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• The project: Replace measure theory with
game theory.

• The game-theoretic strong law.

• Game-theoretic price and probability.

• The game-theoretic central limit theorem

• The game-theoretic Black-Scholes formula
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THE PROJECT: Replace game theory

with measure theory as a framework for

probability and finance

• Classical theorems in probability become

theorems about games where a player may

bet on certain specified events at specified

odds but no stochasticity is assumed.

• No stochastic assumption is needed for op-

tion pricing.

• CAPM can be derived with no assumptions

of stochasticity and no assumptions about

beliefs and preferences of investors.

Probability and Finance: It’s Only a Game!

Glenn Shafer and Volodya Vovk, Wiley 2001

http://www.cs.rhul.ac.uk/home/vovk/book/
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THE PROJECT: Replace game theory

with measure theory

MEASURE-THEORETIC FRAMEWORK

• Start with prices for everything.

• Basic framework (measure space) is static. Filtration
is added to model time.

• Draw conclusions “except for a set of measure zero”
or “with high probability”.

GAME-THEORETIC FRAMEWORK

• Limited prices (betting offers).

• Sequential perfect-information game.

• Prices may be given at the outset. Or they may be
set in the course of the game!!

• Lower and upper prices can be derived for all payoffs.

• Draw conclusions with high lower probability.
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The classical limit theorems (law of large num-
bers, law of iterated logarithm, central limit
theorem) are theorems about a two-player
perfect-information game.

On each round of the game:

Player I (Skeptic) bets on what
Reality will do.

Player II (Reality) decides what to do.

Each theorem says that Skeptic has a winning
strategy when he is set a certain goal.

Example: Coin Tossing

On each round, Skeptic bets as much as

he wants on heads or tails, at even odds.

Skeptic wins if (1) he does not go broke,

and (2) either he becomes infinitely rich or

else the proportion of heads converges to

one-half.

Theorem: Skeptic has a winning strategy.
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THE STRONG LAW OF LARGE NUM-

BERS FOR COIN TOSSING

Players: Skeptic, Reality

Protocol:

K0 = 1.

FOR n = 1,2, . . .:

Skeptic announces Mn ∈ R.

Reality announces xn ∈ {−1,1}.
Kn := Kn−1 + Mnxn.

Winner:

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1 xi = 0

or else limn→∞Kn = ∞.

Otherwise Reality wins.

PROPOSITION:

Skeptic has a winning strategy.
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Generalize by letting Skeptic choose any

number in the interval [−1,1]. Then we

get a strong law of large numbers for a

bounded sequence of variables x1, x2, . . ..

(Don’t call them “random variables”, be-

cause they have no probability distribution—

just a price of zero on each round.)

Players: Skeptic, Reality
Protocol:
K0 = 1.
FOR n = 1,2, . . .:

Skeptic announces Mn ∈ R.
Reality announces xn ∈ [−1,1].
Kn := Kn−1 + Mnxn.

Winner:
Skeptic wins if

(1) Kn is never negative and
(2) either limn→∞ 1

n

∑n
i=1 xi = 0

or else limn→∞Kn = ∞.
Otherwise Reality wins.

PROPOSITION:
Skeptic has a winning strategy.
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Generalize further by letting another player

(allied with Reality) set the prices on each

round.

Players: Skeptic, Reality
Protocol:
K0 = 1.
FOR n = 1,2, . . .:

Forecaster announces mn ∈ R.
Skeptic announces Mn ∈ R.
Reality announces xn ∈ [mn − 1, mn + 1].
Kn := Kn−1 + Mn(xn −mn).

Winner:
Skeptic wins if

(1) Kn is never negative and
(2) either limn→∞ 1

n

∑n
i=1(xi −mi) = 0

or else limn→∞Kn = ∞.
Otherwise Reality wins.

PROPOSITION:
Skeptic has a winning strategy.
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PRICE AND PROBABILITY

K0 := α.

FOR n = 1, . . . , N :

Skeptic announces Mn ∈ R.

Reality announces xn ∈ {−1,1}.
Kn := Kn−1 + Mnxn.

Upper Price for a Variable y:

E y := smallest initial stake Skeptic
can parlay into y or more
at the end of the game

= inf{L(2)|L is a martingale and
L(x1, . . . , xN) ≥ y(x1, . . . , xN)}.

A martingale is a capital process for Skeptic.

Suppose Skeptic is willing to sell a variable to
the public at any price at which he can replicate
it with no risk of loss. Then E y is his minimum
selling price for y.
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Upper Price for a Variable y:

E y := smallest initial stake Skeptic
can parlay into y or more
at the end of the game

= Skeptic’s minimum selling price for y.

Buying y for α is the same as selling −y for −α.

So −E−y is Skeptic’s maximum buying price for

y. We call this its lower price:

E y := −E−y.

Probability from Price

PE := E IE and PE := E IE,

where IE is the indicator variable for E.

PE := E IE = smallest initial stake Skeptic
can parlay into at least 1 if E

happens and at least 0 otherwise
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THE CENTRAL LIMIT
THEOREM

We consider only coin-tossing (DeMoivre’s

theorem). For simplicity, we now score Heads

as 1/
√

N and Tails as −1/
√

N .

FOR n = 1, . . . , N :

Skeptic announces Mn ∈ R.

Reality announces xn ∈ {− 1√
N

, 1√
N
}.

Kn := Kn−1 + Mnxn.

Set Sn :=
∑n

i=1 xi.

Consider a smooth function U .

De Moivre’s Theorem For N sufficiently

large, both EU(SN) and EU(SN) are arbitrarily

close to
∫∞−∞U(z)N0,1(dz).
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How do we prove De Moivre’s theorem?

Sn :=
∑n

i=1 xi.

We want to know the price at time 0 of the
payoff U(SN) at time N . Let us also consider
its price at time n. Intuitively, this should de-
pend on Sn, the value of the sum so far. As-
sume, optimistically, that the price at time n is
given by a function of two variables, U(s, D):
the price at time n is U(Sn, N−n

N ).

Successive prices are

U(0,1), U(S1, N−1
N ), . . .

. . . , U(SN−1, 1
N ), U(SN ,0),

These must be the successive values of a mar-
tingale.

• U(SN ,0) must equal U(SN).

• U(0,1) is the price that interests us.
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We want to choose U(s, D) so that

U(0,1), U(S1, N−1
N ), . . .

. . . , U(SN−1, 1
N ), U(SN ,0)

is a martingale with U(SN ,0) = U(SN).

Consider the increments in s, D, and U :

• ∆sn = xn = ± 1√
N

.

• ∆Dn = − 1
N .

• ∆Un = U(Sn, N−n
N )− U(Sn−1, N−n+1

N ).

Study ∆U with a Taylor’s expansion:

∆U ≈ ∂U

∂s
∆s +

∂U

∂D
∆D +

1

2

∂2U

∂s2
(∆s)2

=
∂U

∂s
x− (

∂U

∂D
− 1

2

∂2U

∂s2
)
1

N
.
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∆U ≈ ∂U

∂s
x− (

∂U

∂D
− 1

2

∂2U

∂s2
)
1

N
.

We need the second term to go away, which

requires

∂U

∂D
=

1

2

∂2U

∂s2

Then we obtain the desired martingale by buy-

ing ∂U
∂s x-tickets on the nth round. In other

words, we set

Mn := ∂U
∂s (Sn−1, N−n+1

N ).

The partial differential equation

∂U

∂D
=

1

2

∂2U

∂s2

is the heat equation. Laplace showed that its

solution is a Gaussian integral.
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The partial differential equation

∂U

∂D
=

1

2

∂2U

∂s2

is the heat equation. Laplace showed that its

solution is a Gaussian integral.

With the initial condition U(s,0) = U(s), the

solution is

U(s, D) =
∫ ∞
−∞

U(z)Ns,D(dz)

=
∫ ∞
−∞

U(s + z)N0,D(dz).

So the initial price, U(0,1), is
∫ ∞
−∞

U(z)N0,1(dz).
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THE BLACK-SCHOLES PROTOCOL

The price of a security S is determined by a game just

like those we have been studying. If we write S(t) for the

price at time t, then we can write the game’s protocol

as follows.

Parameters: T > 0 and N ∈ N; dt := T/N

Players: Investor, Market

Protocol:

I(0) := 0.

Market announces S(0) > 0.

FOR t = 0, dt,2dt, . . . , T − dt:

Investor announces δ(t) ∈ R.

Market announces dS(t) ∈ R.

S(t + dt) := S(t) + dS(t).

I(t + dt) := I(t) + δ(t)dS(t).

A European option on a stock S with maturity T is a

security that pays the amount U(S(T )) at time T , where

U is a known function. If EU(S(T )) = EU(S(T )), then

we say that the option is priced.
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STOCHASTIC BLACK-SCHOLES

Parameters: T > 0 and N ∈ N; dt := T/N

Players: Investor, Market

Protocol:

I(0) := 0.

Market announces S(0) > 0.

FOR t = 0, dt,2dt, . . . , T − dt:

Investor announces δ(t) ∈ R.

Market announces dS(t) ∈ R.

S(t + dt) := S(t) + dS(t).

I(t + dt) := I(t) + δ(t)dS(t).

Constraint on Market: Market must choose

dS(t) randomly: dS(t) = µS(t)dt + σS(t)dW (t),

where W (t) is a standard Brownian motion.

With this constraint on Market, U(S(T )) is
priced:

EU(S(T )) = EU(S(T ))

=
∫ ∞
−∞

U (S(0)ez) N−σ2T/2, σ2T (dz).
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• Textbook Stochastic Black-Scholes:
Security S is priced by the market. Its price S(t)
is assumed to follow geometric Brownian motion;
σ2 can be estimated from past dS(t). All options
are priced by plugging the estimate of σ2 into the
Black-Scholes formula.

• Stochastic Black-Scholes in Practice:
Security S is priced by the market. Puts/calls on S
are also priced by the market. (These form a two-
dimensional array: a range of strikes and a range
of maturities.) Inconsistencies in the put/call prices
of show that the assumption of geometric Brownian
motion for S(t) is faulty (volatility smile). So ad hoc
adjustments are required to price other options.

• Vovk’s Game-Theoretic Black-Scholes:
Instead of having a market price puts/calls, have it
price a dividend-paying security D. Each day until
maturity, D pays the dividend (dS(t)/S(t))2. Now
we need only a one-dimensional array: one D for
each maturity. All other options on S with that
maturity are priced by plugging the market price of
D into the Black-Scholes formula. No stochastic
assumptions or ad hoc adjustments are required.
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Purely Game-Theoretic Black-Scholes

Investor trades in two securities: S, which pays

no dividends and D, which pays the dividend

(dS(t)/S(t))2.

Parameters: T > 0 and N ∈ N; dt := T/N
Players: Investor, Market
Protocol:

Market announces S(0) > 0 and D(0) > 0.
I(0) := 0.
FOR t = 0, dt,2dt, . . . , T − dt:

Investor announces δ(t) ∈ R and λ(t) ∈ R.
Market announces dS(t) ∈ R and dD(t) ∈ R.
S(t + dt) := S(t) + dS(t).
D(t + dt) := D(t) + dD(t).
I(t + dt) := I(t) + δ(t)dS(t)

+λ(t)
(
dD(t) + (dS(t)/S(t))2

)
.

Constraints on Market: (1) D(t) > 0 for 0 < t < T and
D(T ) = 0, (2) S(t) ≥ 0 for all t, and (3) the wildness of
Market’s moves is constrained.

Once D pays its last dividend, at time T , it is

worthless: D(T ) = 0. So Market is constrained

to make his dD(t) add to −D(0).
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dI(t) = δ(t)dS(t) + λ(t)
(
dD(t) + (dS(t)/S(t))2

)

dU(S(t), D(t)) ≈ ∂U

∂s
dS(t) +

∂U

∂D
dD(t) +

1

2

∂2U

∂s2
(dS(t))2

Game-theoretic Black-Scholes equation:

We need

δ(t) =
∂U

∂s
, λ(t) =

∂U

∂D
,

λ(t)

S2(t)
=

1

2

∂2U

∂s2
.

The two equations involving λ(t) require that

the function U satisfy

−∂U

∂D
+

1

2
s2

∂2U

∂s2
= 0

for all s and all D > 0.

Game-theoretic Black-Scholes formula:

With initial condition U(s,0) = U(s), the solu-

tion is

U(s, D) =
∫ ∞
−∞

U (sez) N−D/2,D(dz).
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To summarize, the price at time t for the Eu-

ropean option U in a market where both the

underlying security S and a volatility security

D with dividend (dS(t)/S(t))2 are traded is

U(t) =
∫ ∞
−∞

U (S(t)ez) N−D(t)/2,D(t)(dz).

To hedge this price, we hold a continuously

changing portfolio, containing

∂U

∂s
(S(t), D(t)) shares of S

and

∂U

∂D
(S(t), D(t)) shares of D

at time t.
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Our game-theoretic Black-Scholes theory can be con-
trasted with two versions of the stochastic theory:

• Textbook Stochastic Black-Scholes:
Security S is priced by the market. Its price S(t)
is assumed to follow geometric Brownian motion;
σ2 can be estimated from past dS(t). All options
are priced by plugging the estimate of σ2 into the
Black-Scholes formula.

• Stochastic Black-Scholes in Practice:
Security S is priced by the market. Puts/calls on S
are also priced by the market. (These form a two-
dimensional array: a range of strikes and a range
of maturities.) Inconsistencies in the put/call prices
of show that the assumption of geometric Brownian
motion for S(t) is faulty (volatility smile). So ad hoc
adjustments are required to price other options.

• Game-Theoretic Black-Scholes:
Security S is priced by the market. Dividend-paying
security D is also priced by the market (this is only
a one-dimensional array: a range of maturities).
All other options on S are priced by plugging the
market price of D into the Black-Scholes formula.
No stochastic assumptions or ad hoc adjustments
are required.

We are calling for a far-reaching change in how op-
tion exchanges are organized. The change will be
hard to sell and complex to implement but should
greatly increase efficiency.
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