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Part I. Les probabilités ludiques:
La théorie de mesure remplacée par la théorie des jeux.

Part II. Resultat étonnant:
Bonnes prévisions sont toujours possible, quelque soit le
comportement de la réalité.
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Replace measure theory with game theory as a framework for

probability

Classical theorems in probability become theorems about games

where betting odds are specified but no stochasticity is

assumed.

Probability and Finance: It’s Only a Game!

Glenn Shafer and Volodya Vovk, Wiley 2001

http://www.probabilityandfinance.com
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MEASURE-THEORETIC FRAMEWORK

• Start with prices for everything.

• Basic framework (measure space) is static. Add filtration to

model time.

• Draw conclusions except for a set of measure zero.

GAME-THEORETIC FRAMEWORK

• Limited prices (betting offers).

• Sequential perfect-information game.

• Prices may be set in the course of the game.

• Draw conclusions unless player becomes infinitely rich.
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Classical theorems (law of large numbers, central limit theorem,

etc.) become theorems about a two-player perfect-information

game.

On each round of the game:

Player I (Skeptic) bets on what Reality will do.

Player II (Reality) decides what to do.

Each theorem says that Skeptic has a strategy guaranteed to

achieve a certain goal.
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Example: Coin Tossing

On each round, Skeptic bets as much as he wants on heads or

tails, at even odds. Skeptic wins if

1. he never goes broke, and

2. either he becomes infinitely rich or else the proportion of

heads converges to one-half.

Theorem. Skeptic has a winning strategy.

5



Players: Skeptic, Reality

Protocol:

K0 = 1.

FOR n = 1,2, . . . :

Skeptic announces Mn ∈ R.

Reality announces xn ∈ {−1,1}.
Kn := Kn−1 + Mnxn.

Winner:

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1 xi = 0 or limn→∞Kn = ∞.

Otherwise Reality wins.

Theorem. Skeptic has a winning strategy.
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Generalize by letting Skeptic choose any number in the interval

[−1,1]. Then we have a sequence of variables x1, x2, . . . .

(Don’t call them “random variables”, because they have no

probability distribution—just a price of zero.)

Players: Skeptic, Reality
Protocol:
K0 = 1.
FOR n = 1,2, . . . :

Skeptic announces Mn ∈ R.
Reality announces xn ∈ [−1,1].
Kn := Kn−1 + Mnxn.

Winner:
Skeptic wins if

(1) Kn is never negative and
(2) either limn→∞ 1

n

∑n
i=1 xi = 0 or limn→∞Kn = ∞.

Otherwise Reality wins.

Theorem. Skeptic has a winning strategy.
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Generalize further by letting another player set the prices on

each round.

Players: Forecaster, Skeptic, Reality
Protocol:
K0 = 1.
FOR n = 1,2, . . . :

Forecaster announces mn ∈ R.
Skeptic announces Mn ∈ R.
Reality announces xn ∈ [mn − 1, mn + 1].
Kn := Kn−1 + Mn(xn −mn).

Winner:
Skeptic wins if

(1) Kn is never negative and
(2) either limn→∞ 1

n

∑n
i=1(xi −mi) = 0 or limn→∞Kn = ∞.

Otherwise Reality wins.

Theorem. Skeptic has a winning strategy.
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The Idea of the Proof

Idea 1 Establish an account for betting on heads. On each

round, bet ε of the account on heads. Then Reality can keep

the account from getting indefinitely large only by eventually

holding the cumulative proportion of heads at or below 1
2(1+ ε).

It does not matter how little money the account starts with.

Idea 2 Establish infinitely many accounts. Use the kth account

to bet on heads with ε = 1/k. This forces the cumulative

proportion of heads to stay at 1/2 or below.

Idea 3 Set up similar accounts for betting on tails. This forces

Reality to make the proportion converge exactly to one-half.
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Averaging strategies replaces intersecting sets!

In the standard proofs, you are able to average a countable

number of strategies.

Insight into a century-old problem: We do not need the axiom

of continuity (countable additivity) reluctantly adopted by Borel

and Kolmogorov.

10



Game theory replaces measure theory.

• Mathematics: Classical probability theorems become

theorems in game theory (someone has a winning strategy).

• Philosophy: Cournot’s principle (an event of small

probability does not happen) becomes game-theoretic (you

do not get rich without risking bankruptcy).
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Jean Ville,

1910–1988, on

entering the École

Normale Supérieure.

If you never bet more than you have,

you will not get infinitely rich.

As Ville showed, this is equivalent

to the principle that events of small

probability will not happen.

We call both principles Cournot’s

principle.
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Infinitary and finitary versions of the theory

• The strong law of large numbers. Infinite and impractical:

You will not get infinitely rich in an infinite number of trials.

• The weak law of large numbers. Finite and practical: You

will not multiply your capital by a large factor in N trials.
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Part II. Defensive forecasting.

Good probability forecasting is possible.

• We call it defensive forecasting because it defends against a

portmanteau (quasi-universal) test.

• Your probability forecasts will pass this portmanteau test

even if reality plays against you.

Defensive forecasting is a radically new method, not

encountered in classical or measure-theoretic probability.
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Part II. Defensive Forecasting

1. Definition. A strategy for Skeptic is a test.

2. Theorem. Forecaster can beat any test.

3. Practical message. We can make a test that is passed only

if the probability forecasts are well calibrated.

4. Thesis. Good (well calibrated) probability forecasting is

possible.
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THESIS

Good probability forecasting is possible.

We can always give probabilities with good calibration and

resolution.

PERFECT INFORMATION PROTOCOL

FOR n = 1,2, . . .

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

There exists a strategy for Forecaster that gives pn with

good calibration and resolution.
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FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

1. Fix p∗ ∈ [0,1]. Look at n for which pn ≈ p∗. If the frequency

of yn = 1 always approximates p∗, Forecaster is properly

calibrated.

2. Fix x∗ ∈ X and p∗ ∈ [0,1]. Look at n for which xn ≈ x∗ and

pn ≈ p∗. If the frequency of yn = 1 always approximates p∗,
Forecaster is properly calibrated and has good resolution.
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FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.
Forecaster can give ps with good calibration and resolution no

matter what Reality does.

Philosophical implications:

• To a good approximation, everything is stochastic.

• Getting the probabilities right means describing the past
well, not having insight into the future.
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THEOREM. Forecaster can beat any test.
FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

• Theorem. Given a test, Forecaster has a strategy

guaranteed to pass it.

• Thesis. There is a test of Forecaster universal enough that

passing it implies the ps have good calibration and

resolution. (Not a theorem, because “good calibration and

resolution” is fuzzy.)
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The probabilities are tested by another player, Skeptic.

FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

A test of Forecaster is a strategy for Skeptic that is continuous
in the ps. If Skeptic does not make too much money, the
ps pass the test.

Theorem If Skeptic plays a known continuous strategy,
Forecaster has a strategy guaranteeing that Skeptic never
makes money.
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Why insist on continuity? Why count only strategies for

Skeptic that are continuous in the ps as tests of Forecaster?

1. Brouwer’s thesis: A computable function of a real

argument is continuous.

2. Classical statistical tests (e.g., reject if LLN fails)

correspond to continuous strategies.
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Skeptic adopts a continuous strategy S.
FOR n = 1,2, . . .

Reality announces xn ∈ X.
Forecaster announces pn ∈ [0,1].
Skeptic makes the move sn specified by S.
Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

Theorem Forecaster can guarantee that Skeptic never makes money.

We actually prove a stronger theorem. Instead of making Skeptic announce
his entire strategy in advance, only make him reveal his strategy for each
round in advance of Forecaster’s move.

FOR n = 1,2, . . .
Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0,1] → R.
Forecaster announces pn ∈ [0,1].
Reality announces yn ∈ {0,1}.
Skeptic’s profit := Sn(pn)(yn − pn).

Theorem. Forecaster can guarantee that Skeptic never makes money.
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FOR n = 1,2, . . .
Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0,1] → R.
Forecaster announces pn ∈ [0,1].
Reality announces yn ∈ {0,1}.
Skeptic’s profit := Sn(pn)(yn − pn).

Theorem Forecaster can guarantee that Skeptic never makes money.

Proof:

• If Sn(p) > 0 for all p, take pn := 1.

• If Sn(p) < 0 for all p, take pn := 0.

• Otherwise, choose pn so that Sn(pn) = 0.
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Research agenda. Use proof to translate tests of Forecaster

into forecasting strategies.

• Example 1: Use a strategy for Sceptic that makes money if Reality
does not obey the LLN (frequency of yn = 1 overall approximates
average of pn). The derived strategy for Forecaster guarantees the
LLN—i.e., its probabilities are calibrated “in the large”.

• Example 2: Use a strategy for Skeptic that makes money if Reality
does not obey the LLN for rounds where pn is close to p∗. The derived
strategy for Forecaster guarantees calibration for pn close to p∗.

• Example 3: Average the preceding strategies for Skeptic for a grid of
values of p∗. The derived strategy for Forecaster guarantees good
calibration everywhere.

• Example 4: Average over a grid of values of p∗ and x∗. Then you get
good resolution too.
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Example 3: Average strategies for Skeptic for a grid of values

of p∗. (The p∗-strategy makes money if calibration fails for pn

close to p∗.) The derived strategy for Forecaster guarantees

good calibration everywhere.

Example of a resulting strategy for Skeptic:

Sn(p) :=
n−1∑

i=1

e−C(p−pi)
2
(yi − pi)

Any kernel K(p, pi) can be used in place of e−C(p−pi)
2
.
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Skeptic’s strategy:

Sn(p) :=
n−1∑

i=1

e−C(p−pi)
2
(yi − pi)

Forecaster’s strategy: Choose pn so that

n−1∑

i=1

e−C(pn−pi)
2
(yi − pi) = 0.

The main contribution to the sum comes from i for which pi is

close to pn. So Forecaster chooses pn in the region where the

yi − pi average close to zero.

On each round, choose as pn the probability value where

calibration is the best so far.
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Example 4: Average over a grid of values of p∗ and x∗. (The
(p∗, x∗)-strategy makes money if calibration fails for n where
(pn, xn) is close to (p∗, x∗).) Then you get good calibration and
good resolution.

• Define a metric for [0,1]×X by specifying an inner product space H
and a mapping

Φ : [0,1]×X → H

continuous in its first argument.

• Define a kernel K : ([0,1]×X)2 → R by

K((p, x)(p′, x′)) := Φ(p, x) ·Φ(p′, x′).

The strategy for Skeptic:

Sn(p) :=
n−1∑

i=1

K((p, xn)(pi, xi))(yi − pi).

27



Skeptic’s strategy:

Sn(p) :=
n−1∑

i=1

K((p, xn)(pi, xi))(yi − pi).

Forecaster’s strategy: Choose pn so that

n−1∑

i=1

K((pn, xn)(pi, xi))(yi − pi) = 0.

The main contribution to the sum comes from i for which

(pi, xi) is close to (pn, xn). So we need to choose pn to make

(pn, xn) close (pi, xi) for which yi − pi average close to zero.

Choose pn to make (pn, xn) look like (pi, xi) for which we

already have good calibration/resolution.
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Continuity rules out Dawid’s counterexample

FOR n = 1,2, . . .
Skeptic announces continuous Sn : [0,1] → R.
Forecaster announces pn ∈ [0,1].
Reality announces yn ∈ {0,1}.
Skeptic’s profit := Sn(pn)(yn − pn).

Reality can make Forecaster uncalibrated by setting

yn :=

{
1 if pn < 0.5

0 if pn ≥ 0.5,

Skeptic can then make steady money with

Sn(p) :=

{
1 if p < 0.5

−1 if p ≥ 0.5,

But if Skeptic is forced to approximate Sn by a continuous function of p,
then the continuous function will have a zero close to p = 0.5, and so
Forecaster will set pn ≈ 0.5.
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THREE APPROACHES TO FORECASTING

FOR n = 1,2, . . .
Forecaster announces pn ∈ [0,1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.

1. Start with strategies for Forecaster. Improve by averaging (prediction
with expert advice).

2. Start with strategies for Skeptic. Improve by averaging (approach of
this talk).

3. Start with strategies for Reality (probability disributions). Improve by
averaging (Bayesian theory).
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