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CHAPTER 4. THE MATHEMATICAL REPRESENTATION OF OUR
PROBABILITY

Now that we have a better technical grasp of the theory of Boolean
algebras, we can improve the mathematical representation of our

intuitive "'probability masses. ' In this chapter, that representation is

improved and developed.

1. Probability Algebras

In section 1 of Chapter 2, I gave the following definition of a

measure on a Boolean algebra:

Definition, If 77( is a Boolean algebra, then a function g 7 »[0,1]

is a measure if
(1) w(ly) =0,

2) w(V,) =1,

= uwM, V M,) whenever Ml’ 1\/[2 € ‘ﬂ/?

and (3) (b (Ml) +u M 1 2

5)
and M) AM, =/, .

I then declared that any Boolean algebra 7 with an accompanying

measure p could be called a measure algebra -- the intuitive idea being

that the elements of /] could be regarded as probability masses. But
as I later observed, there are properties that our 'probability masses'
ought ideally to have that are not imposed by this definition. At the end

of Chapter 2, I listed three such properties: positivity, completeness
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and complete additivity., Now that we have a stronger technical grasp

of the theory of Boolean algebras, we can describe these properties

more precisely.

Definition. A measure algebra (//, &) is called a probability algebra if

(1) (7%, 1) is positive: If MeN and M #_A_.m , then p (M) > 0

(2) 77"( is complete;
(3) (7, 1) is completely additive: If (f C?]Z' and the elements of

é are pairwise disjoint, then Z k(M) = !J:(Vé)-
Me€ '

The conditions listed in this definition add up to a rather strong package,

and the reader might well question whether there even exist any

probability algebras. As it turns out, though, there are quite a few of

them. In fact, for every measure algebra ('77?, u), there exists a

probability algebra (’% , V) and a Boolean homomorphism h: ’)72»—9717 such
that »=vo h., This fact will be proven in the next section.

The condition of complete additivity may require some explanation.
The symbol Z (M) ostensibly requires the addition of a number of

Mel

non-negative quantities that may be infinite and perhaps even uncountably
infinite. But the sum of an uncountable number of positive quantities
does not really exist, or at any rate must be considered infinite, while
Z wWM) = (VL) is supposed to be finite. Hence the condition of
i/cin'ir?plete additivity requires in particular that at most a countable number
of the elements of C) can have non-zero measure. If (%, 1 is also
positive, then this means that only a countable number of the elements

of 7/ can be non-zero. Hence we may conclude that any collection of
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disjoint non-zero elements in a probability algebra must be countable.

These considerations make the following theorem less surprising

#

than it seems at first:

Theorem. Suppose (7, 1) is a measure algebra and satisfies the

following conditions:
(i) M is o-complete.
(ii) 1 is positive.
iii) (%, w is countably additive: If (%, Cis countable

and the elements of fare pairwise disjoint, then

2w = (Ve
Me€ :
Then (M, 1) is a probability algebra.

Proof: It follows from the {inite) additivity of p that M cannot
contain, for any positive integer n, as many as n elements of
measure greater than 1/n. Hence any disjoint set of elements of
7‘/{ must be countable.

Let € tbe any non-empty subset of M. Then it follows from
the second theorem of section 5 of Chapter 3 that there exists a
disjoint subset 8 of M with exactly the same upper bounds as 6
Since ® is disjoint, it must be countable; and since fﬂf is o-complete,
VD must have a least upper bound or join. The same element will

also be the join of 6 . Hence any non-empty subset of N has a

join., The existence of meets follows; 7ﬂ is complete. And

complete additivity follows from countable additivity. v
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The fact that any collection of disjoint non-zero elements in a

probability algebra must be countable also gives the following interesting

result:

Theorem: Suppose M is a probability algebra, Me n, iM')’} ye D is

a collection of elements of 777 and M = VMy., Then there exists

a disjoint sequence Ml’ MZ’ ... of elements of M such that (i) M =

VMi and (ii) for each i there existsy ¢l such that M, SM%
Proof: By the second theorem of section 5 of Chapter 3, there
exists a disjoint subset D of M with the same set of upper bounds
as [My} yel” and such that for each De /8 there exists vy eI with

D=M_ . But since b is disjoint, it can have at most a countably

infinite number of non-zero elements. Denoting these by Ml’ MZ’

... yields the theorem. 74

A probability algebra also has very strong properties of the type

that are often called continuity properties. For a start, the measures of

a monotone sequence of elements of the probability algebra will converge

to the measure of the limit of the monotone sequence, as shown in the

following theorem.

Theorem . Suppose (7, KL) is a probability algebra, Then for any
monotonically increasing sequence M1 SMZ =... in 777 ,

VM) = SUP
pOVM) =700 1 (M),
And for any monotonically decreasing sequence 1\11 2 M2 2 ..

in m,

oAM= o).
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Proof: First suppose Ml SMZ =... is an increasing sequence,
and set Mo :j\_. Then it is easily verified from the definition of

join that

8

oo
Voo M. =,
i=1 i i

<<

p My - My ).

But the elements in the join on the right-hand side are disjoint;

hence
=) o <«
IJ;(.V Ml):“’ (.\/ {Mi—Mi_l]): 'Z u(Mi"Mi__l)
i=1 i=1 i=1
sup o sup o
= Z MMy =My g) = e (Y (M- M)
sup
= (Mn)'

In the case where Ml 2 MZ z,,, is a decreasing sequence,

T\‘/ITS MZ <... an increasing sequence, énd /\?\/Ii = Vﬁf
Hence,
pM) = (ML) = |- p (V) = |- TP ()

1= SP vy ) = T o), U,

The proof just given uses the property of additivity only for countable

subsets of 7. Using the full force of the property of complete additivity,

we can prove a rather stronger statement, the formulation of which requires
the notion of a net.

A non-empty subset ﬁ of a Boolean algebra & is called a downward
net in Q if for every pair of elements A, B e there exists an element

C ¢ & such that C<AAB. A non-empty subset B of a Boolean algebra

is called an upward net in a if for every pair of elements A, B¢ B there
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exists an element C eﬁ such that AV B =< C. Notice that a filter is a

downward net and that an ideal is an upward net.

Theorem. Suppose (7, () is a probability algebra. Then for any

downward net 58 C??? R
inf
HAB) = oo i (B).
And for any upward net B ¢ 27,

p(vB) = g‘:&;u (B).

Proof: Consider first the case of a downward net B . Since

inf

/\BS:B for all B ¢ (B , U (/\@)S Befl u(B). Choose a decreasing sequence
. inf _inf
B1 = B2 = B3, ... in @ such that ; u(Bi) = Beﬁ u(B). Then by the

preceding theorem, (/i\ Bi) = lflfu, (Bi) = Blfé u(B). Now suppose

7] nEB) <]§§éu (B). Then AB is a proper subelement of A Bi' This

implies the existence of some element M1€@ such that/\Bi is not

a subelement of Ml’ or A Bi - Ml # . . Denote A Bi - Ml)

—/\Bi):u(B

e>0. We can choose an integer K so that ,_L(BK K)

< L < h
TR Bi) ¢/2, and if we then choose Mza B so that MZ\ BK/\Ml,
we will have

M [ B'i - MZ)

and w (M —/\Bi)<e/2.

2
This implies that g ( A Bi) >u (MZ), contradicting the assumption

inf inf

that gy (A Bi) = B€18u (B). Hence u{A B) = Beg M (B). ]

If (7, i) is a probability algebra and 7 is a complete subalgebra

of 77, then (7, u |7 ) will be a probability algebra. We can describe

this situation by saying that (%, u |7) is embedded in (%, u). More
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generally, if (7, w) and (7, v) are probability algebras, then an
isomorphism 8 of M into 7/ is called an embedding or isomorphism of
(M, u) into (97, v)ifu=vo 6. And of course if §is also onto, then it

is called an isomorphism between the two probability algebras, and they

are said to be isomorphic.

2. Constructing Probability Algebras

In this section, I will show that for any measure algebra (777, 1)
there exists a probability algebra (%, v ) and a Boolean homomorphism
h: W — 7] such that pg=voh. One important tool in this demonstration
is Carathéodory's Extension Theorem, a standard theorem in measure

theory that I will state and use without proof.

&’

Carath&odory's Extension Theorem, Suppose A is a field of subsets of

a set j and §: ; — [0, 1] satisfies

(1) 6(6) =0

(2)  6d)=1

(3)  6(S,)+ 6(S,) = 6(SUS,) whenever S, S, - ana
s, N's,=¢. _ |

(4)  1£5p8S,>...and (1S =4, then ST 6 (s, = 0.

Let C;)j * be the o~ field of subsets of X generated by ?’/ Then

—
there exists an extension 6 * of 6to 4 * such that
@0

(5) L O* (Si) = §* (il:’l Si) for all disjoint sequences
1 =z

i= :
Sl’ SZ’ ... of elements of 9‘/*.
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Lemma 1. Suppose (7, i) is a measure algebra. Then there exists a

measure algebra (Jr*, §*) that is 0 - complete and countably

?/
additive and a Boolean homomorphism f: 7 —> &4 * such that

p= %o f.
Proof: Let fO: /[ I be the isomorphism established by the

~
Stone Representation Theorem; ¢ being a field of subsets of the

set J‘ of all ultrafilters in %1, with fO(M) = {Fch .j and MeF}.

R -1
Set 6=pof ~.

Then ;( and § obviously satisfy (1), (2) and (3) in the hypothesis

of Caratheodory's Extension Theorem. In fact, it also satisfies

(4). To see this, let SID S2 D ... be a decreasing sequence in

with (1S, = 8, and set M, = £71(s,). Then M;2M,% ..., and

H

N1 F{FSJ and M, F}

{FIFEJ andMieFforall i}.

6 =N,

1

Now set FO = {M' Mi <M for some i}. Itis easily seen that FO is
a filter. Furthermore, FO is improper. For if it were proper, it
would be contained in an ultrafilter Fl; Fl would then contain all
the M’i and hence would be in Si’ contradicting the assumption that
N Si = é. So Fo is improper and thus contains J\_m But this
implies that Mi :A??Z for some i and hence for all j21i. Thus
Hm lim
isw 005 =550 (M) = 0.

So by Carathéodory's Extension Theorem, § can be extended
to a countably additive measure §* on the o - field 3:* generated by
o7
. Evidently, (F*, 6%) is a g - complete and countably additive

lag

probability algebra. If we denote by i the identity mapping from o

into & * then f =i o fo is a Boolean homomorphism of 97 into ;*.

Furthermore, u:ﬁofozé*oiOfozﬁ*of.' Z@
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Lemma 2. Suppose (f}:*, §%) is a ¢g-complete and countably additive

measure algebra. Then there exists a probability algebra (71,v)

and a Boolean homomorphism g: :}:* 7 such that 8% = vo g.

Proof: Consider the setl = {M‘Me\(}:*, uM) = O}. It is easily

shown that I is a proper idealin F%. Hence one may construct

the quotient 7 = F #/1 and the Boolean homomorphism g;gt?x:;,, 7
MW{N‘NG j*, NAMGI} as in section 8 of Chapter 3. Recall that
each element of // is an equivalence class of elements of F *.

If M and N are both in the equivalence class EE?Z, then NAMGI,
whence 8%(NAM) = 0 and §*(N) = §*(M). Hence one may define a
function v: 7] {0, 1] by setting V(E) = 8% (M) for any M€E, Evidently,

v=0%o0 g.

Since A.J:,< is in the equivalence class _A% and .Vé—* is in

the equivalence class V;Z , V(L%) = 0 and ¥{ V:/L Yy = 1. Andif

/\E2 = A‘?’Z , then choosing M € El and NfEZ

E Eze% with E

1’ 1
gives g(MAN) = g(M)Ag(N) = E AR, = 'Aﬂ = I, whence 0*%(MAN) =0,
Hence v(E;) + V(E,) = Sx(M) + 8#(N) = 8%(MVN) = v(g(MVN)) =
v(g(M)v g(N)) = v(E VE,). So ()1 ,v) is a probability algebra.

Furthermore, (% ,v) is positive. For if V(E) = 0, then choosing
MeE gives §%(M) = 0, whence M€l and E =1 :_/(_% .

Now I is a o-ideal. In order to prove this, take any countable

collection A,, A,, ... of elements of I and set B, = A. - M. A,
1 2 i i jd™y

and note that VA, = vB, and S*(VBi) = Z(S*(Bi) = 0. Sincelis a

g-ideal, the quotient ?7 is o-complete and g preserves countable

joins. From the fact that g preserves countable joins, one may

deduce that (%,V) is countably additive. It then follows from the

first theorem in section 1 that (7/,v) is a probability algebra, 7
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Theorem. Suppose (77;,#) is a measure algebra. Then there exists a

probability algebra (7 ,v) and a Boolean homomorphism h: 77—+ 7/

such that p=vo h.

Proof: The theorem follows directly from the constructions in

the two lemmas. For setting h = g o f, we have p=§%*o f =

vogof=voh, A

In the proof of the second lemma above, we took a o-field of subsets

that had a countably additive measure and divided it by the ideal consisting

of those of its elements with zero measure. As we saw, such a process

nzcessarily results in a probability algebra. With the help of the T.oomis-

Sikorski Representation Theorem, it is easily shown that any probability

algebra can be represented as such a quotient.

Theorem. Suppose (J{,H) is a probability algebra. Then there exists
a setg, a og-field gof subsets of J, a countably additive measure

a o7
v on ¢, and an isomorphism i of 7 onto the quotient of o by the

o-ideal of sets of measure zero such that V(F) = p(M) whenever

Fei(M).

Proof: The Loomis-Skorski Representation Theorem supplies us
Ing

with a g-field ?of subsets of a set g, g-ideal I of ¢ and an

isomorphism i of /1 onto ;[/I. Hence we need only verify that
the function v: [0, 1] defined by v(F) = #(M) whenever Fei(M)
is countably additive measure and that I consists precisely of the
sets F for which v(F) = 0.

The second part is easy: the sets F for which V(F) = 0 are
precisely those in i(,A_m ) = J\—%/I = I, On the other hand, X(

( V)fl }, so v(/f) = 1. Hence we need only show countable additivity
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. . 14 TI1 5
for v. But the canonical homomorphism f: ¢ — ¢/I is g-complete,

s
So if we take any disjoint sequence Sl’ SZ’ of elements of & R

we have v(US,) =p<i‘1(f(usi)>) = u(i‘l (vf(S:i.)).) = P-(vi'1<f(Si)>>
Su(i (s = Svisy. W

3. Standard Representations for Belief Functions

It follows from the preceding theorem that any belief function can
be represented by an allocation into a probability algebra. Suppose,
indeed, that we have a belief function Bel:a -#0, 1], a measure algebra
(7, n) and an allocation Pyt a4 -/ such that Bel = po p, . Then using
the probability algebra (7 ,v) and the Boolean homomorphism h: Ms 7
supplied by our theorem, we may set p = hop,. The mapping p: ﬁ-—b 7Z
will then be an allocation into the probability algebré (77, v) and it will
represent Bel; for Bel = Hopy= VOhopo = Vop.

In the sequel, I will generally mean an allocation into a probability
algebra whenever I use the term ''allocation of probability. " When
confusion is possible, I will use the word standard to specifically refer
to allocations into probability algebras. I will say that an allocation

into a probability algebra is a standard allocation, and I will say that it

is a standard representation of the belief function it represents,

As we will see, the existence of standard representations will often
facilitate our thinking about allocations of probability and belief functions.

It should be noted that when p: (I + Jf is a standard representation
for the belief function Bel: &——s-[olz]anﬂ @o is a subalgebra of d, P ld’o will

be a standard representation for the belief function Bell &O on &o.
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4. Quotients of Probability Algebras

One of our fundamental conventions is that the measure of our

total probability mass should equal one. It sometimes happens, though,

that we want to discard a given probability mass and to regard the
probability mass that is left over as our total probability; in this circum-
stance the measure of our total probability will decrease unlesé we ''re-
normalize' it. In this section I will briefly describe the process of
discarding a probability mass and renormalizing the measure of the
remaindar,

Essentially, to discard a probability mass means (1) to put the
null probability mass in its place and (2) to deduct its contribution from
every probability mass to which it contributed. In symbols, the discarding
of the probability mass M from a probability algebra (7, 1) involves
replacing every probability mass M'e)} by M'AM = M'-M. Or, to put it
a different way, it means identifying all pairs M', M' of probability
masses in 7/l for which M' - M = M" - M.

But this is precisely what is done when 7/] is divided by the
principal ideal I generated by M. For under that division M' goes into
the equivalence class {M”[M'AM”(I} = {M”[M”s_‘xM' gM}: {M”}I\/ v M
= M' —M}. Hence discarding a probability mass means dividing by a
principal ideal.

Denote by f the canonical homomorphism of 42 onto /1. Then
what measure should be assigned to a given element f(M')¢ MI1? Well,

M' = (M! - M)Vv(M'AM) and M'AM is being discarded; so M' - M is what

is left of M', and it would be natural to adopt u(M' - M) as the measure




-111-
of f(M'"). But this procedure will result in a measure of 1% Tm - M) =
HM) = | - (M) for the unit V/I=£( V). If p(M)>0 --i.e., if
M #:,A,,m , then this conflicts with the requirement that the measure of
V on /I should be one. We can correct this difficulty by multiplying all
the quantities p(M' - M) by a constant in order to increase the measure
of V/m/I to one. The appropriate constant is, of course, 1/(1 -'/H(M)).

In other words, we define a measure von 7//1 by

1

VEMY) = T KM - M),

It is easily verified that this is indeed a measure on 71/I. In fact,

(M/1, v) is a probability algebra, provided only that M % V3n . In

the sequel, I will refer to (92/1, v) as the probability algebra obtained

from (71, p) by discarding M.

5. Orthogonal Sum of Probability Algebras

As I mentioned above, if (7, p) is a probability algebra and 7 is
a complete subalgebra of M, then (N, 4 |77) is a probability algebra and

is said to be embedded in (7, ). Now suppose that m R m L aTe

independent complete subalgebras of 777 . Then they are said to be

orthogonal if

p(M{AL AM ) = p(M) e p (M)

1
whenever Mif77(i for eachi, i=1, ..., n.

In the sequel we will sometimes deal with a collection of probability
algebras that are conceived of as having nothing to do with one another

and yet which we wish to embed as orthogonal subalgebras of a single
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overall probability algebra. In this section, we will see how this can
be done.

Definition. Suppose (?)}'],u,), cees (%n, o) (7, ) are probability

algebras and that for eachi, i=1, ..., n, fi:777i -» X is a complete
isomorphism into with o = Ho fi' Suppose further that fl(ml),
s fn(%n) are independent and orthogonal subalgebras of 777.

Then (fl, ey fn; (7 ,u1)) is called an orthogonal sum of (M},,ul),

e 00y (%.n:}"'n)-

The rest of this section is devoted to showing that an orthogonal
sum exists for any finite collection of probability algebras. This will
be done by appealing to the construction of "product measures'' in measure
theory, In particular, I will appeal to the following theorem, which is

a long-winded version of the assertion that product measures exist:

Theorem. Let { X 1 3: 1’ yl), s (Jn, ;\T o’ Vn) be ""measure

-

#.is a

spaces. ' In other words, for eachi, i=1, ..., n, ;
o-field of subsets of the set Ji and v, is a countably additive
measure on Ii' Denote by 5 the Cartesian product le X ... X

4 . Andfor eachi, i =1, ..., n, define a mapping k;: f[i P (f)
by setting ki(A) :/S 1X - in—l xAx§i+1 X .o Xjn' Let

& be the o-field of subsets of A generated by K, ( Ii)u. . .Ukn(In),

Then

(i) for eachi, i=1, ..., n, ki is a o-complete Boolean

isomorphism of Q‘/l into I, and

(ii) there exists a unique countably additive measure p on

jsuch that v, = Voki for all 1 and
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v (Alﬂ. ..ﬂAn) = v (Al) eV (An)

whenever n 21 and Aie ki( ji) for each i, i=1, ..., n.

This theorem is proven, for example, in section 37 of Halmos'

Measure Theory.

Suppose now that we begin with a collection ('7771, p,l), ceey (Wn, p,n)
of probability algebras and that we wish to construct an orthogonal sum.
Then by the last theorem in section 2, we can suppose that for each i,
i=1, ..., n, there exists a set 'di’ a og- field (v‘ri of subsets of ’ji’

a countably additive measure v, on gfi, and an isomorphism ji of 7?71

onto the quotient 6;L}'i/li, where Ii is the g - ideal of sets of measure zero
and vi(F) = p.i(M) whenever Feji(M). Suppose, then, that we let ( ,3, :I, V)
and kl’ cees kn be as in the preceding theorem. Then denoting by I the

g -ideal of ?f consisting of all sets of measure zero, we may set M =

j.i /I and let p be the measure on 7 inherited from the measure yon ;;(
Then (M, p) will be a probability algebra and a candidate as an orthogonal
sum of (M 1’ pl), cee (?/ln, p,n). But we still require the embeddings

fo, oo, f.

1’ n

aq
First we must use the isomorphisms ki: QL i’%j to construct
— M :
isomorphisms k. ' Jﬂi/liﬁ;‘r//l' It is easily seen that whenever A, B
g Ii differ only by a set of measure zero, their images ki(A) and ki(B)
differ only by a set of measure zero. Hence ki' may be defined by
setting ki‘([E]) = [ki(E)]. It is easily verified that the ki' defined in this

i

way are indeed isomorphisms into. Finally, setting fi = ki o ji for each

i, i=1, ..., n, we obtain the desired embeddings.
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6. Bibliographic Notes

With the exception of the ideas in section 3, most of the material
in this chapter is fairly well known to students of Boolean algebra. DBut
it is not as widely accessible as the material of the preceding chapter.

Several of the proofs in sections 1 and 2 can be gleaned from pp. 55-68

of Halmos' Lectures on Boolean Algebras, but for others I have been

unable to find any references.

For a proof of Caratheodory's Extension Theorem, the reader

may consult Robert Bartle's Theory of Integration, pp. 98-104.

Another method of proving the main theorem of section 2 would
be to take the quotient first and then embed the resulting positive measure
algebra in a probability algebra by completing the metric space given by
the distance d(A, B) = 4 (AAB). This approach is spelled out in Demetrios

A, Kappos' Probability Algebras and Stochastic Spaces, p. 12 and

pp. 16-28.
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CHAPTER 5. CONDENSABLE ALL.OCATIONS

An allocation of probability on a power set ’P(J) is condensable if
its upper probability function P* obeys

Pi#(A) = sup [P#(B)|BCA; B is finite} .

Condensability is a very important property. It is a property that can
generally be expected for belief functions based on empirical evidence;
and belief functions that are condensable are intuitively much more

transparent than belief functions in general.

This chapter is devoted to the mathematical and intuitive aspects
of condensability, and aims at an understanding of the commonality

numbers, which provide the best way of describing condensable allocations.

1. Condensability

The theory of degrees of belief set out in the preceding chapters is
really built on a single simple intuition: if a given portion of our belief is
committed to both of two propositions A and B, then it should be committed

to the conjunction AA B, It has been my claim that this intuition practically

imposes itself -- that a probability mass's being committed to both of two
propositions can only mean its being committed to their conjunction.

But one who finds this perception convincing is not likely to stop
with pairs of propositions; instead, he is likely to apply the idea to larger,
even to infinite collections of propositions. In other words, he will insist

that if a given probability mass M is committed to each of a collection péi
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of propositions, then it must be committed to the logical conjunction of
all the elements of ) .

If we begin with an arbitrary Boolean algebra of propositions, e .
there is no guarantee that [Zwill contain an element corresponding to the
logical conjunction of a given infinite collection of propositions 5cﬂ‘

But suppose that (L can be thought of as the power set of a setkg of
possible states of na"cure, so that a given proposition A in (7 asserts that
the true state of nature is one of those in a certain subset A of%/g. Then
for any collection & C’P(J), the set-theoretic intersection NP must be
interpreted as the logical conjunction of the propositions ing; it says that
the true state of nature is in all the sets BeZ5 , i.e., in their intersection
N® . In this case, our intuition tells us that a probability mass that is
constrained to all the elements of & should also be constrained to N'E.

This intuition goes beyond the intuition we have used thus far, and
not all allocations of probability on a power set will satisfy it; our rules
for allocations imply it for finite collections Z?’, but not for infinite ones.
So those allocations that do meet this intuition deserve a special name: A
standard allocation of probability p:P(f )-» 777 over a setJ will be called

condensable if for each Ms /// and 6C’P(v\.f' ), M is constrained to U# if

and only if it is constrained to each element Bed.

The requirement that p must be standard should not be overlooked;
it means that the properties of condensable allocations depend on our
intuition about what our probability itself looks like, as well as upon our
intuitive understanding of the logical structure of P(sf). In fact, though,
condensability is a property of the belief function or the upper probability

function and does not depend on which standard representation is used.

N




-117-

Theorem . Suppose p:"P(:j)-—s 77 is an allocation into the probability

algebra (72/,u). Denote by ( the allowment g.:"’P(g} )-bf/% tAnny p(iz&),
by Bel the belief function p o p, by P* the upper probability po ¢ ,
and by ct the constraint relation defined by "A ct M if and only if
M< p (A). Then the following seven conditions are all equivalent,
(i) p is condensable -- i.e., if & is anon-empty subset of

®(J), Me 7], and M ct B for all Be® , then M ct NB.
(ii) (i) p (NB) = Bl P (B) for all non-empty BCP().

(11i) C(UB) = pYg € (B) for all non-empty BC®(AF).

(iv) For every non-empty ACJ , there exists a sequence
of elements of A and a countable disjoint partition

S1s Sy e
. of {(A) such that M, = ¢ ({ Si}) for each positive

M, My, ..
integer i.
sup
(v) For each ACS), P#(A) = A'€S  Px(A").
A' finite

(vi) If 123 is an upward net in®(s/ ), then PHUD) = gz% Px(R)

(vii) If B is a downward net in (. ), then Bel(NL) =

inf
Bed Bel (B).

Proof: (i) = (ii). Since allocations are isotone, p (N B)<p (B)

for all Be B, and hence p (NP )< B/é}zp (B). On the other hand,
< .
g P (B) =p(B) for all Be B8 --ie., Bé\ﬁp(B) ct B for all BeH.

So by condensability, Bféﬁ p{B) ct Ny --i.e., B{S\-B o(B) <p nNs).

(i) > (). (UB) =p (OF) = p (gJg B)
—o(N B)= A o= v p(B) = v(B).
Belh Be® BeB Be(d

(iii) = (iv). For every non-empty BCJ , UB) = S\éBQ({s}).

Hence (iv) follows by the second theorem of Chapter 4, section 1.
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(iv) = (v). We can suppose A is non-empty, and in that
case we can choose a sequence S1s Sy een of points of A such
[=<]
that v ¢ ({s;}) = ¢ (A). But,v,c({s;})= v ,¢(ls;, ..., s 1), and
¢ ({ si}) < ¢ ({sl, sz}) <¢ ({sl, S, 53}) <... is an increasing

sequence in 777 . Hence, by the third theorem of Chapter 4,

section 1, P#(A) = u (5 (A) = p (v¢ ({s), +vvy s, 1) = T Pu(C({sy,
sup

cee, 53N ="PPx({s., ..., s. S A' €A P*A'). The

n n 1 n .

A finite
sup
inequality ACA P*(A'Y)< P#(A) follows, of course, from the
Alfinite :

monotonicity of P,

(v) = (vi). Suppose 4 is an upward net and A is a finite

subset of UB. Then it is easily verified by induction on the number

of elements of A that there exists an element BeB such that ACB.

sup
Hence if B is an upward net, SUP px(B) = ACUB Px(A) =
Bed . .
. su A finite
P U R). The inequality Bg_é’ P#(B) < P*(B) follows, of

course, from the monotonicity of P¥%,

(vi) = (vii). Suppose £ is a downward net in P(:/ ). Then
€, =1 nge@ }is an upward net in P(sf). Hence

Bel(N@) = 1 - P¥(AZ) =1 - P¥(UZ) =1 - S PP*C)

_ Sup .3 _ inf (R - inf
1 PxB) = 2(1 - Px(B)) = Be@Bel(B).

Bgﬁ

(vii) = (ii). Suppose [ CP(4) is non-empty. Then

€=1{n ,H & cB, & finite} is a downward net inP(d4 ). But

NB=NE and C/;ap (C) = BQ& p (B). Hence

1

w (o (NB)) =u(enE)) = Bel (NE) = Ci];éBel(C)

= onb L (P (C)) = 1 (Syp (O)) = ‘ng (B)).
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Since p (NG )CB/;fp(B) and p is positive, it follows thatp (N7)

= ngp(B)-

(ii) = (i) If M ct B for all Be %% , then MCp (B) for all

Be @’ or MC Hence MCp (ME), or M ct nNae. @

A
Be@p(B)'

Since conditions (v), (vi) and (vii) make no reference to any parf cular
standard representation for the belief function or upper probability function,
this theorem justifies the assertion that condensability is a property of

the belief function or upper probability function and does not depend on

which standard representation is used. More generally, the theorem shows

that the adjective condensable can properly be applied to the constraint
relation, the allowment, the upper probability function or the belief function,
as well as to the allocation p. I will follow such a usage in the sequel.

Condition (iv) is of particular interest for the intuitive understanding
of condensability. It states that the probability mass ( (A) -- the total
probability mass that can get into B -- can be divided into a countable
number of discrete pieces, each of which can get into some single point
of B, We will shortly see why this property deserves to be called ""con-
densability. "

It is condition (v} that we will deal with most often in the sequel. Its
utility is obvious -- it means that the entire upper probability function is
determined by its values on finite subsets and thus allows us to examine
the structure of condensable upper probability functions much more closely.
We will begin this closer examination in section 3.

In my definition of condensability, I have required that the allocation

or belief function be on a power set (). This may seem unnecessarily
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restrictive, for the definition could easily be extended to any complete

Boolean algebra in which arbitrary meets and joins can be understood as

conjunctions and disjunctions. It is not clear, however, that there are

any such Boolean algebras which are not isomorphic to power sets; and
hence it is not clear whether the seemingly more general formulation is

of any real interest. In any case, the upper probability functions that we

will be concerned with will be on power sets.

There are many ways in which condensable belief functions are

more attractive than belief functions in general. Consider, for example,

the problem of sets of "upper probability zero." If the upper probability

function P#:ifP()—»[0,1] is condensable, then the set
S= U{S'PxS) =0}

will obey P*(S) = 0. (This follows from condition (vi) in the preceding
theorem.) The significance of this fact is that it makes it possible to
interpret "P*(S) = 0' as really meaning that the upper probability function

P holds S to be impossible. In the case of non-condensable belief

functions -- for example, in the case of ""continuous' probability func-

tions -- such an interpretation is, somewhat paradoxically, impossible.

2. Mobile Probability Masses

A condensable allocation on a power set®(=)) can be interpreted

in a very vivid way if we think of the set o geometrically and think of our

probability as being distributed over it. More precisely, let us think of

our probability not as being distributed in a fixed way, but rather as having
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a certain degree of mobility. In other words, the various probability

masses in }77 are to be allowed to move around, to some extent, within

The extent of the mobility is specified by the constraint relation
ct between 7% and?(g ); if a probability mass Me 7%/ is constrained to
a set ACJ , this means precisely that neither M nor any subelement of
M can get out of A. A glance at the rules for constraint relations in

section 2 of Chapter 4 will reveal that those rules are all immediately

obvious from this geometric picture. And the condition of condensability

is equally obvious; for if all of a probability mass is constrained to stay
inside A for each A in some subset 8 of(P(»f ), then it must be constrained
to stay inside NP .

An even more vivid understanding of condensability can be obtained
from condition (iv) of the theorem in the preceding section. Intuitively,
this condition means that though the constraints on the probability mass
€ (A) might allow it to become spread out over A in a completely diffuse
fashion (as in the case of a ''continuous distribution'' of probability), it
must always be possible to condense it into a collection of discrete pieces,
just as a diffuse mass of water vapor cah be condensed into a collectioﬁ of

drops. The word "condensability'' is meant to bring to mind the possibility

of such a condensation.

It is easy to think about a subset A's degree of belief Bel(A) and
upper probability P*(A) in terms of this picture. Bel(A) is simply the
amount of probability that cannot get out of A, while P*(A) is the amount

of probability that can get into A,

If we concentrate on a probability mass Me ’)”4 , it is natural to ask
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just how constrained M is., Evidently there will be a whole, possibly
quite large, set # C‘(P(J) of subsets of J to which M is constrained.
By condensability, M will also be constrained to M#& , and this will be
the smallest region to which all of it is constrained -- its ''tightest"
constraint, But as we saw in section 9 of Chapter 2, the existence of
such a "'tightest" constraint for each probability mass can be described
by saying that there exists a '"constraint mapping'' A:772/—F( »,f) that maps
each probability mass to its tightest constraint, So condensability has to
do with the existence of a constraint mapping.

This may be puzzling, for in Chapter 2 we saw that any belief

function can be represented by an allocation of probability for which a
constraint mapping exists. But the allocation constructed there was not
necessarily standard -- it was into a ''measure algebra' but not necessarily

into a "probabi lity algebra.' And when the allocation is extended to one
into a probability algebra, the constraint mapping may be lost., In fact,

it will be unless the belief function is condensable.

Theorem. Suppose p:P(d)— 71 is a standard allocation of probability.
“then p is condensable if and only if a constraint mapping \: 72— (4)
exists for p .

Proof: If pis condensable, then the mapping \: 7] —P(J ):M~+
AAJACY, M ct A} is a constraint mapping for p. If a constraint
mapping )\:772———5-0?(4 ) exists, then M ct A if and only )\ (M)CA;

so if M ct B for all Bei{d it follows that A(M)C @ for all Be and

AM)CNG, whence M ct M.
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3. Upper Probabilities for Finite Subsets

A condensable upper probability function P*:(P(g? )-——z»[O, 1] is deter-
mined by its values on finite subsets of qf . Denoting by ,}/(QP) the set of
all finite subsets of;j , We can express this by saying that P* is completely
determined by Po*: ;/.U(Q/)ﬁ [0,1], where Po* = P I (?J(J)o
This fact leads us naturally to inquire about the properties of PO*. On the
one hand, we might ask what properties P_* will have on account of P*'s
being a condensable upper probability function; and on the other hand, we
might look for conditions on a function f¢ F (of )—#[0, 1] that are sufficient

sup

to assure that the function P%: P(f)—[0,1]:A ~~> A' C A f(A) should be
) Al'finite
a condensable upper probability function. The following lemma will help

us state such conditions:

Lemma, Letf be a real function on the set él)(,g,?) of all finite subsets

of a non-empty set J, and denote

f ' card J
(B; Ay vuuy, A ) = Z (-1) f(BULY L AL)
Vn 1 n JC{I,...,n} ie J 71

whenever n 21 and B, Al’ eees An el (f ). Now fix Al’ e An’

and for eachi, i=1, ..., n, set

Ay = {ail’ aik.}
2 1

and for eachj, j=0, 1, ..., ki’ set

j
A, = {ail’ ces aij}'

o]

(Ai: $ foralli, i=1, ..., n.) Then




| jlfl jn—1
V, (B A, .o, A ):Z{Z<BUA1 u-..ua o

{aljl}, {anjn })

Proof: If ki = 0 for some i, then Ai = @, and it is evident from
the fact thatvn is a successive difference (cf. Chapter 1, section
3) that Vn(B, A, «.., A) =0; on the other hand, the right-hand

side above would also be zero, for there would be no terms in the

summation., Hence we may assume that ki >0 fori=1, ..., n.

In that case,

. j.-1
BU(U Ay HU(U A, ))’

r.h.s. = (-1)
ieJ idJ

card J ]
f(
(jl,...,jn)s JC l,...,n}

n ji # of i for which ji:ki
= C fBUU A (1)
Gys oees 3y)? i=1

j. = 0 or k, for each i
i i

U card J
= : : f(BU{. A)) (-1)
JC{I,...,n} 1€J 1
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Theorem. Suppose fis a real function onc?(J ), the set of all finite

subsets of a non-empty sete/. Then the real function P* on 'P(/j)

sup
defined by P*(A) = ACA f(X) is a condensable upper probability
A' finite
function if and only if

(i) () =0

sup
(i) Aef(d) £f(A) =1
" o4 J card T

(ii1) If A, BeJ(J ) and A + 4, then T (-1) f(BUT) < 0.
TCA

Proof: First we must show that if P*:‘&—"(gf )—[0,1] is a condensable
upper probability function, then f = Px* L?J(J) satisfies the three

conditions. But (i) and (ii) are obvious. Now we may write

A = [sl, e, sn} for some n 21, and TgB(_l)card Tf(BUT) then
card J P
becomes Z (-1) P¥BU(U {s.})) = (B;{sl}, oo {s D,
JC{1,...,n} ieJ ! ' n n

and this is non-positive according to section 3 of Chapter 1,
Next, we must show that P is a condensable upper probability
function if f satisfies the three conditions and P* is defined by

sup
P#(A) = A'CA f(A). But the relations P#(4) = 0 and P/ = 1

A'finite
are evident from (i) and (ii). Hence, by the last theorem of section
3 of Chapter 1, we need only show that Z(B; Al’ . ’An) <0 for all
B, A ,...,A eP(d). But we have just seen that 5 (—I)T(BUT)
f a TCA
:Z(B; {sl}, e d sn}), where A = {sl, e, sn}, so (iii) above asserts
that \7n(B; Al’ e An)S 0 in the case where B is finite and the

Ai are singletons. The case where B and the Ai are all finite

follows by the lemma.
By the definition of P*, the values P%(A) can always be

approximated by values P*(A'), where A'C A and A' is finite, so
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we can easily establish that T:/;l(B; Al’ cee, An) <0 in general by
approximating each upper probability with the upper probability

of a finite subset. Suppose, indeed, that

0 <e=V (BiA,..., A ) = PH(B) - TPHBUA) +-. ..

+ (-1)" P (BUA,,U...UA ).

Then since there are 2" terms on the right-hand side of this

inequality, we can approximate B, Al’ cens An by finite subsets

B, A s An' such that P*(BUAi, U.. 'UAi ) differs from
k

1
e :
1 1 -
P#(B'UA, U...UA, ) by less than 1/2-¢/2" for each(i,,...,1,)
i i 1 k

such that 1 ~<—il <. .. =< iks n. Hence, the quantity Y&(B', Al', .

An') would also be positive, contradicting our conclusion in the

preceding paragraph. 777
/]
Theorem., Suppose;} is a non-empty set, (ﬁ{,p) is a measure algebra

and
i oef —77]

is such that for any ¢ >0 there exists a finite subset {sl, cees sn}

o

of Upsuch that
{.L(QO(SI)V... vgo(sn))>1 - 8.

Then the function P*:®P(J )-+[0, 1] defined by P*(4) = 0 and
P#(A) = sup {p(€ (s))V... Vv (s ))nz=1; {sysoees s JcA)

O n

for A =% ¢ is a condensable upper probability function.

sup
Proof: Evidently, P*{(A) = A'C A f(A), where f(¢) = 0 and
_ A'finite
- r sup -
U5y eersgd) = WG (o) Vs VG (s)) And 4008 4 £A) = 1.

So by the preceding theorem we need only show that if A, Be :}J(Y‘;‘ )
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and A =0, then

card T
Z (-1) f(BUT) <0.
TCA

Now set A = {s.,...,s_}and set
=71 n
/\,m if B =¢

(t.)V...v c(t )ifB:[’c,...,t }, where m =1,
¢ 1 m 1 m

Then

Z (_l)card T £ (BUT)
TCA

= w(M) = Du(MV ¢ () + Zu MV C (55) VG (s))

B MV (5,) Ve. .V C (5))

b (M) - (M V(5 A A (MY ()

1}

il

B (M) - (MY (A G (5,))

(///]

4., Commonality Numbers

Let o 7"(4’ )—s/] be a condensable allocation of probability, and

N4

let { be the allowment associated with p. In other words, ¢ (A) = p (A).

Then for each sc;j, ¢ ({ s}) is the total probability mass that can reach
the point s. And for any non-empty finite subset A = {sl, ce s sn} of /j ,
C ([sl}) Avo. AC ([sn}) is the total probability mass that can reach each

and every point of A -- i,e., the total probability mass that can move
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completely freely within A.

Now if A = §, the total probability mass that can reach each and

every point of A is vm . Hence it is natural to define a mapping ¥ ;L:(/j’)

—s 7 byy(d)=Vp andy({s,....s }=C{sDA...aclls D. Asit
turns out, the measures of the probability masses w(A), Ase j(/f ), are

very important and hence deserve a name. Setting Q =pu oy, whereyuis

the measure on 7, I will call Q(A) the "commonality number'" for A, and

I will call Q: ¢ (,3 [0, 1] the "commonality function' associated with p.

Notice that the commonality number Q(A) decreases as A is enlarged,

Indeed, Q(4) =l V35 ) = 1, and Q({s,...,s, s ] C(fsy3ne..n

c({s hn cs 3Nsulals DA Ac s ) =0alls, . us D
This contrasts sharply with the behavior of the upper probability P#(A)
which begins at zero when A = $ and increases as A is enlarged.

Actually, commonality numbers and upper probabilities are related

by a much more extensive duality. For while the commonality nunbers
give the measures of the intersections of the probability masses { ({si} )

upper probabilities give the me asures of their unions:

w6 ({5 D) A AC (s 3)

—_
-
6]
-
-
-

W
[
~—

i

1

Pi((s, .oy s D=n (s, eers 3N =0 (s Ve Ve (s ).

Now we know from the theory of measure (and from Chapter 1,
section 5) that the measures of finite meets can always be expressed in

terms of the measures of finite joins and vice-versa:
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i - n+1
w(M A, . ./\Mn) =2 (Mi) - 24 (1\/[i \v Mj) +eu. H(-1) p,(Mlv. . .V_Mn)

1
and
. n+1
M(Mlv. . .an) =3 (Mi) - 2 (Mi/\I\/IJ.) +-.. .+ (-1 U‘(Ml Ao A M_n)
for all Ml’ o nes Mn e /1 . So for all non-empty finite subsets {sl, e, sn}

ofX,

Q({sl, ceors D) =EPH({s;}) - ZP¥({s,, sj} - .+(-1)n+lp*({sl, cees Sn})

and

Pi(lsy, ..., 5, =ZQUlsD - QL 81 +-. .+ QUle s

It is evident from this last formula that the commonality numbers determine
the upper probabilities for finite subsets and hence the entire condensable
upper probability function.

So in the condensable case commonality functions are simply another
It will be useful to know

form in which belief functions may be specified.

what properties fully characterize them,

Definition. A real function Q on the set "j(;} ) of all finite subsets of

a non-empty set j is called a commonality function if

(i) Q(4) =1,
inf
.. - card T
(11) Aﬁja)TL ("1) Q(T) - 0,

(i) If A, Be &(£), then £ (-1 TqauT =0.

TcB

Theorem. If the function Q on I ( j)) is a commonality function, then it
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takes values in the interval [0,1].

Proof: Setting B = {s} in (iii) yields Q(A) - Q(A u{s}) =0, or

Q(A) 2Q(AU{s)for all Ae F(§) and ss J. But Q(4) = 1. Hence

Q(A)< 1 for all Acd ().
Setting B = 4 in (iii) yields Q(A) =0 for all Ag -3{(,8 ). %

Lemma: Suppose fis a real function on the set fJ: (3 ) of finite subsets

of a set ,X . And suppose A, B ¢ i(} ). Then

Z (Ml)card T Z z card R 1)card S F(RUS).

TCAUB RCA SCB
Proof: Z Z(_l)card R(_l)card S £(RUS)
RCA S5SCB
- Z £(T) E {(~1)card R+ card S!RCA; SCB; RUS = T}
TCAUB )

_ £(T) (_l)card (A~B)+card(B—A)Z{ (_1)card Rtcard S}
TCAUB ‘

R, SCANB; RUS = ANB},

But for any subset A,

Zi(d)card R+ card S | R, SCA; RUS = A} = (_l)card A.

The lemma follows.

Theorem. Suppose P#: 7 (f )—[0,1] is a condensable upper probability

function and define the function Q on I()Z ) by Q(¢4) = 1 and
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Q(A) = - Z (-1)°27 T py(qy
TECA

for non-empty A« ;F()j ). Then Q is a commonality function.

H

Proof: (i) Q(4) = 1 by definition.

(i) IfA =4, then T (-1)*T T2 ) - 1.
TCA

If, on the other hand, A == ¢, then we can write A = {S‘i’ e S
withn 21, and

Z (_l)card TQ(T) -1-. x5 (_l)card T D (nl)card RP"(R)

TCA TCA RCT
T#4
-1- 5 (_l)card RP*(R) ( = (_l)card 'I‘)
RCA RCTCA
=1 - P¥(A).
inf card T inf sup
Hence Auj/g) 2 (-1) Q(T) = Ae;‘/j)(l - PEA)) = 1 - AelP=(A) = 0,

TCA
(iii) Finally, we need to show that
z (-0 T qaur) =0
TCB
for all A, B ¢J(f§). If A= g, this reduces to

(-1)card T Q(T) 20,
TCB

and we just proved this. Hence we may assume that A =& é, writing

A = {sl,...,sn}andB: [tl" .,tp}, wheren 21 and p 20. Then

5(-1card T QAUT) = - p(-1)®@d T & (-1)¢2Td R P*(R)
TCB TCB RCAUT
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- . 3 (nl)card T » 5 (_l)card R(_l)card S P (RUS)
TCB RCA SCT

- . 3 (_l)card R 5 (_l)card S P#(RUS) ( Z(_1)card T)
RCA SCB SCTCB

But X (_l)card R P*(BUR) <0 by the last theorem of the preceding
RCA ‘

section, 7

P

Theorem . Suppose Q: I(,g )—[0, 1] is a commonality function, and define
the function P* on 7(§) by Px(4) = 0,

card T

Px(A) = - & (-1) Q(T)

TCA
T+ ¢

for finite non-empty subsets A of j, and

sup
P#(A) = A'CA P*(A)
A'finite

for infinite subsets ACX . Then P* is a condensable upper
probability function,
Proof: By the last theorem of the preceding section, it suffices to

prove that

(i) P*(4) = 0

Sllp
(ii) AeJ()) Px(A) = 1

and (i) A, Bel(4)and A+#4, then = (-1 T pxBUT) <0,
TCA
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But (i) is given by convention. As for (ii), for finite non-empty

subsets A,
PH(A) = 1- 5 (-1 T,
TCA
80
sup inf ,
AcHY) Pr(a) = 1 - sk (-1 To(r) - 1.
To prove (iii), note that
2(_l)card T P#(BUT) = - 3 (_l)card T 2(-1)Card R Q(R)
TCA TCA RCBUT
R4
- .5 (_l)card J Z;(_l)card R (_l)card S Q(RUS)
TCA RCB
SCT
either R or S # ¢
- E(_l)card R E(_l)card S Q(RUS) D (_l)card T
RCB SCA SCTCA
S#$ifR =4
= -z (-1) TR qaus).
RCB

But 2 (- l)card RQ (AUS) 20 by the definition of commonality
RCB

functions, m

In the sequel, we will sometimes examine a real function on I()Z )
-{¢} with the question as to whether it can be "renormalized" so as to
yield a commonality function. In other words, given a function Ql on

? (J) - {4}, we will want to know whether there exists a constant K such

that the function Q on ;f(é ) defined by
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1 if A=¢

KQ, (A) ifA4

1

is a commonality function. The following theorem gives the conditions

under which such a constant does exist.

Theorem . Suppose ,X is a non-empty set and Q1 is a real function on

T(3) - {#). And for each positive number K define a real function
Qg on F(§) by

1 - if A=¢

Q.. (A) =

K Q(A) if A # 4.

Then QK is a commonality function if and ohly if

sup
@) Ac(x () -#) 5 (0! T T o (- 1/K,
TCA
T4

This theorem follows directly from the definition of commonality

functions.
The preceding discussion has been primarily concerned with the

relation between Q and P*, The formulae connecting Q and Bel are in

some respects simpler and worth recording:
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) - £ (-1 T

TCA

for all A egf(,.? ), including é; and

Bel(a) = = (-1)®™ T g (1)
ACT
for cofinite A and’
inf ~
Bel (A) = ACA 5 (-1 T
ACT

A'cofinite

in general. A subset A of ,! is said to be cofinite if A= j ~A is

finite. The quantity

inf
, ACA! z (-1) Q(T)
!
Alcofinite ACT

can be thoughtof intuitively as the summation of (_l)cardv T Q(T) over

all finite T that do not intersect A.

5. Restricting Condensable Allocations

It is not difficult to prove that a complete subalgebra of a power
set is itself isomorphic to a power set. Hence, it makes sense to ask
whether a condensable allocation p: 7Z(.#)—# remains condensable

when it is restricted to a cbmplete subalgebra a c 7 f).
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The answer is obviously yes; for, since
p(MB) = A p(B)

Bef}

holds for all §C 7( Q) it will certainly hold for all § C Q.
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CHAPTER 6. EXTENSION AND COMBINATION

In this chapter we begin to see just how flexible belief functions
are. In particular, we find that belief functions on given Boolean algebras
can sometimes be used to obtain belief functions on more complicated
Boolean al gebras. -

The central concern of the chapter is a rule that enables one to
combine belief functions on different Boolean algebras into a single
resultant belief function on their independent sum. A quite general rule
is adduced for such combination, and a much simpler rule is derived for
the condensable case. |

The existence of such a rule also leads to the exploration of the

notion of subalgebras being '"independent' with respect to a belief
function. As it turns out, itis convenient to distinguish between the
notions of "orthogonality'' and "cognitive independence, ' notions which

collapse into a single notion in the case of probability functions.

1. Extending Allocations of Probability

In this section we will study one of the most remarkable and fruitful
features of the theory of allocations: the fact that an allocation of
probability on a subalgebra of a larger algebra always has a natural
extension to the largér algebra, The existence of such an extension
results from the fundamental intuition that any portion of our belief that

is committed to a given proposition must also be committed to any
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proposition that it implies -- i, e., to any more inclusive prdposition.

Suppose, indeed, that we have a standard allocation of probability
Py do——p W, where 6?0 is a subalgebra of a Boolean algebra of
propositions Q . And suppose further that the allocation p, ©n the sub-
algebra a exhausts our opinions about the subject matter of the
p ropositions in a . Then does P endow us with positive degrees of belief
for any of the propositions in A that are not in ao?

It may well do so. For suppose Ac @ and A ¢ Q’O. Then there may
be an element Aoe A such that Ao <A; and in such a case the probability
mass p§(Ao)’ being committed to Ao’ will certainly be committed to A
as well. In general we must commit to A all the probability masses
pO(AO) for all the Aoe Qo that are subelements of A, So altogether we
must commit the probability mass v{po(Ao) [Aoe do; ‘Ao <Al}lto A. So
the possession of the allocation I @O——b A and the lack of any further

opinions about ( would seem to leave us with an allocation
o: Q—H: A~V (A )|A s ; A< A (1)

on (! . But it this an allocation?

Theorem. Suppose ao is a subalgebra of a Boolean algebra ﬂ and
Po’ &0 —»7 is a standard allocation of probability. Then the
mapping p: @ Y given by (1) is a standard allocation on & .
Furthermore, p| Q 0= Por And the belief functions Bel0 and Bel
given by Po and p resbectively are related by the formula

sup
Bel(A) = A e, Bel (A)) | , (2)

A <A
o
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while the upper probability functions P*O and P* are related by

infa
Pra)=A (L, Px(a). (3)

A<A

o

Proof: The existence of the probability masses V {pO(AO) ,Aoe Qo;
Ao <A} depends, of course, on the fact that (%, w) is a probability
algebra, so' that % is cquplete. If Aeg do’ it is evident that p(A) =
pO(AO); hence plﬁ 0= Por In particular, p(ﬂ_&) :J}_m , and p(V&) :V';n .

Furthermore, for all pairs A]’ A2 g Q ,

Vo, (B) [ Bre @ By <A HANIp(B,)[B,e @ ; B, <ALl

it

p(A; Mp(A,)

1

V0B Ap(By) By By s By <Ay B, <A,

1

v { DO(BI/\BZ),Bl,Bze (PO; B, <A, B, 5A2}

i

v{b (B)JBé&O; B< A A&l =p (A AA,).

Hence pis an allocation. Since (7/,u) is a probability algebra, pis
standard. Finally, notice that for a given Ae¢ Q,' { po(Ao) ‘Aoe@,

A s A}is an upward net in . Hence

H

Bel (A) = (p (A)) = uv{p (A [A s A A <A))

t

sup [l po(A ) [Age s A, <A)

sup {Belo(Ao)]Aoe @O, A < A}

i

And
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P#(A) = 1 - Bel (A) = 1- sup {Bel (A ) A e @, A = A}

= i - <A
inf {1 Belo(Ao)‘Aoe @O, A <E ]

= sup {P:}:O(AO)I A0€ &O’ ASAO}. %

‘I will call p, Bel and P* the natural extensions of Py BelO and

P:, respectively. It should be borne in mind that in general one's
belief function on a Boolean algebra will not be the natural extension of
its restriction to a given subalgebra. But it seems fair to characterize
the cases where it is by saying that in those cases the restriction to the
subalgebra '"exhausts our opinions about the subject matter of the larger
algebra.'" More concisely, I will say that an allocation p: Q ’?% is
supported by the subalgebra ao of Q whenever p is.the natural extension
of p I &o'

We have already seen one simple example where we wanted to
adopt the natural extension of an allocation on a subalgebra -- namely,
the Senate example in section 2 of Chapter 1. In that example, we
obtained a belief function on a Boolean algebra corresponding to the
field of all subsets of the set of twenty-two Senators. But in fact, that
belief function was derived from a belief function (which happened to be
a probability function) on the subalgebra corresponding to the field of all
‘subsets of the set of eleven States. Itis easily seen that the belief
function we obtained on the larger Boolean algebra is the natural exten-
sion of the belief function on the subalgebra.

Let me give another example. Suppose we have a belief function
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concerning the possible values of an unknown quantity X --1i.e., a
belief function Bel : f(j1)~>[o, 1], where /1 is the set of all possible
values of the quantity X and Belo(A) is our degree of belief that the true
value is in A, And suppose We have no opinions whatsoever about the
value of a second unknown quantity Y, except the knowledge that it is
in a set /\{2 And suppose we would like to define a belief function Bel:
f?( /Yl x J 2)~>~[O, 1] Which would express our opinions about the values
of X and Y simultaneously: we would like Bel(A) to be our degree of
belief that the pair (x,y) is in A, where x is the true value of X and y
is the true value of Y. What should we do?

Well, #(J,) is naturally isomorphic to a subalgebra of YAPEE: 4,).
Figure 1 gives the farﬁiliar geometric picture: the horizontal axis
corresponds to Jl’ the vertical axis to JZ’ the whole plane to Jl x

1

based on the subset A of the horizontal axis.

jZ’ and a subset A of J corresponds to a vertical "cylinder set"

N
>
=

Figure 1
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In symbols, the isomorphism 1:77(/‘? i) iflt-% 79( 41 X JZ) is given by
i(A) = {(x, y)lxeA, ye 82} = Ax JZ‘ So we should obviously adopt as
our belief function on 77( Xl x J 2) the natural extension of Belo'o i’_l
on the subalgebra i( 77 (4 1) of /f(/fl x fz). This will result in the

belief function Bel: 7(4 L X 4 5)=[0,1] defined by

1

Bel(A) = sup {Belo'o i'l(Ao)‘AOe 1(79(]1)), AC Al

1

sup {Bel (A )|A_c jl, i(A_)cAl

i

sup {Belo(Ao)i AOCX A 4 ,CAl

1

Beio({x] {x}x } ZCA}).

In other words, A is awarded the degree of belief of,the largest vertical

cylinder set that is contained in A.

2. Restricted Allocations

In the preceding section, we saw how to obtain an allocation or
belief function on a Boolean algebra of propositions Q starting with an
allocation or belief function on a subalgebra QO. Actually, the same
sort of extension can be carried out even when the original allocation is
on a subset of @ which falls short of being a subalgebra by failing to
include negations of some of its elements or disjunctions of some pairs
of its elements. |

Of course, our definitions for the notions of an allocation and a
belief function apply only to a Boolean algebra, but they do not involve

negations or disjunctions in any essential way and hence can be trivially




-143-

generalized. This is done in the following definitions.

Definition. I will call a subset i of a Boolean algebra &a subtrellis

of ( it
() -A.@_ ef,
@ Vp &,
and (iii) A; AAjef whenever A}, A,e L. (This terminology

is not standard.)

Definition., Suppose Z is a subtrellis of a Boolean algebra & . Then
a function Bel:z—-)[O, 1] is a restricted belief function if

(i) Bel( A g)

(i) Bel( V)

and (iii) B’el(A) 2E Bel(A,) —EBel(Ai A AJ.) F-o . H(-1)

i}

0,

1,
n+1
Bel(A1 Ao A A'n)

for all collections, A, A

RRRE. An of elements of Df such that

AiSAforiz 1, ..., n.

Definition. Suppose i is a subtrellis of a Boolean algebra @ and
(/1 ,u) is a measure algebra. Then a mapping p:fﬁ?]’l is a
restricted allocation of probability if

@ ol Ng) =Ny,
(ii) p( Vg ) =Vim
(i) p(A]AA,) =0 (A])A0(A

2) whenever Al’ A2 65{ . If m

is a probability algebra, then pis called standard.
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Interestingly enough, our theory for allocations and belief functions

remains largely valid for the restricted variety. In particular, if p:

o’f ‘5?77_ is a restricted allocation and pis the measure on %, then
Bel = pgo pwill be a restricted belief function, And any restricte‘d
belief function can be represented in this way, where (%,u) is a
probability algebra. These facts can be verified by noting that the
proofs of Chapter 2 remain valid almost word for word for the restricted
case.

It might seem desirable to cast our whole theory in a more
general form by admitting restricted belief functions as belief functions.
But such a generalization is unnecessary, precisely because a restricted
allocation or a restricted belief function on a subtrellis. z) of a Boolean

algebra & can always be naturally extended to a belief function or

allocation on C@ .

Theorem. Supposej is a subtrellis of a Boolean algebra jand

i f—%?ﬂ is a standard restricted allocation. Then the mapping

p: =M given by
p(a)=Vv{p (L|Le L, L=A]

is a standard allocation on @ Furthermore, p ‘ Z =P, And
if g4 denotes the measure on %, then the belief function Bel = po p

on [gand the restricted belief function Belo = pop, on S{ are

related by
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- n+l
Bel(A) = sup {EBelo(Li) - ZBelo(Li/\Lj) F- e +(-1) Belo

. . <Z
(Ly Avu A Ln)!nz Ly, ., Led ;and I <A for

1
i=1,...,n}
for all As (J.
Proof: The proof that pis a standard allocation and p ‘ tﬁ = po
is precisely the same as tﬁg proof of the analogous assertions in
the preceding section.

To verify the formula for Bel(A), notice that [pO(Ll) V...V
R (L_n),'nk l,Ll, e Ln € f; LiSA for all i} is an upward

net in 777 . . Hence, denoting by i the measure on 777, we have

1

Bel(a) = pip(a)) =u (v {p, (L)fLe £ L=a))

1

pvip, (L)V... Vpo(Ln),Ll, ooy Lie 1 L <A

for all i})

1

sup [ (p (L)Y ..o Vo (L)L, ooy Le d;

L; <A for all i }

n+1

1

sup { (o, (L)~ Zh ( 0y (L AL) = e + (-1)
1 ( pO(Ll/\..q. A Ln))| Ly, «oes Ly e ; L, SA for alli }

= sup (D Bel (L,) - DBel (LA L) +- ... + (-1)"*H!

Bel (LyA... A Ln)] Lis eees Lne;f ; L, SA for allil,

&

Of course, I will call Bel and p the natural extension to ﬂ of Belo

and Py respectively.




-146-

3., The Combination of Belief Functions

In section 1 I discussed an example of extension that involved two
unknown quantities X and Y with sets X 1 and j 2 of possible values,
respectively. Beginning with a belief function Bel : vdv4 1)——>[O, 1] and
operaﬁng on the assumption that I had no opinions about the value of Y,
I obtained a belief function Bel: f(jl x /f 2)-9[0, 1]. But of course
even when I have no opinions about Y I can still claim to have a belief
function Bel2 on ﬂfz); it will be the vacucus belief function:

0o ifatd,
Bel,(A) =
1if A= f .

So instead of thinking of Bel: f(,X 1 XJ 2)-»[O, 1] as the result of extending

Bel, we can think of it as the result of combining Bel1 on f(fl) with the
vacuous belief function BelZ on 79( J 2).v

This example raises the question of whether there is a natural
general rule for combining belief functions on different Boolean algebras,
More precisely, when Bel1 is a belief function on the Boolean algebra
.vﬂ,l, ::mdABél2 is a belief function on the Boolean algebra ézz, is there
a natural way of combining the two to obtain a belief function Bel on
Q- 0,0d,

Recall that ﬁl and @2 are thought of as indepéndent subalgebras
of @ So one could begin to define Bel on yby setting Bel(A) = Bell(A)

when Ae @1 and Bel(A) = BelZ(A) when Ae€ dz. But many elements of @
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A1 nor A2

in QZ'

Then what degree of belief should we assign to A1 A AZ?

Bell

independent sources of information,

element Aeg @ that can be represented in the form A = A

Bell(Al) . BelZ(AZ) = 0,

1

are in neither @1 nor &2. For example if Ale ﬁl and A2€ ﬂz and neither

is the zero or the unit, then Al A A2 will be in neither ﬂl nor

So suppose Ale [él’ Bell(Al) =0, AZeQ , and Belz(Az) =0,

Well, Bel1

directs us to commit Ozl of our belief to Al’ and Bel2 directs us to commit
o, of our belief to A,. Supposing that we have already carried out
's directions, then the natural procedure is to apply Belz‘s directions
not just to our probability as a whole, but to every probability mass,

including the probability mass of measure o, that is committed to Al'
Hence we would commit a, of that probability mass, or a probability

mass of measure - o, to A2 as well and hence to A1 A A,. At any rate,

this would be the natural procedure if Bel1 and Bel, were derived from

So we have a method for determining a degree o belief for each

A AZ’ where

Ale @1 and Aze: @2: we set Bel(A) = Bell(Al) . BelZ(Az). This quantity
is well-defined; for if A # A , then the representation A = A1 A A2 is

unique; while if A = A_ , then either Al or A2 is the zero and Belo(A) =

But the set i: {AlA = A1 /\AZ; Ale al; Azeaz} is a subtrellis of Q
Indeed, A=A AL, V=VAV, and (AL AA)A(ATAA)) = (A AA )
/\(AZ/\AZ') is in i whenever Al’ Al' eﬁl and AZ’ A2'€ @2. So we have

a function Belo: f—‘?[O, 1]: A1 A AZ-W" Bell(Al) . BelZ(AZ) on a subtrellis
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;f . If this were a restricted belief function on f(and we have not shown
that it is), then by the theory of the preceding section, we could extend
it to a belief function Bel on &that would be given by

‘ - n+l1
sup {LBelo(Li) - ZBelO(Li/\Lj) + -+ (-1) Bel (L, A...

1

Bel(A)

ALD)}LI,...,Lnef; L. <A for all i}

sup {Z Bel, (A;) + Bely(B,) - Z Bel (A, /\AJ.)- Bel, (B, A Bj)
ee o 41 Bel (A, A AA_)Bel,(B,A...AB )’
AN n 2B AL u
Ao A (@1, Bl,...,BneCZZ, and A, A B, <A,
i=1, ..., n} '
But how shall we show that Belo is a restricted belief function on i ?

The easiest way is to turn to the theory of allocations,

Theorem. Suppose & 1 and 02 are independent subalgebras of a Boolean
o o

algebra 0, and suppose py &1"7 7771 and Py :&2“‘?7772 are
standard allocations with belief functions Bel1 = p‘lo plo and
Bel2 =, 0 pzo, where ky and by are the measures on m 1 and 7772,
respectively. Let({ 7,1); ilz 77’[1-?7)2 ; 12: %2 -> 777) be an
orthogonal sum of (7771, pi) and (%2, uz). Then P = il o pio and Py =
. [+] . .
i, q Py will be standard allocations of al and QZ’ respectively,

into 7}? ; Bel1 =1 opg and Bel2 =k op,. Now define p: d*’ﬁ/ by

p(a) =vipo (A ) ary(a|a e A s aell,; A na,<a) (1)
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Then p is an allocation of probability. Denote Bel =1 o p. Then

Bel l @1 = Bell, Bel[@.z = Belz, and in general

Bel(A) = sup{Z Bel, (A;) -+ Bel,(B) - I Bel (A, /\AJ.)' Bel, (B, A BJ.)_
n+l
t-uo H(-1) Bel,(A;A... A A ) Bel,(BjA... AB) (2)«
n=>1: . . a <
n=1;A;,...,A e(l ;5B ,...,B (), and A AB, <4,

i=1,...,n}

Proof: Let Tf_ be the subtrellis of all elements of Q of the form

A AA,, where Ae &1 and A,e @2. Define p_: Z\>?7Z by p_(A) =
py(A]) Ap,(A)) whenever A = A AA,, with Aje @1 and A,e @2,
Since the representation A = A1 A A2 is unique when A # A , o, is
well-defined., It is easily verified that Py is a restricted allocation,
and obviously po( 01 =Py and pol a 2 T Ppe By the theorem ;n
section 2, the formula (1) defines the natural extension of po to

CL, and Bel = p o p is given by (2). And since 5[1 and QZ are

subsets ofoi, Bellai: yoplaiz popolgi: uopi: Beli

fori=1, 2. : m

From formula (2) it is evident that Bel does not depend on the

choice of P and p, or on the choice of the orthogonal sum ( 7, 0. Hence
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I will call Bel the orthogonal sum of Bel1 and Bel2 on & » and sometimes

I will denote it as Bel1 Q@ Belz. Notice that al and QZ can be independent
subalgebras of more than one Boolean algebra; hence it may be necessary to
specify the algebra a when speaking of the orthogonal sum of Bel1 on Ql
ard ~Belz on @2. But usually this will make no practical diffei‘e‘nce, for
if &1 and QZ are independent subalgebras of ﬁo and jo is a
subalgebré of @, then the orthogonal sum of Bell and BelZ on Q is
simply the extension of the orthogonal sum on Qo’ and both are given
by (2).

| In particular, given belief functions Bel1 and Bel, on Boolean
algebras @1 and Q 5s respectively, (2) will give the orthogonal sum
Bel1 &) Bel2 on ’Ql @ Q 2+ And given belief functions Bel1 and BelZ
on power sets %(X l) and f( ,32), respectively, (2) will give the ortho-
gonal sum Bell &) Bel, on the power set f(! 1 X }2). In this latter

case, (2) becomes

Bel(A) = sup [Z)Bel1 (A;) Bel, (B,) - EBell(Aif\Aj) BelZ(BinBj)
n+1
oo+ (-1) Bel(A N ... NA)Bel(B,n...nNn B_)

’ 1, Tt n 1, l’ et n 2, i .l ’

This brings us back to the example with which we began. In that

case, Be12 is the vacuous belief function, and (2') becomes

Bel(A) = sup [ZBel, (A,) - T Bel (A, A)) +-. (-l
Bel (A0 .0 A|a, . A A x [ ca,

i=1,...,n}
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I

sup( Bel (A)] A, cjl, A x JZCA}

1

Bell( {x! {X}X lych} ).

This does indeed agree with the method of extension.

Theorem., Suppose ﬁl and @2 areindependent subalgebras of @,
and Bel: a [0, 1] is the orthogonal sum of Bel,: &1"?[0, 1] and
BelZ: @Zﬁ [0,1], and let P%, Pl* and_PZ* denote the upper
probability functions corresponding to Bel, Bell and Bel 2,

respectively. Then for all Ale &1 and AZ e/,

(i) Bel (A AA,) = Bel (A)) - Bel,(A,),

1
and
(ii) P*(A1 A Az) = Pkl*(Al) . P2>-<(A2).
Proof: (i) is clear from the preceding theorem, but (ii) is more

difficult. Let (%],w), pk, Py Py be as in the preceding theorem,

and let g, Ql and QZ be the allowments corresponding to p, h and

5 respectively. Then P* =y og, Pl* =y o Ql, PZ* = Ho gz, and

since Ql( ﬁl) andrgz(&z) are in orthogonal subalgebras of 77[, we

can establish (ii) by showing that Q(Al/\ AZ) = Q(Al) A Q(AZ) whenever
: A1 € @l and Azé @2. But »in such a case,

(A A A,y =p (A AA,)

=v{p (A)Apy(B)|Ac(/); Be @,; ANB<A A A]

=n (P, A A p,B)|Ae A; Be ,: AN B<A AR}

ettt

=n{p, AV pz(‘ﬁ)!Ae (,: Be @, ANB<A NA]
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=A{ Cl(A)ng(B){As 01; Be @2; Al /\AZSAVB}.

But notice that gl(Al) % gz(jL) =¢,(A)) and CA)Y VG (A, =
QZ(AZ) are in this last meet, And whenever As 01, Be @2 and

A ANA SSAVB, we know (by the second theorem of Chapter 3,

1 2
section 9) that either A1 $A or AZ < B. Hence every other
probability mass in the meet will contain either gl (Al) or gz(Az)
and hence, in any case, gl(Al) A GZ(AZ)' Hence the meet is
equal to §; (A)) A G5 (A,).

4, kA Combinatorial Lemma

Lemma. Suppose m and n are positive integers, IC{I, ..., n}, Jc
{1, ey m}, and I and J are non-empty. Set

6#Kell, ..., ndx {1, ..., m} I={i}@j)eK for

K=

some j}; J = ﬁ‘(i,j)eK for some i} J.

Then

E (_1)1 + card K - (_l)card I+ card J.
KeX

Proof: Set cardI=1iand CardJ =j, and denote L = {1, ..., i}
x {1, ..., j}, and think of L as an i x j matrix. I will call a
subset A of L. a covering of L if A contains at least one entry in
I will call such a covering

every row and every column of L.

even or odd according as it contains an even or odd number of

entries, I will prove the following assertion: The number of
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odd coverings of 1 is one greater than the number of even coverings if

i+ j is even, and one less if i + j is odd. In symbols, #(odd coverings)

- # (even coverings) = ‘(—1)1+J.
The proof will be by induction on i+j. Since I and J are non-empty,
i+j=2;andifi+ j = 2, the assertion is trivially true. Indeed, it is

trivially true whenever i = 1 or j =1 So suppose thati + j = k, that the

assertion is true whenever i + j <k, and thati>1 and j>1. Let LO bhe
the (i - 1) X {(j - 1) matrix obtained by omitting the first row and column
of L, Let R and C bevthe subsets of L indicated in Figure . Then by
our inductive hypothesis, our assertion holds for the (i-1)¥ (j-1) matrix
L., the i% (j-1) matrix RUL_ and the (i-j) X j matrix CUL_.

Jzet-us. é»lassify the coverings of L according as they (i) intersect

both R and C, (ii) intersect R but not C, (iii) intersect C but not R, or

(iv) intersect neither R nor C.

Consider category (i). Some of the coverings in this category

contain (1, 1) but they will remain coverings if (1, 1) is omitted. Hence

(1, 1) R

Figure ¢
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the coverings in this category can be arranged in pairs, the
two members of which differ only in that one contains (1, 1) and

the other does not, Hence there are the same number of even

as odd coverings in this category.
Consider category (ii). FEach covering in this category must

contain (1,1). As a matter of fact, each one is obtained from a

covering of RULo by adding (1,1). Hence for this category
#(odd coverings) - f#(even coverings) = #(even coverings of RULO)
- #(odd coverings of RULO) = - (—1)gi +G-1 = (—1)i + j.

It can be shown quite analogously for category (iii) that #(odd
coverings) - #(even coverings) = (~1)i_1) + ] = (‘—1)i * j.

Finally, consider category (iv)., Each covering in this category
must conta;in LO and must also be a covering of Lo' As a matter
‘ix}f’fact, the elements of this category are obtained by taking
coverings of LO and adding (1, 1), Hez;;;e for this category, #(odd
coverings) - #(even coverings) = #(even coverings for LO) - #(odd
)= - (_1)(121) FG-1) _ gyt - 1

coverings for LO

Adding the results for all four categories, we find that everall
#(odd coverings) - #(even coverings) = (-1)i+j + (—1)i+j + (-1)i+j_1
- (_1)i+j.

The lemma follows immediately frem this result.

2

Corollary. Suppose (/] ,u) is a probability algebra, 'fo and ?0 are

subtrellises of 7/, and
BEAF) =u(E) « wF)

['\./
for all Ee fo and Fe io' Denote by f and al the subalgebras

(3)
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of Mgenerated by £ and .\-70, respectively. Then (1) holds

o
for all Ee¢ 5 and Fe J/

Proof: Consider first elements E and F of 774 of the form

E=E AE;A... AEp = (E_VE; V... VEL) - (E}V ... VEg)

1
and
F=F AF;A...AF =(F VF V...VF))-(F V... VF),
where E_, E;, ..., Ege goand F, Fi, ..., F e $ . We have
EAF=E AF_ AE A ... AELAF AL AF,
= (E,AF)AE V..UVE VF V... VF,
=[<E0AFO)VEIV...VEKVFlv...VFﬂ]-
[(Elv...VEKVFIV...VFZ],
and ' '

E (_l)card I+ cardJ

WE A F)
Ic{1,...,k} Jc{1,...,4

i

A A
B (Eo A Fo A (ielEi) " (jeJFj))

Z (_1)card I

1l

W(EG A (R By

I1<l,...,k}
X

2 -1 F A (AL FL)
Tefl,. ... 1) o j&T 7]
= (E) » u (F).

Now by section 7 of Chapter 3, any element Eeg can be written

in the form
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E=E . V...VE_ ,
1 m

where for each i, i =1,...,m,

E.=E, AE,,A...AE

i io il iki

for some elements E, , E.,, ..., E,, of g) Similarly, any
io’ Til ik o

o i
element Fe QL can be written in the form

e

for some elements F, , F..,, ..., F., of UL . If E and F are
io il 112;i o

expressed in this way, then

EAF:(EIV,,. v Em)/\(Flv...VFn)
m n
=V vV (E,AF.).
. . i j
i=1 j=1
And by the lemma,
m n

BIEAT) =0l Yy (B AE))

1 4+ card K
= (-1)7 ( A (E.AF.)
Kefl,...,mk({1,...,n} LL(i,j)e]g{ 1 J)
K#é

_ Z (_l)cardl Z(_l)cardif

Ic{l,...,m} Je{l,...,n}
144

b ((AE)A(A FY).
iel jeJ
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But
AEp (A B AN (B A A Ey)),
iel iel iel i
where Eio’ Eil’ ey Eiki are all in go for all i; and J@.JFJ is of

a similar form., Hence by the first paragraph

G

,u(( ATEDA (A J)) b GALE;) B (J/;JF

jeJ

1c{1,...,m} iel
146
% z 1)l-l—cardJ (A F)
JC{I,...,n} jed
J#4é

=p (E) - u (F). Y,

5. Orthogonality and Independence

As we have just seen, our rule of combination obeys a multiplicative

rule for both Bel and P*. In this section, I will explore the implications

of these two rules,

Definition. Suppose Q 1 and @2 are independent subalgebras of a
Boolean algebra Q , and suppose Bel: @*—9 [0, 1] is a belief function.

Then &1 and @2 are orthogonal with respect to Bel if

Bel(A ;A A,)=Bel(A) - Bel(AZ) (1)

whenever Ale a 1 and AZG @2, And [&1 and @2 are cognitively

independent with respect to Bel if
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Pi(A] AA,) = P¥(A)) + P¥(A,) | (2)

whenever Ale Q 1 and Aze &2. (P* is, of course, the upper

probability function corresponding to Bel.)

A justification for the term "cognitively independent'' will be offered in

the next chapter. The term '"orthogonal,'" on the other hand, can be

justified immediately.

Theorem, Suppose & is a Boolean algebra, (7/?, w is a probability
algebra, and p: Q-&% is a standard representation for the belief
function Bel on & Then two independent subalgebras &1 and
@ 2

of % generated by p( @ 1) and p( QZ) are orthogonal with respect

are orthogonal with respect to Bel if and only if the subalgebras

to .
Proof: Denote by 7771 and 7772 the subalgebras of 777 generated

by p( @1) and p( @2), respectively. Clearly, if Ale ﬁl and Azs @2,
then p(Al) € ml and p(AZ)e m s SO that the orthogonality of
m | and 7, will imply (1).
Suppose, on the other hand, that (1) holds for all Ale ﬁl and
all AZE&Z' . Then since p( &1) and p( ﬁz) are subtrellises, it follows

by the corollary in the preceding section that
p(My; AM,) =p (M) - p (M)

for all Mle 97[1 and Mze ?7?2. Since uis positive it follows that

,)72 1 and 7722 are independent subalgebras and hence orthogonal.

\
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It is not obvious at first glance that orthogonality and cognitive
independence are distinct conditions, and hence it is worthwhile to provide
éxamples showing that each of the conditions vcan hold without the other
holding, To this end, set Q: Y4 /_f), where ,g: {a,b, c,d} as shown
in Figure 3. And set &1 = {4, {a,b}, {c,d}, J1 and @2 = {4 {a,cl
{b, d}, ,5 }. Then ﬂl and @2 are independent subalgebras of ﬂ . Let
us define two belief functions Bel1 and Bel2 on @as follows: Bel1 is

given by the basic probability numbers {mA} Ae D, where

.'= 4
mgfa/%"} o 1/ ’

m{a,b} = 1/47,
Ma,cp B
My =M

and m, = O’ for all other Ae Q And Bel2 is given by the basic probability

numbers {m’A}Ae @’ where

mlj = 1/4,
™' b,c} = 4
G

and m', = 0 for all other A¢(l. Then it can be verified that @1 and @2
are orthogonal but not cognitively independent with respect to Bel1 and

cognitively independent but not orthogonal with respect to Belz.

.
.

Figure 3
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As we saw in section 3, when a belief function on @ is the
orthogonal sum of belief functions on independent subalgebras ﬁl and
a 2 those subalgebras are both orthogonal and cognitively independent
with respect to that belief function. In fact a converse of this theorem
is also true; if two independent subalgebras are both orthogonal and
cognitively independent with respect to a belief function, then on the
subalgebra generated by the union of the two subalgebras that belief
function will agree with the orthogonal sum of its restrictions to the two

subalgebras, This assertion follows from the following theorem,

Theorem, Suppose &il and @2 are independent subalgebras ofé
Boolean algebra ﬁ , and suppose Q is the subalgebra generated
by & 1 U @2. Suppose Bel: (#->1[0,1] is a belief function and
p: &-—é)ﬂ is a standard representation for Bel. Then the following
conditions are all equivalent:

(1) @1 and &2 are orthogonal and cognitively independent
with respect to Bel,

(2) Ql and Q 5 are orthogonal with respect to Bel and
p{AV B) = p (A) Vp(B) whenever A ¢ Ql and B ¢ QZ'

(3) Ql and QZ are orthogonal with respect to Bel and

<A} for all

A :NV4 A A .
AA) =Vvip (A nay) Aje (s Ayl A na, <

Ae &

(4) For all A ¢ (3,
Bel(A) = sup {Z Bel (Ai) . Bel(Bi) - 2 Bel (Ai/\ Aj) . Bel(Bi/\ Bj)
t- # (-1 Bel(A AL AA ) Bel(BAL.. A B
IRAREE n RARER o
nz1; AI""’An€ @1; Bl,...,Bme X and Ai/\BiSA,

i=1,...,n}.
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Proof: (1) = (2). Suppose As ﬁl and Bs QZ' Then by orthogonality

and cognitive independence,

1 - Bel(AV B)

P*(A\B) = P*(A) © P*(B)

(1 - Bel(A)) (1 - Bel(B))

1 - Bel(A) - Bel(B) + Bel(A A B),

Hence

Bel(A V B) = Bel(A) + Bel(B) - Bel(A A B),
or

wip (AV B)) =p(p (A) Vp (B)
‘Since pis positive, it follows that

p(AV B) =p(A)Vp (B).

(2) = (3). Since @ is the subalgebra generated by alU @2
every element Ag @ must be of the form ool

A= (A ,/xB)v LoV (A, AB) ' -
where the A are all in ﬂ and the B are all in ﬁ Hence, by
(2),
dA) = p(A1 A Bl) Vio.. Vp(An/\ B,

- and (3) follows,
(3) = (4). For any Ae Q,
k(e (A))

1l

Bel(A)

{1

LV [P (4 /\AZ)\Alg @1; Aze@ SA AA,SAT)

w(vip (A, AB Vo (AN an)}Aieﬁl, B¢,

)Y

and A, A B, < A for all i} )
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i

sup {p (p(A; AB)V... Vp(AnABn)),Aie &1’ B;e @2

and Ai A B, < A for all i}

1

sup { EBel(Ai)- Bel(B,) - Z Bel(A, A Aj) " Bel (B; A BJ.)

n+1
bt (DM BA AL A A Bel(B AL AB)|
nz 1; A,, ..., Ansal;Bl, ooy Boe (B,
A,AB.<A,i=1, ..., nhL
1 1

(4) => (1). This is merely a restatement of the last theorem
of section 3, %

- Finally, it is useful to note that the formulae in (2) and (3) can also

be stated in terms of the allowment {. In terms of {, (2) becomes
(2Y) @1 and & 5 are orthogonal with respect to Bel and
CANB) = C (A)AC (B) whenever Ac @1 and Be ﬁz;
and (3) becomes
(34 @1 and Qz are orthogonal with respect to Bel and

cay=nf{ca,vaylacl;aed;ava,=al

6. The Finite Case

Recall that a belief function Bel on a finite Boolean algebra ﬁis
completely determined by the basic probability numbers m for Ae ﬁ .

These numbers are non-negative, m p =0, and Bel is given by

Bel(A) = I m,,.
A< A
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Intuitively, the basic probability number m, measures the total
probability mass that is constrained to A but not to any proper sub-

element of A, In other words, if p: @.,)% is an allocation representing
Bel, then
m, =u(p(4) -V { p(A)]Ar < A)),

where p is the measure on % It is worth noting how these basic

probability numbers behave under combination.

Theorem.  Suppose p: ﬁ-—?m is a standard allocation on the finite
Boolean algebra Q, and suppose the independent subalgebras
Ql and QZ of ﬁ are orthogonal and cognitively independent with
respect to p. Denote by { mA}AGQ the basic probability numbers

for p, by {’nA } Alg al the basic probability numbers for p{@l and

1
by'{'pAz} Ae Qz the basic probability numbers for DIQZ' Then
‘nAl pAz whenever A = A1 A A, with Als @1 and Ase @2
P - 0, aa e 0
0 1#A¢A1/\ A2 for any Ale 1 and Aze >

Proof: First consider the case where A # Al A A2 for any Ale &1

and Aze 2 In that case, A1 A A2 < A whenever Aleal, Azs QZ apd

A1 A A2 < A. Hence

p<A>=v{p<A)Ap MNaslaed,; a na,<a)

1

Vie (A)) Ap (4,) ‘A16 @1; A,c @2; A NA, <Al

1

Vip(a)) Ao (4, jA edl,A e@ acld a LA A, SAT<A)
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=V {V{p(a))Ap (Az)lAlg ﬁl; Aeld,; A A A, A A1 <)
=v{b<A'>lA=<A},
[=Xe] |
m, =u (6 (&) -V {p(AN]Al<A}) =p(L) = 0.

Now consider the case where A = Al A A2 with Ale @l and Aze 42'

In that case,

(p(a)) -vipan|asl;ar<al)

Ao (Ay) -V o (8,0 )Aa,0e (0, Ayt <ALY)

i

p (A Ap (A -y loan]a e a <A

-Vio a0, A, <A,]

1

P (AN Ap (Ay) -Vip(a Ve (an]a s @ a el

A1'<A A '<A}

12
PAN AP (A)-VI[p (A Ve (AN]AR(ADA p (Az)l

1 - .
Ap's Ql’ Az'gdzz' Al <A Ay <AL

1

PA AP (A) -VI[p (A NAp ANV (A)AD (A ')]’

1 . 1 .
A s&l,Aze A <A A <A

o (A Ap (A,) -V P (A A (A,0]A (s Ay ell,:

1< < s 1 xi
A1 A A2 < AZ, either A1 <Al or Az <AZ}
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=p (A A4y -V oA AAZ')IAI'S &1; Aye

1< . < ¢ al 1 1
A1 = Al’ Az'_AZ, either Al <A1 or A2 <A2}

i

p(A) -V {p(ay]ar<al

The last few equalities depend on the thorem of Chapter 3, section 9.
Since p(@l) and p ( @2) are in orthogonal subalgebras of %,
the measure of p (A) -V {p (A')lA' <A} must equal the product of

the measures of

p(ap -Viea|aed;a<a)
and

P (A -V P (Aa,)] 8,0, A, <Al

In other words, My =0, " Py

1 2 Z

7. The Condensable Case

In thié section, we will see how the orthogonal sum of two condensable
belief functions can be described in terms of the commonality numbers,
When we are dealing with two condensable belief functions, say one
on 74( yl) and one on 7(}2), it is most natural to consider their
orthogonal sum on ‘7’7()‘31 x/g 2). This orthogonal sum will itself be

condensable, as we see from the following theorem.

Theorem, Suppose Bel: 7’(/f1 x J 2)«*:[O, 1] is a belief function,
f( /fl) and f( jz) are orthogonal and cognitively independent

with respect to Bel, and Bel /f(j 1) and Bell 77(:6(2) are
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condensable, Then Bel is condensable,
Proof: Let ¢: 7 (§ L X 4 5) -7 be a standard allowment for Bel,

and recall that ¢ is condensable if and only if

c(Aa)y= vgost)
sgA

for all AC/».S1 x,g 2 Now by orthogonality and cognitive independence.

ca)=nlc(a, = 3,ve(d xaylacd iacd
(A, x 4 DU (S, x4,)0A]
for all ACX ‘I x ‘XZ' Since the restrictions to v jl) and 7 }2)
are condensable, this becomes

C(A) = HSZA Cds dx Jon v gAzéu/f][x{sz})){

acd; AZCJ’Z; (a,x S uid xa)oa.

;V{; d=d yvedd,

\%
- (sl,sz)eA (r{c¢ (Al * XZ)VQ (jl XAZ)‘AICXI;

(s, 8,) €A

_ \'%
(8155,

ea € (L(sgs 55 1)

And furthermore, the commonality numbers for Bel are obtained from

those for Bel )1&( jl) and Bell 77 (,J)Z) by a simple multiplicative rule,

Theorem. Suppose Bel: ‘77(,? 1 X /f 2) is condensable and 74(49 )4 and

717 ({ fz) are orthogonal and cognitively independent with respect
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to Bel. let
Q,: J(§,)~l0,1],

Q,: Fid ) »lo. 1,
and Q: g?(}l X{f 2)‘>[0, 1]

be the ¢ommonality functions for Bel }"}9(}1), Bel }79(/,(2) and

Bel, .reSPectively. Then
Q( {(a‘libl)’ LR ] (a‘n’bn)} ) = Ql({algu'-,an}QZ({bl,...,bn})
for all {(a;,b)),...,(a_,b )} f =4 .

Proof: Letting { be the allowment and y the measure on the

probability algebra, we have
Q(lay,by)seeey (3, b l) =w (€, b)Y AL A C (b)),
Q(lap,..,a=u@(ladx Jn..oncdad =g,
and Qy(loy,..ob ) =e € xByhA L ac () b,
But by (2') from section 5, we kgow that
Clta, )b =€ ({aldxJ yacf, =]
for all i. Hence
C({e,b)A..AC({(a, b))
=@ (ladxdpncnclad=dnnccd =tnd)

Ao nCCI = (b 1))

and the theorem follows by orthogonality,
%
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8. An Example of Combination

In this section I will illustrate the rule of combination with a

simple example,
Suppose Mr. and Mrs, Jones are discussing over their breakfast

coffee whether they should attend a ballet in the evening. Mr. Jones has

no opinions about how enjoyable the ballet may prove to be, yet has
opinions about whether it will rain, while Mrs. Jones has no inkling as

to whether it will rain yet has definite ideas about the quality of the ballet.,
Assuming that they trust each other's judgments in their respective areas
of competency, how might Mr, and Mrs, Jones combine their opinioné

in order to obtain, as it were, a joint opinion about the possibility of
attending an enjoyable baliet without getting wet? |

Let us be more concrete, Suppose Mr. Jones has a belief function

Bel, on f(fl), where ‘fl = {rain, no rain}, and Mrs. Jones has a
belief function Bel2 on ﬁjz), where (fz = fnjoyable ballet, unenjoyable

ballet}.. And suppose Bell' and Bel, are given by

Bell(;é) =0 Belz(é) =0

Bell({rain}) =1/2 Belz({enjoyable ballet} = 1/2
Bell ({no rain}) = 0 Bel, ({ unenjoyable ballet} = 1/3
Bel, (§,) =1 Bel,( J,) = 1.

These two belief functions can also be described by saying that Bel1 is
given by the basic probability numbers {nA} Acf and LESel2 is given by
1

the basic probability numbers {pA}ACX , Where
2
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né =0 pé =0
ne . q=1/2 Pr__: _
{rain} {enjoyable ballet}= 1/2

n{no rain} =0

: p{‘unenjoyable ballet} = 1/3
n J =1 /2 )

1 py =1/6.
42
In other words, Mr., Jones puts half of his probability on the

occurrence of rain and does not commit the other half, while Mrs. Jones
puts half of her probability on an enjoyable ballet and a third of it on an
urenjoyable one. If we represent each person's probability by a mass

that is uniformly distributed over a line segment, then we can depict

this situation as ifd Figure 4,

rain uncommitted

1 i

0 1/2 1

Mr. Jones' Probability

enjoyable unenjoyable uncommitted
ballet ballet

1 L 3

0 1/2 5/6 1

Mrs. Jones' Probability

Figure 4

We require a combined belief function Bel on 7&( Xl x fz); and
in particular we require a degreeof belief and an upper probability for

the subset {no rain} x {enjoyable ballet} of Jl X 5‘?2'
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Let us consider the matter from Mrs. Jones' point of view, Her
belief function Bel2 can be described by the three basic probability ma sses
shown in Figure 4, Now she is confronted with-Mr, Jones' opinions about
the weather and decides to adopt them as her own, What does this mean?
Well, the message from Mr, Jones can be stated simply: Put half your
probability on rain, The natural thing for Mrs, Jones to do is to carry V
out this recommendation for €ach of her three basic probability masses:
she should commit half of each of them to rain,

The result can be depicted geometrically if we use a square
instead of a line segment to represent Mrs'. Jones' probability. In the
first panel of Figure 5, Mrs. Jones' three basic probability na sses are
depicted, each labelled with its '"region of mobility''. The second panel
shows the situation after she has committed half of each of her

probability masses to rain but left the other halves uncommitted

between rain and no rain,

{enjoyable ballet}
{unenjoyable ballet}

Figure 5a. Before
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jl § <?1 | J;
, x|
{enjoyable {unenjoyable 2
ballet} ballet}
i .
E |
© {rain} {rain]} {rain}
x x X
{enjoyable . {funenjoyabl }
ballet} ballet} 2
L

0 1/2 5/6 1

Figure 5b, After

So we obtain six basic probability masses, with the following

corresponding basic probability numbers:

M raind x {enjoyable ballet} = 1/4

1/6

Mirain} x funenjoyable ballet] =

mfrain}x jz =1/12

m 4, = {enjoyable ballet} ~ 14

m Xl x {unenjoyable ballet} ~ 176

m yl x 4 5 = 1/12.

The basic probability numbers m , for other Ac¢ jl x j 5 are, of course,

zZero,
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The belief function Bel on 7/(3 1 X Jz) can be easily computed
from this table of basic probability numbers, For example, we find

that

Bel({no rain} x fenjoyable ballet}) = 0
and

P* ({no rain} x {enjoyable ballet}) = 1/3.
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DEMPSTER'S RULES OF CONDITIONING AND
COMBINATION

CHAPTER 7.

In this chapter I adduce Demster's rules for modifying a belief

function on the basis of new evidence or opinion. Dempster's rule of

conditionihg tells us how to modify a belief function Bel:  —> [0, 1]

when we learn that Ae @ is true. His more general rule of combination

tells us how to modify Bel when the evidence underlying it is pooled with

independent evidence underlying a second belief function Bel': @ -7 [0, 1].
In section 7, we will see how the rule of combination provides

a justification for the term ''cognitively independent, ' which was

introduced in the preceding chapter.

1. Dempster's Rule of Conditioning

The central feature of the théory of subjective probability is its

rule of conditioning. The rule is open to criticism but it has a tremendous

intuitive appeal and has always been accepted by students of subjective
probability. In this section, I will describe the rule from an intuitive
point of view and introduce the analogous rule for belief functions.

Suppose we are dealing with a set J which is the set of all possible

values of some quantity s whose true value is unknown, and suppose
~

we have a probability function

P: f (/X )"'"[O’ 1]:
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P(s) being our degree of belief (or subjective probability) that the true
value of sis in S. Then we can describe our situation intuitively by
saying that our probability is distributed over the set ,J Now suppose
we learn, from new evidence, that the true value of s is reallyina
proper subset ‘Jo of ,X . Then if P(’Jo) <1 our probability function P
will evidently require modification, for we will now wish to assert a
degree of belief 1 in Xo' How should P be modified?

The obvious thing to do is to '"throw away" that portion of our
probability that was distributed over ’Jo; it was committed to something
that is now seen as impossible, so it seems that the only thing that can

be done is to discard it. This will leave us, of course, with a total

amount of probability that has measure P( Jo)’ which may be less than

one. Hence we will want to'renormalize'' the e asure of all our remaining
probability, multiplying all the measures by l/P(,dlo) so as to bring the

measure of the total back up to one again,

This procedure will result in a new probability function P' over
J, one that now gives P'( JO) = 1. In order to describe this probability
function explicitly, let us refer to Figure 1 and calculate the value of P'
for each of the sets Sl’ S2 and S3 shown there. First of all, all the

probability that was committed to 5, has been thrown away; hence we now.

have

= 0. (1)

As for SZ’ none of the probability associated with it has been thrown

away, but its measure has been renormalized, so we have

P'(S,) =P (S,) / P(§,)- (2)




Figure 1,

Finally, consider S3. Some of the probability that was distributed
over S3, namely the portion which was distributed over S3n 20, has
been eliminated. Hence the portion remaining is what was distributed

over S?:njo’ which did have measure P(S3ﬂ /\fo) and now has measure

P'(S;) = P(S3N 4 )/P(J,)- (3)

An examination of (1), (2) and (3) shows that (1) and (2) are actually
special cases of (3) , which is thus the general rule for conditioning P
on jo'

The fact that P' is conditional on Jo is often indicated by denoting

it by PJ or P(- ‘ JO). In these notationé, our rule becomes
o

Py (8)=Pis nd)Ip(4 )

or

pis|d,)=PsNL)/Pg.) @)

for all Sc 4 . This is the classical rule for conditional probability; it
is easily verified directly that P(: l /‘?o) does indeed satisfy the axioms

for probability functions, provided only that P({ o) >0. Of course, if
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P(/Xo) = 0 then our new knowledge that the true value of sis in ‘Jo is

in direct contradiction with P, and the conditioning cannot be carried out.
An analogous rule applies, of course, to a probability function P

on any Boolean algebra @ If P(A) >d, then conditioning P on A yields

a probability function P(-‘A) on @ given by
P(B]A) = P(BA A) / P(A) | ()

for all Be ﬁ

The intuition behind this classical rule generalizes directly to the

case of belief functions. For suppose we begin with a belief function

Bel: (4 )=[0, 1]

and then learn that the true value of s is actually in JOC/_Q . What do
we do? Well, we eliminate the probability that is committed to 7(: and
renormalize the rest; the measure of the probability eliminated is Bel
(:?—;), s0 the measure of the remainder will be 1 - Bel(j(;) and the

constant of renormalization will be (1 - Bel( jo))-l.

There is only one
new idea that must be introduced: since our probability is allocated in

a semi-mobile way over ,j rather than being distributed in a fixed way,
we must recognize that the restrictionto Jo may further restrict the
mobility of some of our probability without eliminating it entirely. This
means that some of our probability that was not committed to a set

SCX may become éonunitted to S by the restriction to Jo' In fact,

any probability that was committed to SUK before will now be committed
to S, unless it was committed to —AT and hence must be eliminated. In

general, then, the amount of probability committed to S after conditioning

will be the measure of the probability previously committed to § J o
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less the measure of the probability eliminated, or
Bel(SU 'Xo) - Bel(/go).

But this must be renormalized, so we obtain

Bel(SU' £ ) - Bel( 4 )

Bel(s| 4 ) = —
1- BEI(JO)

as.our degree of belief in S conditional on Jo'

As it turns 6ut, this rule is stated more easily in terms of the

upper probability functions. Irdeed,

1

prs| 4 =1 - Bes 4

Bel(SU' ) - Bel( 3 )

1 -

1- Bel(—g-;)

1 - Bel(SUg )

1 - Bel( § )

o]

1 - Bel(SﬂAo)

1 - Bel(zgo)

or

P*(S N XO)
P( § )

I
~J
e

P:}:(S , x 0)

This is Dempster's rule of conditioning. It is easily verified that P*

( l'Xo) does indeed satisfy the rules for upper probability functions,
provided only that P*(XO) >0. If P Jo) = 0, then our new knowledge

that the true value of s is in Jo is in direct contradiction with P%,
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and the conditioning cannot be carried out,

Dempster's rule of conditioning need not, of course, be restricted

to upper probability functions on power sets; it can be applied to the

conditioning of any upper probability function -
px: () —» [0, 1]

on any proposition Ae @ such that P*(A)>0, The resulting conditional
upper probability function P (- ' A) is given by

P(B A A)

P=(B|A) = (8)

Pi(A)

for all Be ﬁ . If P*is actually a probability function, this rule reduces
to (5), the classical rule of conditional probability.

There is a difficulty with the application of the classical rule,
and the generalization (8) might seem to suffer from the same difficulty.

The difficulty is that we sometimes feel that P(A) = 0 does not really

mean that A is impossible. In the case of a '"continuous' distribution of

probability P over a set A! , for example, P({s}) = 0 for every se,j; vet
this is not taken to mean that it is impossible for the true value of sto

be s for every se,f. Hence in general it may be impossible to carry out
the conditioning even in cases where we would like to do so. Interestingly
enough, though, condensable belief functions are exempt from this
difficulty. Indeed, when an upper probability function P%*: f(,f )~ [0, 1]

is condensable we are entitled to interpret P*(S) = 0 as meaning that P*

holds it to be impossible for the true value of s to be in S. (See the end
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of section 1 of Chapter 5.) Hence our inability to condition a condensable
upper probability on a set of upper probability zero need never be
embarrassing, and the rule of conditioning appears to be most adapted

to the condensable case.
It is easily verified that if P f(g )>[0,1] is condensable and
P¥*(A) >0, then P*(. ,A) will also be condensable. And the commonality

numbers are affected by conditioning in a very simple way. The

commonality function Q for P is given, of course, by

am)=- & (-7 T pur)

TcB

for finite non-empty subsets B of j And the commonality function Q

(- A) for Px(-| A) will be given by

QBla)=- 2 (-1)*"T pyr]a)

T¢c B
-. X ‘(_l)card T P*TNA)
- TcB P (A)

Z Z card R A(_l) card S

P(A) RcBNA ScBnA

H

Px((RUS)NA) )

-1 ( S (_l)card R P#(R)) ( E (_Ucard S).

PHA) ‘peBna ScBNA

i}

Now if BCA, then the last factor is equal to one; otherwise it is equal

to zero. Hence
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1 ifB=4¢
aBla) =1 BEL it 4 # Bea,
o otherwise.

So conditioning a condensable allocation can be carried out by renor-

malizing the relevant commonality numbers,

>In the case of a belief function on a finite Boolean algebra a,
it is also possible to describe the conditioning process in terms of the
basic probability numbers. Suppose indeéd that Bel: 0‘?[0, 1]is given
by the basic probability numbers {mA} Ac Q- Then upon conditioning
on A, the basic probability mass that was associated with A'e @ will
be constrained to A' AA. Hence there will come to be associated with

Be@ a total basic probability mass of measure
Tlm,|arna-=38],

In particular a basic probability mass of measure

Z{m,,|a" Aa =L} =Bel (B)

will come to be associated with /. This latter probability mass must
of course be eliminated, and we must renormalize by the factor (P*(A))—l,

. s . iy .
thus obtaining the new basic proba‘?lllty numbers {m B} B 6@ given by

Z{m,|ara=B]

m'
B P* (A)

for all B #'A-Q and, of course, my = 0.
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2., The Conditional Allocation

Dempster's rule of conditioning is most simply described intuitively 7
in terms of mobile probability masses: in order to condition Bel: a-»
[0, 1:{ on Ae @, we add to the constraints on all our probability masses
by constraining each one to A, and hence to A A A' for all A" ea to
which it was previously constrained; we then eliminate all the probability
that is constrained to .A. by this procéss. In order to represent this
process mathematically, we must use the formal procedurve that we

learned in section 4 of Chapter 4 for ""discarding'' a probability mass

from a probability algebra.

Theorem. Let p: @ >/ be an allocation into the probability algebra
(2, u. Suppose Aea and p(A) #V . LetI be the ideal in
generated by p(A), and 1ét(7ﬂ/l, v) be as in section 4 of Chapter

4. Let f:‘?)’[—-} ‘77[/1 be the canonical homomorphism. Then
ot Q=M1 A s £(p (a1 V) )
is an allocation, and BelA = Vo p, is given by

n . Bel(A' VA) - Bel(A)
Bel,(A') = 1 - Bel(R)

v lforall Ate (3.

Proof: It is easy to verify that Pa is an allocation:

() 0, (A = £pE) = A,
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(i) p (V) =£(p (AVY)) =£(¥) =7,
(i) p,(A] AAL) =£(p((A] AA,)) VA)) =f(p((A] VA A (A, VA)
=1( p (&) VA) Af( p (A, VA)

= (A1) A py(A,).

And
» — 1 —_ —_
Bel, (A") = v (f(p(A"V A))) = ————— u(p (A" VA) - p(A))
1 = u(p(A))
_ Bel (A' VA) - Bel(A) |
1 - Bel(a)
by the formula in section 4 of Chapter 4. 7

The allocation PA is called, of course, the conditional allocation obtained

from p by conditioning on A.

3. Two Examples of Conditioning

In this section I will illustrate Dempster's rule of conditioning

with two simple examples.

A, | The Senate Example
First let us reconsider the exémple from Chapter 1 that involved
an allocation of probability over the set of twenty-two Senators., That
set is pictured again in Figure 2. Recall that our allocation of probability

involved eleven basic probability masses, one corresponding to each
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Liangdon (D) Wingate (D)
Few (D)  Gunn (D)
Lee (D) Grayson (D)
Izard (D) Butler (D)
Johnson (D) Ellsworth (F)
~Maclay (D) Morris (F)
Strong (F) Dalton (F)
Paterson (F) Elmer (F)
Bassett (F) Read (F)
Carroll (F) Henry (F)
King (F) Schuyler (F)
Figure 2.

State, and that each of these is free to move back and forth between the

two Senators from the State to which it corresponds. We concluded that

the degree of belief and the upper probability for the proposition A =
A Democ’ratic-Republican will be chosen'' were given by Bel(A) = 4/11
and P*(A) = 6/11.

Now Senator Maclay of Pennsylvania was particularly well known

as a staunch anti-Federalist, Let us suppose that we begin with the

allocation of probability just described but that we then learn -- say from

a friend galloping past who pauses only to mention the fact with a sigh

of relief -~ that Maclay was not chosen, After the receipt of this informa-

tion, what degree of belief and upper probability ought we to accord to

the proposition A?
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Well, we must conditién our allocation of probability to the set
m, i.e., to the set of the twenty-one Senators other than Maclay.
This conditioning will not eliminate any of our probability, and it will
change the region of mobility of only one of the eleven basic probability
masses; The basic probability mass corresponding to the State of
Pennsylvania, instead of moving freely between Senator‘s Maclay and
Morris, will now be constrained to Senator Morris. Hence there will
still be only four basic probability masses constrained to Democratic-
Republican Senators, but six of the seven remaining ones will be constrained
to Federalist Senators. So conditionally we will have a degre of belief

of 4/11 for A but an upper probability 6f only 5/11.

B. Conditioning on the Diagonal

In section 1 of Chapter 6 we considered an example in which we

began with a belief function
Belo: y(,d,) "’[O: 1],

which expressed our degrees of belief about the true value of an unknown
quantity X, Jl being the set of possible values of X. We also considered
a second unknown quantity Y, about the true value of which we had no

opinions save that it was in J)Z; and we used Bel0 to obtain a belief

function

Bel:f(x?\l XJ 2)‘3’[0,1:[,

which expressed our degrees of belief in joint propositions about the

true values of X and Y. Bel was given by
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Bel(A) = Bel ( {x]{x} x chA N,

Bel(A) being our degree of belief that the pair consisting of the true

value of 25 and the true value of Y was in A,

Now let us suppose that ,<?1 and J p are actually the same set:
/X 1= jz = ,J; so that our belief function Bel is actually on 70( } x,f ).
Now suppose that we suddenly learn that the quantities }’S and Y are

identical - - that they have the same value. Then how should be modify
Bel?

Evidently, we should condition Bel on ihe '"diagonal' -- on the set

D= {(s,s)l sej}.

This does not result in the elimination of any probability, for

Bel(D)

1

Bel  ( {x){xk}xJZC{Ts,s) sedt 1)

H

Bel0 () = 0.

So the conditional belief function Belp is given simply by

Bel(A) = Bel (A V D)

t

Belo( {x‘{x}xJZCAV_ﬁ})

i

Belo( {x ‘ (x,x)e A})

We might be interested in particular in BelD If(,jz), which
would give our conditional degrees of belief that the true value of Y is

in various subsets of /32 = J . Denoting this belief function by

Bel':‘P(JZ)%[O,IJ,
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we would have

Bel'(A) = Bel(.J, x A) = Bel_ ( {x|(x,x) e.d] x4 )

i

BelO(A).

Hence our conditioning has resulted in the same degrees of belief for

Y as we formerly had for X. Nothing could be more reasonable.

4, Dempster's Rule of Combination: Finite Case

Suppose we have two belief functions Bell and Bel2 on the same

Boolean algebra @, and suppose the two are based on independent

sources of evidence. Then it would be pleasant if we could combine them

in some orthogonal way so as to produce a single resulting belief function
on Q; this would correspond to pooling the evidence from which the two
belief functions arose. How might we carry out such a combination?

This question can be approached most easily in the case where a
is finite. In that case, it should be recalled, a belief function Bel on &
can be described by ""basic probability numbers" {mA }A c & The
intuitive understanding is that the basic probability number m represents
the measure of a '"basic probability mass" which is constrained to A
but not to any proper subelement of A. Suppose we have two belief
functions Bel, band Bel, on & , with basic probability numbers {nA }A ¢
and {pA }A e @’ respectively, In order to think about combining Bell

and Bel,, let us think of Bel1 as our own original belief function,while

2’

Bel2 is the belief function of a second person whose opinions we wish to
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combine orthogonally with our own. How can be use Bel2 to modify

our original beliefs?

Well, let us consider each of the other person's basic probability
masses separately. The basic probability mass which he associates
with A is committed to A but to no proper subelement of A. As far as
that probability mass is concerned, the natural thing seems to be to

 condition Bel, on A. In other words, we should restrict each of the

1
basic probability masses for Bel1 to A, thus obtaining a basic probability

mass for each Bea of measure
Z{n,,|a A A=BL

But this should apply only for Belz's basic probability mass for A, which

has measure Pp- Doing to the same for each A@@, we would obtain the

total

z z A''A A =B} (1)
AerA {nA'l

L s e S e s b b s

as the measure of the new basic probability mass associated with §.

The difficulty with (1) is, of course, that it may be positive for

B=A ; there may be some probability that is constrained to .A_ as a

result of this rule. Hence we must discard that portion of our probability
and renormalize the measure of the remainder. This results in a new G
belief function Bel with basic probability numbers {mB }B ed’ where
! —
= pAz{nA,{A AA =B}

m. = Acl (2)

P12 p, T, ana=))
Acg
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for B #ﬁ.,and m, =0.
The numbers (mB }Be@ defined by (2) are evidently non-negative,

so in order to show that they determine a belief function it suffices to
show that they add to one, and this is easily verified. The only difficulty
that might arise is that we might have

z pAz{nA,]A'/\Asz}=1; (3)
Ae

in such a case the denominator in (2) would be zero and the combination

could not be carried out, But since I p, =1, (3) would imply that
Ae

S{n,,Jaraa=A1=1

for all A for which Pp >0. Denoting the A for which Pa >0 by Al’ ey

Ak’ we find that
Bel, (&) = I { nA,\A' <E}=Zin,laaa=A)=1

for eachi, i=1,...,k. Setting C = Al V...V Ak’ this implies that

Bell(C) = Bell(A1 Ao /\Ak) = 1,

while

"

Bel, (C) T p, =1

Ax<C
So the combination of Bell and Bel2 is impossible only when there
exists CEQ such that Pl*(C) = 0 but BelZ(C) = 1; i, e., when the two

belief functions contradict each other.
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5. Dempster's Rule of Combination: General Case

There are several approaches that we might take to adduce Dempster's
rule of combination for the infinite case. One approach would be to
develop the theory of integration for probability algebras and use it to
adduce integrals analogous to the sums in formula (1) of the preceding
chapter. An approach that we are better equipped to pursue is to draw

an analogy with the '""orthogonal combination' of Chapter 6, modifying that

method by adding the element of renormalization. This is the approach of

the following theorem,

Theorem. Suppose Bell: [@—? [O, l_}g and Belzzd’> [O, 1] are both
belief functions, with standard representations plA.' &*‘57/71 and

pZA: [Eg?]’[z. Let (77, w); i1:‘7ﬂl~>7}7 R izz%z—????) be an

orthogonal sum of (’77?1, ul) and (77?2, ”2)‘ Denote pl' = il o plA

t

and p, = iZ o pZA. And suppose that

M= vV (' (A)Ap, (B))# Ve
Ael} 1 2 m

Denote by I the principal ideal of /4 generated by M, and let

(M/1, v) and f: 79> J]/1 be as in section 4 of Chapter 4. Then

o's > M/TA-E(V { o' (A)) A p AN AL, A, (s

A ANA, <A })

is a standard allocation of probability on Q And the belief function

Bel = v o p'is given by

| I

Bel(A) =

2

k(A
1

-k
k
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where

k(A) = sup {EBell(Ai) Belz(Bi) - ZB.ell(Ai A Aj)

n+l
BelZ(Bi A Bj) +- o.. H=1) Bel1 (A1 Avee A An) (1)

: > 1- .
Bel,(B; A ... /\Bn)‘ nzl; A4, Bie@, Ay /\BiSA}

and k =k(A) = p(M)
= sup { % Bel, (4)) Bel,(X,) - T Bely(A; A A)) Bel,

—_— n+l
(A. AA,) +- ... +(-1) Bell(A1 Ao AAn) Bel2 (2)

(A{A.o. AA)n=1; A, ..oy A e @1.

Proof: To show that p' is an allocation, notice that

(5) p'(A) = v { p (A A py'(8) | A, A, sl A An, < | )

I
Fh
g

i
-
-

(1) p' (V) = £(v { p;" (A7) A py (8 ) Ay, 8,e (i Ay AR, STV
=£V) =Y,
and (iii) p'(A) A p'(B) = £(vV [ p,'R) A p,'S)|R AS <A DA
£(v { p)"(T) A 0,/ (W)|TAUSB })

= £(V { p;"(R) A p,"(S) A p)"(T) A p,'(U)|

RAS<A; TAU<BY}

=£(V{p,'RATIAp,'(SAU)RAS<A;

TAUS<B })

[}

£V {p'(a) /\pz'(Az)’Al ANA,SAAB 1)

p' (A A B).
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Now by the formula in section 4 of Chapter 4,

Bel(A)

i

VY { " (A]) A py (8] A AALEAT))
. 1 . ‘

T H (Ve Ap A Aa, =AY oM

T il(')?l) [” (v {py" (A1) A PZ'(Az)lAl AA, SAY)
- m (v Uoy'(ay) Apytap|a, aa, s AD ]

I | '
“l_k(k(A)‘k),

where

k(A) = p(v {p;'(A)) A p,'(8)[A] A A, < AD

i

u(V{[pl'(Al) A py'(B) ]v [pl'(AZ) A pz'(BZ)]v RY

[Pl'(An) A pz'(Bn)]lAi A B, <A for each i )

1

sup {ulp,'(a)) Ao, (B v v [pa n o, ) )
A, A B, <A for eachi }
1 1

= sup {E Bell(Ai) BelZ(Bi) - ZBell(Ai/\ Aj) Bel2
n+]
(ByAB;) - oo + (-1 Bel (A] A A A
= 1. : Z
Bel,(By A... AB) \ nz1; A,Bs(l A ABEA]L
and k=k())
=W Vip (A A g (A |A AA, S Y

=\ glR'a A, (K)])
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= sup {T Beli(Ai) BelZ(Ki) - T Bel (A, A Aj) BelZ(Ki A Zj)

#o o+ (D™ Bel (A AL AA ) Bel(A AL AK )|

,Anﬁﬁ.}.

v 77
Definition., Suppose Bel1 and Bel2 are two bhelief functions on a Boolean

algebra Q If k, as given by (2) above, obeys k<1, then the
belief function Bel defined in the above theorem is called the

orthogonal sum of Bel1 and Bel2 and is denoted Bel1 @ Belz. If

k = 1, then the orthogonali sum of Bel1 and Bel2 is said not to

exist,

Notice that the forinulae giving the orthogonal sum do not depend
on the particular representations pl‘, pz‘ and p'.

The preceding is a definition of ""orthogonal sum'' in the case of
two belief functions on the same Boolean algebra. But in the preceding
chapter we defined the notion of an orthogonal sum of two belief functions
on different independent subalgebras of a Boolean algebra. The following

theorem shows in what sense the present definition is a generalization of

the previous definition.

Theorem. Suppose al and &2 are independent subalgebras of a
Boolean algebra Q And suppose Bel,: @1-> [0,1] and Bel,:
&zﬁ [0,1] are belief‘ functions. Denote by Bel,' and Bel,' the
natural extensions of Bel1 and Belz, respectively to ﬁ . Let
Bel1 (-B. Bel, be the orthogonal sum of Bell and Bel2 on @, as

2
defined in the preceding chapter. And let Bel,' @ Belz' be the
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orthogonal sum of Bel "and Belz', as defined above. Then

Bel 4] Bel Bel "D Belz’

+;
Proof Letpl @ -—377( andpz @ >f/’7 be as in the first

theorem of sectlon 3 of Chapter 3 Let 7, u i: Ml——>777;

iz: ?772 > M), o and P, and p be as in that theorem as well.
Then Bel1 D Bel2 = @ o p, where

p=V{(p,(A) Ap,a,)[A e A e By A na,sAT.
But Bel1 's a-P [0,1] and Belz': Q 7[0,1] are given by the allocations
A o .
A R ->M,:a~ Vi, (Al)[Ale Ql, A S A

and
p," 0} Mya—Vie °a )'A el ; A, <A}
2 P TG P 18 188 By By =80
So Bell' @ Belz‘ is given by
g: (- /LA~y £V py'(A}) /\pz'(Az)lAl,Aze@; Ay A AZ_A} )
1

. A A
Wherep1 =ijop, p'=1i,00p, and

L= zYq (P'(8) AR, (A) )

(vipS ap|ae B A <A DA, (vie, (ay]

A\e/cq (
Azs@z; A, =AY

i

Al (VU RA D AL a0 | Aslly, Aye

< A: < A
A SA; A2~.A})

A

1§
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since &1 and @2 are independent. Hence (M/1, v) = (7} ,u) and

f is the identity mapping. And p' is given by

V{p (A) AR, (A,) ]Al,AZs d; AN AZsA }

p(A) =

=Vl (Ve a]ap e By Ay Ssa ) A, (Y b, (a;"] |
Az'sa}a; A=A, )lAl,Aze@; A ANA, <A

= VE(VEey(a]aelys Ay SaA VLo, a8y
AZV'SAZ } )!Al, Ayefliana,sal

= v{v{pl(Al')/\pZ(Az‘){Ale @1; AI'SAI; AZ' =4, },
A Ay el ajna,sal

=V { P (A A pz(Az)‘ Aleal; Ay ey ApAAy <A}

=p(A).

So p' = p, and hence Bell‘ €2 Belz’ = Bel1 ] Belz.

So our present notion of combination is quite general. Of course,

one can combine more than two belief functions at a time; the more general

definition should be obvious. The operation of combination is commutative

whenever it can be carried out, and it Ia s a unit -- the vacuous belief
function -- which when combined with any belief function always yields

that belief function again. The operation of conditioning is also a special

case of combination, as the following theorem shows:
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Theorem. Suppose Bel:@»—?[o, 1] is a belief function, Ae & and P#(A) > 0.
Let Bel,: @ —»[0, 1] be the belief function defined by
1 if ASA'

Belz(A') = |
0 otherwise.

Then BelA = Bel @ Belz..

Proof: If A'e Q, then

Bel(A'V A) - Bel (A)
1 - Bel (A4)

BelA(A') =

Now if we let pl', pz' and (¥, u) be as in the first theorem of this
section, we have Bel =y o A ', and pz’ is given by

| Y ira=sa
g 1y -
A otherwise.

Hence
_k(A') -k
Bel ® Bell(A') = 1%

where

ksu(A.\g/&(pl' (A) A p,!' (A1) ) )

1l

p(vie! (A‘),ASZ‘ )y

w(p,' (A))= Bel (A),

"

and

k() =u(vie! (apAag(afa na,sar))

il

i . .
u(V{pl (Al)lAl,AZe@, AJNA,SA ASA, )

i

u(p1'<A'VA)>=_Be”A'VA)'
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6. The Condensable Case

In the previous section we saw that Dempster's rule of combination
could be adduced for belief functions in general. But in fact, this rule,
like the rule of conditioning, is most adapted to the condensable case.
For in that case the rule can be stated quite simply in terms of the

commonality numbers, and it will fail only when the belief functions

contradict each other.

Theorem. Suppose Bel1 and BelZ are condensable belief functions
on 'f(g ). Then Bel]L D Bel2 fails to exist if and only if there
exists S<§ such that Bel, (S) = Be]gL(_S_) = 1. And in the case

where Bell <) Bel2 does exist, it is condensable, and its commonality

function Q is given by

QS) = T=3 Q,(S) ,(S) (1)

for all finite non-empty subsets SCX , where Q1 and QZ are the
commonality functions for Bel1 and Belz, respectively, and k is

the constant given in the first theorem of section 5.

Proof; This theorem is most easily established by comparing

the construction in section 5 with the construction in section 3 of

Chapter 6.

Think of Bel1 and Bel2 as belief functions on ( Jl) and #( JZ)’
respectively, where jl and ,(?2 are distinct copies of J Let
057 (81~ 7y 0, P )My M i1 iy o' 0, Mand p!

be as in the theorem of section 5. And let plO and pzo be identical
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with plA and pzA respectively, except that they are thought of as
being on the copies 7”(/57 l) and 77(/,?2), respectively. Let pl,
% and p be the allocations based on plo and pzoaccording to the

formulae in section 3 of Chapter 6.

Let

D=v{(s,s)ss/8}‘1?1x JZ' ,

vioapng ] acdia,cda xaDl.

©
ol
it

1

Vi{p (A AR, (Az)' Al,AZC_,X; AN, =é]

i

vip(a)Ap, (B)] ach)

]

M, v
and in general, for anscX , if 8' = {(s,s)‘s eS }CXI X XZ'
then
= . C . (A=
p(SUD) = v Lo () Anylag)| Ay d s a,Cd i Ay xaSUB]

Vi) Ay (A A AcS s anacs]

1

By comparing the theorem in section 2 with the first theorem in

section 5, we see that p' is obtained from pby conditioning on D and

then identifying D with X by the mapping (s, s)~* s.
Hence our formula (1) becomes transparent; the multiplicaﬁon

follows from the similar rule in section 7 of Chapter 6, while the

constant 1/(1 - k)results from the conditioning.
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7. Cognitive Independence

In the preceding chapter I suggested that two subalgebras Q 1 and

@ 2 of a Boolean algebra Q deserved to be called cognitively independent

with respect to a belief function Bel on aif
P*(A1 A AZ) = P*(Al) . P*(AZ) (1)

for all A1 € @1 and A2 g 02. We are now in a position to examine the

basis of that suggestion.

What ought we to mean when we say that two subalgebras are
cognitivély independent with respect to our opinions? Intuitively, we
ought to mean that the assimilation of new evidence or opinion about the
propositions in one of them would not change our degrees of belief in

the propositions in the other. But Dempster's rules of conditioning and

combination provide us with a mathematical representation of how new

Con

evidence or opinion can be assimilated, and hence we*make this intuitive

understanding mathematically precise.

Indeed, if our new evidence about Ql comes down to the knowledge
that Als @1 is true, then we would modify Bel by conditioning it on Al'
And, more generally, if our new evidence induced‘ a belief function Bel1

'
on then we would modify Bel by replacing it with Bell @ Bel, where

1’

Bel, ' is the natural extension of Bel, to & . And as the following

theorems show, these sorts of modifications in Bel will always fail to

modify the degrees of belief in elements of @2 if and only if (1) holds.

Theorem. Suppose Bel: (] [0,1] is a belief function and Ql and dz
are independent subalgebras of & Then dl and @2 are

cognitively independent with respect to Bel if and only if
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l @ ell @ whenever A € a and P*(Al) >0,

Proof: Bel l @ = Bel, @2 whenever A € d and P*(Al) >0

Ay
if and only if

Px (A A Al)

) = =
2 Pxap)

P*(A

for all A € Q and A € a such that P¥* (A ) >0. But this
equation holds for all A e Q and A g @ such that P*(A, )>O
if and only if

P (A AA,) = PE(Ap) - PH(A))

for all Ale &1 and Az € @2. m

Theorem. Suppose Bel: Q —+[0,1] is a belief function and al and QZ

are 1ndependent subalgebras of Q Then & and & are

cognitively independent with respect to Bel if and only if Bel1 &

Bel{ & 5 = Bel, & 2 whenever Bell' is the natural extension to

of a belief function Bel1 on @1 and Bell' @ Bel exists.

Proof. In view of the preceding theorem, it suffices to show that

(1) and the existence of Bell' @ Bel implies that
(Bell' ® Bel) (A) = Bel (A)
for all As @2. But by the formulae of section 5, we find that
! = (v . <
(Bel,' ® Bel) (&) = ( [ (A]) Ap,(A \A A, e(l; a,n8,=AY)
e efl: AL
T {pl(Al)/\pz(A )\A ,AZ@@,AlAAZSJ\_})) /

(1—u v {p (A AR, (A ‘A AZ@&;AAAZSA}))
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where plz Q—ym and pZ: @ —%?77 are allocations which represent

Belll and Bel, respectively, and which map @ into orthogonal

subalgebras of M . Now Bel,'is supported by ﬁ ; hence
1 1
pap)=Vvi q(A')IA’te; A=A}

for all Ale Q, and it follows that

(Bell'GBBel)(A):( \/{pl /\pzAVA)lAe@})- (v{p1
AR, (KI)IAI@ @1})) .
But

p(v Lo (A AR, (szl)( Al
Ag& SOUSEGUS AR
(p1 (A)Ap, (AVE )))

_ sup
A ""Aneai[z;u PL(A)ADP,(AVAD) - T plp (4 /\A)

1’ i<j
Apz(AV(AiAAJ.))H-...]
= Sup DBel) (4,) Bel (AVA)) - T Bel) (A;AA)
Alsenss As@i[ ;!

Bel (AV (&, /\A))+—...:}.

Now since @1 and @2 are cognitively independent with respect to

Bel, we have

P#* (A A B) = Px (A) © P* (B),
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or

Bel(A V B) = Bel(A) + Bel(B) - Bel(A) Bel(B)

whenever ASX 02 and Bes @l' We are indeed assuming that Ae @2,

so our preceding formula becom’es
u(v (o (A A (AVED | A e (1)

sup Q [23 Bel (A.)((Bel(A) + Bel (K.) - Bel(A) Bel(Ki))

i

AlseeesALS
n
- I Bel (A, AA, )((Bel A) + Bel(A AE) -
1<J ,
- Bel(A) Bel(Ai/\AJ.)) +- ]
_ sup ‘ B _
Ny [Bel(A) (Z’Bell(Ai) z Bel (A;AA) + - ... )

+ (1 - Bel(A)) (ZBell(Ai) Bel(Ki) -
- Z Bel (A, A Aj)

Bel(Ki/\Kj)+— )]

i

sup
A ST o, [Peus) (wCsyap v Ve a))

+ (1 - Bel (8)) (u({p (A A (A ) V..oV

(py(A) Apy(A )]
= Bel(A) , %P, e HEAAD Y v (A )
+ (1 Belld) , ) R PAP A V...V

(P (A )APL(A)))

= Bel(A) + (1 - Bel(A) u(V {p (A Ap, (A ] &) e)]).
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So, setting
k=p(vip(a) "ApZ(Kl)I ais(hh,

(2) hecomes

Bel(A) + (1 - Bel(A)) k - k

- (Bell' ® Bel) (A) = %

Bel(A).

H

%,
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8. Conclusion

It is evident that Dempster's rule of combination will play a
central role in any application of the theory of belief functions, for we
always encounter the need to combine evidence. In view of ‘phis
importance, the rule deserves a much closer scrutiny -- we need to

examine a good many examples of its application so as to understand

its behavior clearly. I cannot undertake such an examination here, but

I have made some efforts to examine its behavior in the paper entitled
"A Theory of Statistical Support, "
I have not developed the formulae for combining more than one
“belief function at a time, but it should be evident that such combination

is possible., Furthermore, it can be carried out stepwise, and the order

will not matter: the operation of combination is commutative. This is
particularly obvious in the condensable case, for aside from an
appropriate renormalization, the combination of condensable belief
functions is affected merely by multiplying the commonality functions.

It should be noted that this operation of combination is not idem-

potent. In other words, Bel @ Bel is not, in general, equal to Bel.
This fact is best explicated if we think in terms of the evidence under-
lying Bel. Since the operation of combination corresponds to the
pooling of evidence, Bel @ Bel will be appropriate for the situation
where all the evidence is twice as strong as that underlying Bel.

It is not so easy, of course, to go back and forth from the

commonality functions, which are easy to manipulate, to the belief
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functions and upper probability functions, which are of greater
immediate interest; the formulae for doing so that were adduced in
Chapter 5 are hardly of practical use. Hence any application of

this theory will involve the rather difficult task of developing effective

computational methods for combination. This difficulty is central

in the theory of Dempsterian inference, for which the present essay

is meant as a foundation.
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