disjoint, The quantity B A A is often written as B-A,

If A, B, C are elements of a Boolean algebra, A and B are disjoint

and C = A V B, then the expression ""A V B'' is called a disjoint partition




76-
of C. Notice that for any two elements A, B in a Boolean algebra,
(AANB)V (A - B)is a disjoint partition of A, Notice also that if AV B
is a disjoint partition of C and A = C, then B = _[..

For any pair of elements A and B in a Boolean algebra,

AVB=AAB and AAB=AVBE.
These identities, and the analogous ones for meets and joins of any
finite number of elements, are known as de Morgan's laws.,

Like a lattice, a Boolean algebra is called complete if it contains
meets and joins for all its subsets; even infinite ones. Complete
Boolean algebras obey the infinite version of De Morgan's laws, to wit:

ZKy: /‘)\/_Ay and Fy = ;/,Ky

We will sometimes be interested in the weaker condition of

g-completeness. A Boolean algebra is called g-complete, of course,

if it contains meets and joins for all countable collections of its

elements.

3. The Mappings of Lattice Theory

Like any algebraic theory, the theory of lattices and Boolean

algebras gives a prominent role to mappings that preserve the structure

of its objects. In this section, we will learn the names of some of these

mappings.

The simplest requirement in this context is that a mapping should
preserve the structure of a semi-lattice. If (L} and «B are meet-semi-
lattices, for example, then a mapping 8: (@—»8 that obeys

(1) B(A1 A AZ) = G(Al) A G(AZ) for all Al’ AZ in ((
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is called a meet-morphism., Similarly, if Qand Bare join-semilattices
and a mapping &: &—» @ obeys

(2) 9(A VA for all A, A2 in a s

1 VA,) 1) 2)

then 8 is called a join -morphism. We saw examples of meet-morphisms

= 8(A,) V 8(A

in the preceding chapter: an allocation of probability is a meet-morphism,
vh ile a constraint mapping or an allowment is a join' -morphism.
Meet-morphisms and join-morphisms are both order-preserving, or
isotone; in other words, they both necessarily obey the rule

(3) IfA, < A, then 8(A;) < 8(A,).

This can be proven for a meet-morphism, for example, by using the fact

that A AA = A1 whenever Al < A

i a = 0
Ry for one obtains v(Al) a(A

2 M) =

whence 8(A,) =< 9(A2) by the definition of meet.

5)s )
If (32 and 0 are lattices, then a mapping 6: &48 is called a lattice

homomorphism if it obeys both (1) and (2); i.e., if it is both a meet-

morphism and a join-morphism, Finally, if Céand J} are Boolean algebras,

then a mapping & ({ -—«>£ is called a Boolean homomorphism if it obeys (1),
{2), and

(4) 5(A) = 8(A) for all Ac Q

In other words, a Boolean homomorphism is a lattice homomorphism that
preserves complements. It can easily be deduced from de Morgan's law
that if a mapping between two Boolean algebras obeys (4) and one of (1)
and (2), then it must also obey the other. Hence in order for a mapping
between two Boolean algebras to be a Boolean homomorphism, it suffices
either for it to preserve complements and meets or for it to preserve

com plements and joins.

It is easily seen that a Boolean homomorphism §: @»_;» ﬁ also preserves
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the unit and the zero; i.e., it obeys
(5)  8(hp = Ag,

and (6) 8(Yp) = Vg-
To prove (5), for example, note that for any Ace Q, Q(Jla) = B(AAA) =

i

QAN B(R) = BANB(A) = lg.

A subset ao of a Boolean algebra & is called a subalgebra of ﬁ
if it satisfies the following conditions:

(i) _k& and T& are in &o'

(ii) Ae &O for all Ac (.

(i) A AA,and A VA, arein (| for all pairs A}, A, in a.

"2 2
Obviously, a subalgebra of a Boolean algebra is a Boolean algebra in its
own right, its partial ordering being that inherited from the larger Boolean

algebra. It is evident from equations (1), (2), (4), (5) and {6) that if

8: a—b@ is a Boolean homomorphism, then the image 9(({) is a subalgebra

of (B

s}
;

If 2 Boolean homomorphism 5: (! is one-to-one and onto, then it

is called an isomorphism onto B it is easily verified that the inverse

-1
" R - @ will then be an isomorphism onto @ If a Boolean homomor-

phism ©: Q -+ is merely one-to-one, it is called an isomorphism into 3

/

in such a case 8': (J —» 8((3):A~#8(A) will be an isomorphism onto the image
8(@); considered as a Boolean algebra in its own right. An isomorphism

into is sometimes called an embedding.

If an isomorphism onto exists between two Boolean algebras (7 and

g , then the two are said to be isomorphic. Such an isomorphism onto
will necessarily preserve arbitrary meets and joins. For example, if
{A’y} T and A are elements of d’, A = AA')’ and 8: ({ > # is an isomorphism

onto, then A G(A_y) will exist in B and will be equal to 8(A). This will not
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necessarily be true, though, if 8 is merely an isomorphism into.
If (i and B are both complete Boolean algebras, then a Boolean
homomorphism 8: (¢ + § is called complete if it preserves arbitrary

meets and joins -- i.e., if

(1) 8AA,) NE(A,)

d 8) B(VA,() = VBA

an (8) 8(vA,) (A,)

for all collections {A'y} of elements ofﬂ.

A subalgebra @o of a complete Boolean algebra @ is said to be a

complete subalgebra if it includes meets and joins br arbitrary collections

of its elements. A complete subalgebra is obviously a complete Boolean
algebra, The image of a complete Boolean homomorphism is a complete
subalgebra.

Similar statements can be made for g-completeness: a subalgebra

of a g-complete Boolean algebra is called g-complete if it is closed under
countable meets and joins; a Boolean homomorphism between two
O’—c;omplete Boolean algebras is called g-complete if it preserves countable

meets and joins; and the image of a g-complete Boolean homomorphism is

a g-complete subalgebra.

4, Filters and Ideals in Boolean Algebras

Filters and ideals are subsets of Boolean algebras that have certain
closure properties. They play an important role in the general theory of
Boolean algebras, and they will play an equally important role in our theory.
They are so closely related that in a certain sense it would suffice to study

k~ only the one or the other, but it is more satisfying to learn abo ut them both

together.
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A filter in a Boolean algebra (l is a subset F of (;& that satisfies
(a) If Ae F and A < B, then Be F.
(b) I1f AeF and Be F, then AABe F,

(c) Ve F.

Notice that (c) assures that a filter cannot be empty. An ideal in a Boolean
’algebra &2 is a subset I of (? that satisfies
(a) If Ac Il and B <A, then Be 1.
(b) If Ae I and Be I, then AVBe I,
(¢) AMNel
Actually, we already encountered filters and ideals in Chapter 2. Indeed,
a glance at the definition of a constraint relation is that chapter will reveal
that the collection of all the propositions to which a given probability mass
is constrained is a filter, while the collection of all the probability masses
constrained to a given proposition is an ideél.
If A is any element of a Boolean algebra Q, then the subset {A'|A'c (C,
A<A'}of (f is a filter, while the subset {A'[A'e(}, A'< A} is an ideal.
A filter or ideal of this form is called principal. It can easily be shown
that any ideal or filter in a finite Boolean algebra must be principal.
Suppose, for example, that F is a filter in a finite Boolean algebra Q.
Let Al’ e Ak be the ell{ements of F, 'II;hen it follows from (b) in the
definition of filter that /\ A e ., But A A < A for all i, and by (a) i
the definition of filter, 1f k A < A for1 stme A ¢ Q , then Ae F. Hence
F={AlAac(], }\( AiSA}.

i=1 & . _
The only subset of a Boolean algebra that is both an ideal and a
filter is @ itself. An ideal or filter which is not equal to & is called a

proper ideal or filter. It is evident that an ideal in & is proper if and only

_ if it does not contain V, while a filter in [{ is proper if and only if it does




-81-
not contain /\. .
A filter F in a Boolean algebra tQ is called an ultrafilter if (i) F is

proper and (ii) there is no other proper filter F' in [2 such that F # F' and

FCE',

Theorem. A filter F in a Boolean algebra ﬁ is an ultrafilter if and only
if for every element Ac a exactly one of the pair A, A is in F.
Proof: (i) Suppose that for each Ac(}, the filter F contains exactly
one of the pair A, A, Then Ve Fand vV = /A ¢ F, so F is proper.
and if F'' is a filter such that F == F' and FCF', there must be an
element AcF' such that A¢ F. So A will be in F, whence Ae F' and
AAA = Le F', Hence F' will not be proper. So F is an ultrafilter.

(ii) Now let us suppose that for some A¢ @, F does not contain
exactly one of the pairs A, A and deduce that F is not an ultrafilter,

We must consider the case where F contains both A and K, and the

case where it contains neither. If it contains both, then it would

contain AAA :_}\ and hence would not be proper. If it contains neither,
on the other hand, then the filter F' = {A" [A/\B < A' for some Be F}
satisfies F'=¢ F' and FCF', for F' contains both A and F. Furthermore,
F' is proper. For if Ae F, then there exists some BeF such that

AAB =1 , or B < A, but this would contradict the assumption that

A ¢ F. So Fis contained in a larger proper filter and hence is not

an ultrafilter. v

The notions of completeness can also be applied to filters and ideals.

_ For example, an ideal in a g-complete Boolean algebra is called a g-ideal

if it contains \/A‘y whenever it contains each element of a countable collection
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{Ay} el Similarly, an ideal in a complete Boolean algebra is called
a complete ideal if it contains VA’V whenever it contains each element

of an arbitrary collection {Ay} yel It is easily seen that an ideal in

a complete Boolean algebra is complete if and only if it is principal.

5. Zorn's Lemma

In this section, I will state Zorn's lemma and us it to deduce some

useful facts about Boolean algebras. Being equivalent to the principle

of transfinite induction, Zorn's lemma is somewhat controversial among
students of the foundations of mathematics, but it is generally accepted

as a working tool. A proof of Zorn's lemma can be found on pp. 62-65

of Halmos' Naive Set Theory.

In order to state Zorn's lemma, we need the notions of a chain

A maximal element

and of a maximal element in a partially ordered set.

in a partially ordered set is an element which is not a subelement of any

other element. A unit in a partially ordered set is necessarily maximal,

but a maximal element need not be a unit, A chain in a partially ordered

set is a non-empty subset, any two elementt A, B of which satisfy

either A <B or B <A,

Zorn's LLemma. If every chain in a partially ordered set has

an upper bound, then that partially ordred set has at least one

maximal element.

The two following theorems seem to require the use of Zorn's lemma

_in their proof.
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Theorem. If F is a proper filter in a Boolean algebra (,2, then F is

contained in some ultrafilter in 3

Proof: Let A = {F'|F'is a proper filter in d; Fcr'1, and let /j

be partially ordered by set inclusion. Notice that any maximal

element of J is an ultrafilter. Hence we need only show that J
n . - - 3

has a maximal element. Let /{ be any chain 1no¢/. Then it is

easily seen that UK is a filter, and it is proper, for it does not

contain /. Hence UK is in J and is an upper bound for the

chain ¥ . Thus every chain in »(fhas an upper bound, and by Zorn's

lemma, /éf has a maximal element. @

Corollary. If A is a non-zero element of a Boolean algebra @, then A is

contained in some ultrafilter of & .

Proof: A is contained in the proper filter F = fA'lA<AYY. 2

Theorem. Suppose Q is a Boolean algebra and Cc 0 Then there
exists a subset »@ Cﬁsuch that (i).B is disjoint, (ii) for each

D e,ﬁ there exists C 36 such that D< C, and (iii)-ﬁ and (O have
the same set of upper bounds.

Proof: Set X: {glg’cQ, g is disjoint; and for each Ee g
there exists Cg¢ € such that E < C}, and partially order j by

set inclusion. If jo is a chain in 3, then it is easily seen that
U/g o is in j; and UJO will be an upper bound for /% inj. So
every chain in,(g has an upper bound, and by Zorn's lemma /j has
at least one maximal element. Let f\/ be such a maximal element
of ,j Then it is evident that (i) 48 is disjoint, (ii) for each D= l_\/

there exists an element Cg¢ € such that D= C, and (iii) any upper

bound of Cf is an upper bound forD.
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The proof will be complete if we can show that any upper
bound A for oﬁ is an upper bound for Cg Consider any element
Ce f and note that C-A will be disjoint from all the element s of
. The set i)U{C—A} will therefore be in,<f. But ﬁ is already
a maximal element ofJ. Hence C-A must already be in 98, and

this is possible only if C-A = A. It follows that C < A, Hence A

\%:

is an upper bound for (f

6. Fields of Subsets

I used the notion of a field of subsets extensively in the preceding
chapters, and I often switched back and forth between the notions of a

field of subsets and the notion of a Boolean algebra of propositions. In

particular, I often used three facts: (i) any field of subsets is a Boolean

algebra under the partial ordering by set inclusion; (i1) any finite
Boolean algebra is isomorphic to the field of all subsets of some finite
set; (iii) any Boolean algebra, whether finite or not, is isomorphic to
some field of subsets of some set. Now that we have a mathematical
definition foi‘ the notion of a Boolean algebra, we can verify these three

facts.

c7
A non-empty collection o of subsets of a non-empty set } is called
Farad
a field of subsets of 8 if whenever J‘ contains two sets A and B, it also

contains their union, their intersection, and their set-theoretic comple-
ments. In particular, it must contain some subset A of (i , the comple-
ment A of A, their intersection ANA, which is the empty set ¢, and their
union AUA, which is /F itself. A given non-empty set } will have, of

course, many different possible fields of subsets, ranging from the two-




-85-
element field {9, j? to the field that includes all the subsets of // This

latter field of subsets of j is called the power set of /, and I will denote it
by 7(4).

It is easily verified that the binary relation "' between a field of
subsets Q«/ and itself defined by "A<B if an only if ACB'' is a partial
ordering. Furthermore, g: is a Boolean algebra under this partial
ordering, the Boolean complement of an element being its set-theoretic
complement, the meet of two elements being their intersection, the join
of two elements being their union, the zero being 4, and the unit being J)
The meet and join of any finite collection of elements will also be their
intersection and union, respectively; but the same is not necessarily
If the intersection, say, of a given infinite

il
OL , then it will certainly be the meet

true of infinite collections.

frd
collections of elements of GL is in

of that collection; but otherwise the collection may have some other
element of ?:as its meet, or may not even have a meet in I

The assertion that any Boolean algebra is isomorphic to a field

of subsets is called the Stone Representation Theorem.

Theorem. Let d be a Boolean algebra, let /57 be the set of ultrafilters

in &, and for each Ag@, let f(A) be the subset of /J? consisting of

all the ultrafilters in Q that contain A, i.e., set f(A) = {F]ng,Ae F .
Denote by B the collection of all subsets S of /g such that S = f(A)

for some Ae(z. Then ® is a field of subsets of J and the mapping
f:(z-a— B :A~+f(A) is an isomorphism.

Proof: It is easily verified that f(]\d) = $ and f(Vp) = /g . In order to

show that f preserves meets, we can use the fact that a filter in a
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Boolean algebra contains both of a given pair of elements if and only
if it contains their meet. Hence if Al’ A2 € ﬂ, then
(Flre f, AeFINEIFe J Aye T}
FIF ¢/, A eF, A,cF]
FlF e/f, AL AA, e F]

;E(A1 A AZ)'

t

f(Al)ﬂf(AZ)

i

1

i

In order to show that f also preserves complements, it is necessary
to use the fact that the filters in /j are ultrafilters. This means that

given any Ae@, a filter F in 3 contains exactly one of the pair A and

A. Hence

TA) = FFe], Ack] = (FIFed, AdF]
= [F|Fej, AcF}=1A).
It follows easily by de Morgan's laws that f also preserves joins. For

ifA, Aye @ then

f(A)A,) = (A AA) = f(A AB)) = §(ANEA,) = A VA,
= f(Al)Uf(AZ).

These formulae prove in particular that j)) is a field. For if
S is in 43, then there is an element Ag& such that 8 = f(A) and hence
S = £(A) is also in B. And if S;, S, 3, then there exist A}, Aye ([
such that S1 = f(Al) and S2 = f(AZ), so that SIUS2 = f(AIVAZ) and
Slf‘\S‘2 = f(Al/\AZ) are also in 8.

Since B is a field and therefore a Boolean algebra, and since
f preserves everything in sight, f is a Boolean homorphism. By the
definition of ig, f is onto, hence it only remains to show that f is
one-to~-one.

In order to show that f is one-to-one, it is necessary to

consider arbitrary elements Al’ A,e(’/% such that Al # AZ and prove
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that f(Al) + f(AZ). In other words, one must show that there is
some ultrafilter in ,X ‘that contains exactly one of the pair Al’ AZ'
But since A1 = AZ’ at least one of the relations A1 SAZ and AZ < Al
does not hold. We can assume that Al SAZ does not hold., In that
case, AIAKZ +* _A . Hence, by the theorem proven in section 5,
there must be at least one ultrafilter in Q that contains AIAKZ. If
F is such an ultrafilter, then F contains Al’ for Al/\A2 _<_A1. But F

cannot contain AZ’ for it contains KZ' So F contains exactly one of
the pair Al’ AZ' )

The set J is often called the Stone space of the Boolean algebra [

Notice that the isomorphism f does map all finite meets and joins into the
corresponding finite intersections and unions. It need not, however, take
infinite meets and joins into the corresponding infinite set-theoretic

_intersections and unions.

The construction used in the Stone Representation Theorem can also
be used to prove that a finite Boolean algebra is isomorphic to the field of

all subsets of some set.

Theorem. Let (3 be a finite Boolean algebra and let f and {3be as in the
preceding theorem. Then § is the field of all subsets of j

Proof: Let F be an element of X . Then F is an ultrafilter in ﬂ
Since Q is finite, F must be a principal filter; in other words, there
must be a unique Aeg ( such that F = {[A'|ACA') Since F is an
ultrafilter, there cannot be any non-zero element B of ( satisfying
BCA, B # A. For if there were such an element, then the proper

filter {A'| BCA'} would properly contain F. It follows that F is the
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is the only proper filter containing A; in particular, it is the only
ultrafilter containing A, and hence f(A) = $F'}, and {F}e¢ @ .

Since we took F to be an arbitrary element of j, it follows
that every one-element subset of ,4? is in ﬁ Since A?is finite,
it follows that all subsets of X are in 8.

Notice that /j is in a one-to-one correspondence with the set
of all non-zero elements of & that are not majorized by any other

non-zero elements. These elements were called the atomic elements

& . . . . .
of in our earlier discussions. v

It should also be noted that when (2 is finite the existence of an ultra-

filter containing any given proper filter can be proven by induction, so that
the preceding theorem, unlike the Stone Representation theorem, does not
really depend upon Zorn's lemma.

A field of subsets is called a g-field if it includes the intersection

and the union of any countable collection of its elements. Such intersections
_and unions will of course be the meets and joins for such collections, so

/ a g-field will be a g-complete Boolean algebra. Actually, the inclusion of

either all such intersections or of all such unions is sufficient to imply the

inclusion of the other.

7. Closure Properties

A property of subsets of a set ,2 is called a closure property if (i)

/.Y has a property, and (ii) any intersection of subsets having the given
'property itself has the property. Suppose that "being an X' is a closure

property for subsets of a set/f.
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Then if C is any given subset of/f, the collection of all X's containing
C is not empty, for J itself is an X that contains C. The intersection of
all the X's containing C is also an X containing C -- in fact it is the least
X containing C, in the sense that it is contained in any other X containing
C. Hence whenever 'being an X' is a closure property for subsets of /j
and CC/\(, one may speak of the smallest X containing C, or of the X
generated by C.

There are several closure properties that will interest us in this
essay. First, the property of 'being an ideal''is a closure property for
subsets of a Boolean algebra &, Hence we may speak of the smallest

“ideal containing any given subset of @, or of the ideal generated by that
subset. In fact, the ideal generated by a non-empty subset Cc is
given by [A]Ae Q and A SAlv ... VA for some finite collection Al’ ceey
An of elements of € }  In particular, the ideal generated by the singleton
{Alis given by [A'|A'c @, A' <Al

Secondly, the property of being a filter is also a closure property
for subsets of a Boolean algebra. The filter generated by a non-empty
subset  of a Boolean algebra (I is given by {AlAe ({ and AN NA SA
for some finite collection Al’ cees Arl of elements of Cj/}

Thirdly, the property of being a subalgebra is a closure property

for subsets of a Boolean algebra. The subalgebra generated by a non-
empty subset (f of a Boolean algebra @ consists precisely of all those
elements A of (of the form

A= (A r)V(AZ,l/\"'/\AZ,r)V"'V(AS,I/\"'AAs ),

*71
where for each m, n either A e C or A
m, n m,

property of being a complete subalgebra is a closure property for subsets

1,1/\... /\A1

S
LeC . similarly, the

of a complete Boolean algebra.
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Finally, the property of being a field of subsets of the set X is a
closure property for subsets of the power set W(X ). Hence we may speak
of the field of subsets of j generated by any collection of subsets of [Y
The property of being a o-field of subsets of X will also be a closure

property for subsets of the power set 7 j).

8. Quotients of Boolean Algebras

This section is devoted to the notion of dividing a Boolean algebra

by an ideal.

If A and B are two elements in a Boolean algebra (Z, then the element

(A -B)V (B - A)=(AVB) - (AAB) is called the symmetric difference of

A and B and is denoted AAB. Notice that if A, B, and C are elements of

&, then

AAc (A AC)A (BV B

it

- (AABAC)V BAABAC)V(AABAC)Y(AABAC)

< (BAC)V(AAB)V(AAB)V (BAC)

= (A AB)V (B AC).

Suppose we fix a proper ideal I in @ and write "A =~ B'' whenever A and
B are in & and A AB ¢ I. Then the relation "' is a equivalence relation

for elements of (}. In other words, it is reflexive, symmetric and transitive:

(i) IfAc(J, then A AA=Lecland A=A,

(ii) If A ~ B, then B ~ A,

(iii) If A~ B and B~ C, then A AC= (A AB)V (B AC);
50 A ACeland A=C,

The set of equivalence classes induced by this equivalence relation
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is called the quotient of @ by I and denoted Q /I. In other words,
A1 = {[BiB ¢l anaB~A}|A (] }
It is convenient to denote by [A] the equivalence class
{(B|Be(@ and BrAY}.

A binary relation "S ' between 0/1 and itself can be defined by

setting S1 < S‘2 whenever Sl’ S2 € @/I and there are elements Ale:Sl and

A2682 such that Al <A It is straightforward but tedious to verify that

2
this binary relation is a partial ordering and that it makes @/I into a
Boolean algebra.
Furthermore, the mapping

£: Q= /1 : A~ [A]
is a Boolean homomorphism. It is onto, of course, and it is called the

canonical homomorphism of Q onto &/I. Notice in particular that the

zero of (/1is 1= [_ﬂ“@], while the unit of (/1 is [Vpl.

When ((’is a Boolean algebra of propositions, the quotient Cl/I

has an epistemic interpretation. Suppose, indeed, that one first contemplates
CQ without knowing whether any given propositions in itare true or false,
except for Vand A, which one knows to be true and false, respectively,
Suppose further that one then learns that all the propositions in a given

proper ideal I are also false, When this happens, one can regard all the
propositions in I as "logically equivalent' to the impossible proposition .
And we can say even more, IfA, B ¢ & , then one of the pair A, B can

be false and the other true only if A AB is true., Hence if A AB is in I,

the knowledge that all the propositions in I are false tells one that A is true




-92-
if and only if B is true -- i.e,, A and B become logically equivalent. In

general, then, the knowledge that all the propositions in I are false leads

one to regard all the propositions in any given equivalence class as

logically equivalent. Identifying propositions that are now seen as

equivalent then amounts to replacing the Boolean algebra Q by the Boolean
algebra Q1.

Of course, one might learn that the set J of propositions is false,
where Jc& but J is not an ideal. In this case, the falsity of the propositions
in J would imply the falsity of all the propositions that imply some
proposition in J or the disjunction of some finite collection of propositions

in J, But this latter collection of propositions, I = {ala< Al A An
for some finite collection Al’ ceey An of elements of J}, is the ideal
generated by J. Hence the total collection of propositions learned to be

false will be an ideal, and the preceding analysis will apply. An important
_special case occurs when J is a singleton {A}; in this case, I is the

principal ideal generated by A,

We will often be interested, of course, in the case where (:é: % (/?)
for some set X , and the propésitions all concern the true value of some
parameter that takes values in X . In this case, the ideal I usually arises
by the discovery that the true value is: in some subset joc /f] . The ideal I

of propositions learned to be false by virtue of such a discovery is precisely
the principal ideal generated by —jo’ and (& /1 will be isomorphic to 7] ’fo)'
In Chapters 4 and 7, we will study another application of the notion
of a quotient of a Boolean algebra by an ideal, this time to the case of a

Boolean algebra of probability masses.

I will conclude this section with two theorems, one with a proof and
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the other without.

Theorem. Suppose [@ is a g~-complete Boolean algebra and I is a proper
g-ideal of & Then Q/I is g-complete, and the canonical
Boolean homomorphism

f: 4 — @/ A (Al
is g-complete,

Proof: The o-completeness of both a /I and { follows from the
following fact: If Al’ AZ’ ... is a sequence of elements of (é, then
[Al]’ [Az], ... has a join in @/I, and in fact V[Ai] = [VAi]. To
prove this fact, note first that by the monotonicity of the Boolean
homomorphism f, [Ai] =< [VAi] for all i. Hence we need only prove
that if [Ai] < [B] for all i, then [VAi] < [B]. But since the Boolean

homomorphism f preserves differences, [Ai] < [B] means that

A= [Ai] - [B] = [Ai - B], whence A, - B elfor eachi. Butlisa

o-ideal, so V(A, - B) = (VA, - B) ¢ I. Hence L= £y A, - B)

= [VA, - Bl = [VA] - [B], or [vA,]=[B]. ZZ)

The Loomis-Sikorski Representation Theorem, For every o-complete

e

Boolean algebra G there exists a og-field of sets J’u and a g-ideal I

of J such that ( is isomorphic to g‘//l.

Proofs of this theorem can be found in Sikorski (p. 117), Birkhoff

‘(p. 255), or in Halmos' Lectures (p. 102).
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9. Independent Sums of Boolean Algebras

Suppose Al’ fees An are subalgebras of a Boolean algebra @

Then these n subalgebras are said to be independent if

Ay A A + A
whenever Ai‘c' Q ; and Ai #+ | for eachi, i=1, ..., n. When @
is a Boolean algebra of propositions, this notion corresponds ;co the
intuitive idea of logical independence. Indeed, two subalgebras al ,
and @ > will be independent if and only if a non-sure proposition in
one of them is never implied by a non-impossible propositiou in the
other. And more generally, n subalgebras . @1, ce s Qn are
independent if and only if a non-sure proposition in one of them is
never implied by the conjunction of non-impossible propositions from

the others.

Some of the implications of independence are developed by the

following propositions.

Suppose Ql and &2 are independent subalgebras of

Theorem .
1
a Boolean algebra @ Suppose Al’ Al € &1, 'AZ’ AZ' € QZ’

d NA_ TS A LA <
and A= AMALTS ANA Then A 'S A, and A" SA.

Proof:
ATAA = A v .
1 2 [(AI Al) (Al Al)] " AZ'
- IAA)AA ']V -
is a disjoint partition. But ATAAT = (ATAA) AA,

= (A)TAANAALL So (AN - AN A = L . Hence, by

independence, Al' - Al =L . This means Al' SAl.

Similarly, A,' <A,.
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Corollary. Suppose 0’1 and @2 are independent subalgebras of a

Boolean algebra a. Suppose A € Q, A+ A, and A = Al‘/\AZ‘ = Al/\Az,

1 - i
A, e &2. Then A, = A" and

. -
where Al’ A1 € \,zl, and AZ’ 1

= !
A2 »AZ .

Corollary. Suppose &l and @2 are independent subalgebras of a

Boolean algebra Q , that Al’ Al' € @, that AZ’ AZ’ € & 2? and

l/\ H /\ US IS
that ATAALT <AL NA,. Then A,' A, A, A, and

< 1 1
A1 or A <A2 .

either A 5

1

Theorem. Suppose @1 and @Z are independent subalgebras of &7
and generate (1? Suppose AO€ 0, A e @l’ B¢ &2, and .A_i

A < A A B, Then there exists an integer s Z 1 and elements

A e As € (Ql and elements Bl’ e BS P @2 such that

l,
AiSAand BiSB fori=1, ..., s, and

A = (A /\B)V...V(AS/\BS) (1)

1 1
Proof: Since & is generated by GZIU &2’ the element AO

must, by section 7, be of the form

= A
Ao (Al,l l,r1

. ) x )
where for each m, n either Am,n € @ 1U &2 or Arn,n € &,IU &)2.
And since al and 022 are subalgebras, this means that A must

be of the form (1). Since we may assume that the Ai A Bi are non-

zero, the fact that the Ai = A and the Bi < B follows from the

preceding theorem.
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/ !
Theorem. Suppose A, €J1, Ay =+ ), and AZ’ A2 € QZ’ where
& 1

that Al N A

and 02 are independent subalgebras of Q . And suppose

<< 1
“AZ . ’Then A2 _<.A2'.

|

Proof: If A) AA, < A", then A A A, AR =\, whence

A‘Z/\AZ':j\.,OrA SA'

2 2" %

2

'e @2, where @1 and

t
Theorem. Suppose Al’ Al € Q 1 and AZ’ A2
a 5 are independent subalgebras of @. And suppose that Al A AZ

..<_A1'V A ', Then A, <A _ 'or A_<A_'.

2 1 1 2 2
. A A1 < 1y NWAA T < 1
Proof: (Al AZ) /\Al =< (A1 A2 ) Al < A2 . Hence
(A1 /\Al') A AZ SAZ’. So by the preceding theorem, either
| - 7
A ANA "=l andA sA " oA, <AL %

Now suppose we have a collection Ql’ cees Qn of Boolean
algebras and that we conceive of them in the first instance as having
nothing to do with each other. Then we might still wish to think of
them as independent subalgebras of some larger Boolean algebra. If,
for example, they are Boolean algebras of propositions, each dealing
with a different subject, then we might wish to embed them in an
overall Boolean algebra of propositions which would also contain

propositions of the form (1) ~- propositions dealing with more than one

subject at a time.
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Abstractly, what would it mean to embed the Boolean algebras

@ RREE @ o 28 independent subalgebras of a larger algebra & ?
Well, one would require a collection of isomorphisms fi’ e fn such
that for each i, i =1, ..., n, fi is an isomorphism of Qi into (Z; and
one would require that the images fl( Q 1), e fn( @n) should be
independent subalgebras of &

Now we might carry out such an embedding and then find out that
the algebra & is larger than it needs to be. In other words, the sub-
algebra of Q generated by fl( @ 1)U can Ufn( Q@ n) might be a proper
subalgebra of @ If this occurs, though, we can replace Q by that

proper subalgebra and still have an embedding -~ one which would now

be ""minimal''., This leads us to the following definition:

Definition, Suppose [?1, o a 0’ ﬁ are Boolean algebras and
that for each i, i =1, ..., n, £ Q i [? is an isomorphism
into. Suppose further that fl( Q l), S Qn) are independent

n

subalgebras of &) and that fl( & l) Uewo Ufn( (1) n) generates &)

Then (fl, cees I Q ) is called an independent sum of 01, e

0 )

n

As is turns out, an independent sum of & R @n always

exists. (See Sikorski, pp. 40-41.) Furthermore, all such independent

sums are isomorphic, in the sense that for any two of them, say

1
(f ...,fn,@)and(f1

1’ fn" @ '} there is an isomorphism h of

) ® e ey

Q onto Q ' such that fi' = ho fi for eachi, i=1, ..., n. Hence the

independent sum of a collection of Boolean algebras is essentially unique.
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When the Boolean algebras are thought of as Boolean algebras of
propositions this uniqueness is reassuring, for each element of the
independent sum is given an intuitive interpretation by formula (1).

Often, of course, each of the Boolean algebras Q i is conceived
of as a field of subsets of some set /j i In this case, the sum can be
thought of as a field of subsets of the Cartesian product j: jl X oo
X“Xn‘ Indeed, the isomorphisms f. are defined by fi(A) = /.P X oee X
8 .1 X A x /j’ 4] X o Jn’ and the sum & is then the field of subsets
of 3 generated by the collection fl ( @1) J... Ufn(@n).

In general, I will denote by &1 @... ® @n the independent sum

of the collection al’ v @ e Properly speaking, the Boolean

algebras &1, ey @n will only be isomorphic to independent subalgebras
of @1 @ ... @ @n' But I will often speak of them as if they actually
were subalgebras of [{)1 @... @ ((in. This practice is often quite

convenient and does not seem to cause confusion,






