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I share Peter Cheeseman’s conviction that probability ideas
have much to offer workers in artificial intelligence. I fear,
however, that the tone of Cheeseman’s article will alienate
rather than persuade those who are not yet fond of probability.
I myself am offended by Cheeseman’s dogmatic dismissal of
non-Bayesian methods of probability judgment.

In the following comments, I will spell out some of the many
points where [ disagree with Cheeseman, and, more impor-
tantly, I will try to supply a broader perspective on the issues
and problems that he raises. Most of the issues have been the
subject of long debates, and most of the problems have been
the subject of considerable study. Readers who are encounter-
ing the issues and problems for the first time deserve some
signposts pointing to the existing literature.

The Bayesian controversy

The choice between Bayesian and non-Bayesian uses of the
mathematical theory of probability has been a subject of debate
for over a century. The Bayesian method, or the method of
inverse probability, as it was then called, was championed in
the 19th century by Laplace. But it also had many critics, and
their criticisms were so effective that by the early 20th century
non-Bayesian probability methods were dominant in statistical
work. The past three decades have seen a revival of interest in
Bayesian ideas, a remarkable flowering of theoretical Bayesian
work, an intensification of the debate between Bayesians and
non-Bayesians, and an increasing use of the Bayesian method
in engineering work and decision analysis. The Bayesian view
remains, however, a minority view. In most scientific work,
non-Bayesian methods are used to analyze statistical evidence.

Where should the reader turn for a good perspective on the
Bayesian controversy? One good starting point would be Com-
parative Statistical Inference by Barnett (1973), a book that
tries to lay out the issues without taking sides. Another reason-
able, but older, starting point would be The Foundations of
Statistical Inference, edited by Savage (1962); this small book
records a symposium involving prominent Bayesian and non-
Bayesian statisticians. For a perspective on the richness and
vigor of current work on Bayesian methods, the reader might
turn to two volumes edited by Bernardo er al. (1980, 1985).
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Bayesian Statistics and Bayesian Staristics 2. For information
on the philosophical underpinnings of the Bayesian revival, the
reader might tumn to Studies in Subjective Probabiliry, edited
by Kyburg and Smokler (1980).

Interpretations of probability

The mathematical theory of probability derives, historically,
from the study of games of chance (Hacking 1975. Shafer
1978). Numerical probabilities that obey the rules of this
theory clearly do exist in games of chance. But why should
such numbers exist in other domains?

There is a long history of argument on this point. Savage
(1954), a leader of the 20th century revival of Bayesian ideas,
classified those taking part in the argument into three broad
groups: objectivists, personalists, and necessarians. The objec-
tivists (or frequentists) believe that numerical probabilities can
be assigned only in situations that are like games in chance in
that repetition under fixed conditions is possible. The person-
alists hold that rationality requires a person to assign a
numerical probability to every proposition and every event, but
that this number should be interpreted as the person’s betting
rate rather than as a property of the world. The necessarians
hold that numerical probabilities always exist, and that they
measure ‘‘the extent to which one set of propositions, out of
logical necessity and apart from human opinion, confirms the
truth of another’’ (Savage 1954).

Both personalists and necessarians are Bayesians. Most of
the participants in the 20th century Bayesian revival, including
Savage, have been personalists.

Laplace could be classified as a necessarian. The 19th-
century frequentists criticized Laplace’s necessarian view for
its lack of empirical content. How can you say that something
exists if you have no way of measuring it? The personalists
have dominated the 20th century Bayesian revival because nec-
essarians have never been able to give a good answer to this
question. The personalists do have an answer. They say that
their conception of probability is just as empirical as the fre-
quentist conception; probability is a property of a person, and
it can be measured by observing the person’s behavior as he
chooses among gambles.
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In practice, necessarians try to determine probabilities by
using linguistic or mathematical symmetries. If there are five
possibilities, and we know nothing else, each possibility
should have probability one-fifth. Unfortunately, there are
often competing symmetries (Shafer 1976).

Cheeseman, I gather, is a necessarian. It is of some interest
to note that he was trained in physics. The necessarian view
seems, in general, to be more attractive to physicists than
to statisticians. Harold Jeffreys, E. T. Jaynes, R. T. Cox,
Erwin Schrodinger, and Judea Pearl were all trained in physics.
Why are physicists less influenced by the empiricist criticism
of the necessarian view than statisticians? The obvious explan-
ation is that probabilities are calculated from symmetries in
physics textbooks. Physicists should remember, however, that
probabilities in physics have a frequentist interpretation.
Experiments are available to arbitrate between conflicting
symmetries. Photons obey Bose —Einstein statistics, and elec-
trons obey Fermi—Dirac statistics (Feller 1968).

My own stance is neither frequentist, personalist, nor neces-
sarian. | take what I call a consrructive view. 1 believe that
when we make a numerical probability judgment, we are sub-
jectively measuring the strength of our evidence by comparing
it to the evidence we have in a game of chance where the
chances are known. When we combine probabilities to calcu-
late new probabilities, we are making an argument by analogy,
where the analogy is between the problem at hand and a centain
game of chance. When we use Bayesian methods, we are
drawing a very direct analogy; when we use belief functions
(Shafer 1976) or non-Bayesian statistical methods, we are
drawing more subtle analogies. Because of the directness of
the analogy used by the Bayesian method, Bayesian numerical
probabilities (degrees of belief) always follew the rules for
chances in games of chance. Because of the indirectness of the
analogies used by belief-function and non-Bayesian statistical
methods, these methods can produce degrees of belief that do
not follow those rules.

The constructive view differs from the frequentist view,
because it allows for the possibility that the analogy to games
of chance will be convincing even though we are not working
with frequencies. It also differs from the personalist and neces-
sarian views, because it allows for the possibility that the anal-
ogy to games of chance will not be convincing, and that
consequently we will be unable to assign probabilities in our
problem.

For more on the personalist view, see Savage (1954) and
Lindley (1972). For more on the necessarian view, see Jeffreys
(1961). For more on the constructive view see Shafer (1981,
1986b) and Shafer and Tversky (1985).

Cox’s argument for Bayes

Modern Bayesians, both personalists and necessarians, are
fond of formal arguments supporting their view that numerical
degrees of belief should follow the same rules chances follow
in games of chance. On the personalist side, such arguments
have been given by Ramsey (1931), de Finetti (1937), Savage
(1954), and Lindley (1982). On the necessarian side, we can
cite Jeffreys (1961), Schrodinger (1947), and Cox (1961).

I have made my case against the personalist arguments else-
where; see Shafer (1986b) and Shafer and Srivastava (1987).
Here 1 will comment on Cox’s necessarian argument, which
Cheeseman cites.

Cox gave a list of qualitative rules for numerical degrees of
belief, and he proved that these qualitative rules are equivalent
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to the usual numerical axioms for Bayesian probability. I find
this valuable, because it makes clearer the assumptions we are
making when we use the Bayesian method. But does it provide
much of an argument for using Bayesian methods? Is there any
particular reason for adopting Cox’s qualitative rules, aside
from the fact that they do lead to the Bayesian numerical rules?

I think not. Indeed, I believe some of Cox’s rules would be
incomprehensible if we did not have the Bayesian numerical
rules in the back of our minds to help us understand what is
going on. The fifth rule Cheeseman lists, hypothetical condi-
tioning, is a good example. What reason would we have for
adopting this rule. and why would we even think that there
exists, for every pair of propositions, a well-defined number
called *‘the belief in the first proposition given the second,”” if
we did not have in the back of our minds either the standard
numerical rule P(4 N B) = P(A) P(B| A) or else the picture of
games of chance from which it derives?

The sixth rule Cheeseman lists, complementarity, is clearly
violated by the theory of belief functions (the Dempster—
Shafer theory). In that theory. we are allowed to assign degree
of belief zero to both a proposition and its negation, so as to
represent the fact that we have no evidence on either side. One
of these degrees of belief can later go up without the other,
which is already zero, going down. What is wrong with this?

Following Horvitz er al. (1986), Cheeseman calls Cox’s
qualitative rules ‘‘intuitive.”” But today’s intuition is simply
yesterday’s theory. Complementarity is intuitive only because
we have learned the Bayesian theory. Its violation becomes
equally intuitive once we have learned the belief-function
theory.

The third rule that Cheeseman lists, completeness, goes
against my whole constructive philosophy, but I do not see that
it differentiates between Bayes and belief functions. If we do
not care whether the numbers we give are convincing, we can
use either formalism to give a degree of belief for anything we
want, regardless of how little evidence we have to support it.

The fourth rule that Cheeseman lists, context dependency, is
very weak. 1 fail to understand why Cheeseman thinks it is vio-
lated by the belief-function approach, or, for that matter, by
any other approach.

Bayesian and Non-Bayesian statistics

Consider a possibility biased coin. If we tossed it many,
many times, we would find out whether it is biased or not. In
fact, we would find out its true probability for coming up
heads. If we toss it only a few times, we will learn less, but we
may be able to make a guess or judgment about the true proba-
bility of heads. If, for example, we toss it 100 times and get 45
heads, we might be fairly certain that the true probability of
heads is between 35 and 55%.

Mathematical statistics has traditionally been concerned with
problems of this type—problems where probability is used to
model repeatable experiments. A ‘*model,’’ in this context, is
a class of probability distributions. We assume that if we were
to repeat the experiment many times, the outcomes would
follow one of the distributions in the model. But we do not
know which one. We actually repeat the experiment only a few
times, and we use the resulting outcomes to judge or guess
which probability distribution is the correct one.

The controversy between Bayesian and non-Bayesian
methods developed in this statistical context. The difference
between Bayesians and non-Bayesians in this context is that
Bayesians supply prior probabilities for which probability dis-
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tribution in the model is correct (a Bayesian might, for
example, have a prior probability of 20% for the proposition
that the true probability of heads falls between 35 and 55%).
while non-Bayesians do not. The model is taken for granted by
both sides.

As Cheeseman notes. Bayes’ theorem uses two ingredients,
the likelihood and the prior probability distribution. The likeli-
hood comes from the model. so non-Bayesians object only to
the second ingredient, the prior probability distribution.

It is important, however, to realize that moving outside of
the traditional domain of mathematical statistics usually means
moving outside the domain where models can be taken for
granted. In a Bayesian analysis outside the traditional domain
of mathematical statistics, the ‘‘likelihoods’’ are usually just as
suspect—and just as subjective—as the ‘‘prior probabilities.”’
Cheeseman overlooks this point when he asserts, without a
shred of justification, that it is generally easier to find
P(E| H, c) than P(H | E. ¢).

Recognizing the subjectivity of likelihoods outside the statis-
tical domain is a first step towards a broader, constructive
understanding of Bayes (Shafer and Tversky 1985). According
to this constructive understanding, a Bayesian analysis need
not involve Bayes’ theorem. But it must involve a deliberate
design—a plan specifying what numerical and nonnumerical
judgments are to be combined to arrive at the probabilities of
primary interest.

Noninformative priors

Cheeseman’s untroubled faith in the availability of objective
or noninformative priors should be balanced by some reference
to the considerable literature on the difficulties and contradic-
tions to which supposedly noninformative priors can lead. See
Chap. 10 of Cox and Hinkley (1974). The fact that most Baye-
sian statisticians are personalists rather than necessarians is
partly due to these difficulties and contradictions.

The principle of stable estimation

In the statistical problem, it is often pointed out that the prior
distribution makes less and less difference as more and more
independent outcomes of the experiment are observed. Savage
called this the principle of stable estimation (1963). It is impor-
tant to remember, however, that this principle, along with the
other principles we learn from Bayesian statistics, must be
applied gingerly outside the statistical domain. It may apply,
as Cheeseman suggests, to the case of a Martian observing the
heights of humans. But it may fail in cases where there are few
straightforward repetitions.

Model choice and induction

In Sect. 4 of his article, Cheeseman asserts that Bayesian
inference is the solution to the problem of induction and model
choice. He asserts, moreover, that statisticians, engineers, and
physicists have been using it for this purpose for years.

It is true that Bayesian methods can sometimes be used to
discriminate among models, but the wholesale application of
Bayes to the problem of model choice leads to difficulties and
paradoxes (Shafer 1982). Some of the most thoughtful Baye-
sian statisticians believe that the appropriate division of labor
between Bayesian and non-Bayesian methods is to use Baye-
sian methods for estimation within models and non-Bayesian
methods for choice between models. This view has been force-
fully advanced, for example, by Box (1980), probably the

most widely cited living statistician.

The problem of small worlds

Cheeseman raises the question whether utility, like probabil-
ity, should depend on context. There is a considerable history
of thought about this problem, going back at least to the dis-
cussion of small worlds by Savage (1954). For further discus-
sion by a number of authors, see Shafer (19865). For yet
further references, see Fishbumn (1981).

Paradoxes of conditional probability

Cheesemnan gives an example involving cards where condi-
tional probability can lead one astray. His conclusion is that
Bayesian inference should be applied with care. I would draw a
stronger conclusion. I believe that examples of this type show
that there are limits to how far Bayesian inference can be
extended outside the domain of experiments whose possible
outcomes are known in advance. For further discussion and
references to a wider literature, see Shafer (1985).

Black and brown ravens

Cheeseman’s application of Bayesian inference to the ques-
tion whether ravens are black is precisely the kind of applica-
tion that was the subject of such ridicule in the 19th century. It
is analogous to Richard Price’s calculation, in 1763, of the
probability that the sun will rise again (Pearson and Kendall
1970). For a good discussion of formulas of the type used by
Cheeseman and Price, see Good (1965).

In reality, the question whether ravens are black will come
down to whether or not brown ravens should really be classi-
fied as ravens. Probabilities will be involved, but not simple
formulas.

Conclusion

Probability is a broader and more flexible tool than Cheese-
man’s article might suggest. It has much to offer Al.

One of the most important potential contributions of proba-
bility is the guidance it can give us in design. Any complicated
probability argument. whether it is constructed by a statistic-
ian, a lawyer, or an expert system, must be based on a design
(Shafer 1986a, 1987; Shafer and Tversky 1985). Readers who
want to see how probability theory can help in design in Al
should consult the work of Judea Pearl, especially Pearl
(1986).
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I am in almost entire agreement with this paper. Cheeseman
is performing a great service in trying to nail the idea that prob-
abilities exist outside of context, and it has been recognized for
many years within the established Bayesian school of statistics
that the conditioning events should always be, at least implic-
itly, acknowledged: ‘*Our fundamental idea will not be simply
the probability of a proposition p, but the probability of p on
data ¢”’ (Jeffreys 1961, p. 15) and *‘all probabilities are neces-
sarily conditional’’ (Lindley 1971, p. 30). Furthermore,
Cheeseman emphasizes the essential subjectivity of probability
assignments—they are not properties of the event, but Your
opinion concerning that event, where ““You™’ is used in the
sense of de Finetti (1974, p. 27) as the individual whose state
of uncertainty is of interest. De Finetti states in his Preface that
““PROBABILITY DOES NOT EXIST’’ (his capitals) to push
home the essential lack of objectivity. Indeed, it is best to
avoid the phrase ‘‘probability of X' altogether, and use
**probability for X'* to emphasise the dependence on context
and observer.
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Furthermore, in contrast to Cheeseman’s claim, it is quite
reasonable in decision theory to have values or utilities of con-
sequences depend on context, such as other feasible options
and outcomes, regret from previous incorrect decisions, and so
on. In a medical setting, such considerations may be very
important (Llewellyn-Thomas er al. 1982), although they
should be distinguished from the problem in assessment of
values when wording of the questions can radically effect the
responses (McNeil er al. 1982).

The Al community may warm neither to a precise numerical
basis for reasoning, nor to the essential subjectivity of the
numbers. On the first point, there are increasing developments
allowing the use of imprecise probabilities yet remaining
within strict probabilistic calculus (Spiegelhalter 1986). The
second point seems incongruous—why is it reasonable to use
subjective, heuristic structure as a basis for a program, and yet
balk at subjectivity in the numerical assignments made on that
structure? By acknowledging essential subjectivity, the argu-
ments about whose judgments are being represented—the iden-




