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Artificial intelligence has its roots in symbolic logic, and for many

years it showed little interest in probability.  But during the past decade,

disinterest has been replaced by engagement.  The flowering of expert

systems during the 1980s strengthened ties between AI and areas of

engineering and business that had long used probability and led to hybrid

rule-based and probabilistic expert systems for a plethora of engineering

and business problems, including speech recognition, vision, site selection,

and process control.  At the same time, probabilistic and statistical thinking

has penetrated many areas of AI theory, including learning (Vapnik 1983,

Valiant 1991), planning (Dean and Wellman 1991), and the evaluation of
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artificial agents (Cohen 1990), to the point that AI has emerged as a

contributor to the theory of probability and statistics.

What can the new role for probability in AI teach us about the

philosophy of probability?  Do the old interpretations of probability do

justice to the new applications?  Do the new applications justify old claims

for the breadth of applicability of probability, or do they clarify limitations

on probability?

The books under review provide an excellent starting point for

assessing the philosophical implications of the growth of probability in AI.

Judea Pearl is the single most influential advocate of probability in AI, and

Probabilistic Reasoning in Intelligent Systems has been a major vehicle for

this influence.  Fahiem Bacchus is newer to the field, but his Representing

and Reasoning with Probabilistic Knowledge represents the first real effort

to deal with the distinction between subjective and objective probabilities

within the logic-based tradition of AI.  The third book, Causation,

Prediction, and Search, represents one of the first fruits of the AI

developments for the philosophy of statistics:  three Carnegie-Mellon

philosophers, Peter Spirtes, Clark Glymour, and Richard Scheines, inspired

by can-do AI attitudes, challenge the conventional skepticism of

statisticians about proving causation from correlation.

Because of its scope and influence, Pearl's book deserves special

attention.  Moreover, it is difficult to appreciate Pearl's philosophy of

probability without understanding the context and practical importance of

his work.  So I will begin by describing the technical accomplishments of

Pearl's book and by assessing his vision in the light of recent developments.
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Then I will turn to the other two books.  I will conclude by returning to my

general questions about the scope and meaning of probability.

Pearl's Contributions.  Probabilistic Reasoning in Intelligent

Systems is a vigorous, sometimes confusing, always engaging mixture of

philosophical, practical, and mathematical ideas.  As Pearl says in his

preface, there are “pointers to human-style reasoning in the midst of

technical discussions, and references to computational issues in the midst of

philosophical discussions.”  He explains that he adopted this style because

he wanted to convey his own sense of excitement to his readers.  Having

talked with many of those readers, I can testify to his success.1

Pearl turns to probability to pursue a number of AI’s goals.  He wants

to provide a model of human reasoning and use it in a way that is

transparent to humans.  In particular, he wants to generate verbal

explanations even when the reasoning is numerical.  He wants the

computational efficiency needed for complex reasoning tasks.  And he

wants his methods to look familiar to those trained in AI—he wants to relate

what he is doing to established ideas about knowledge representation,

distributed processing, object-oriented programming, and constraint

propagation.  He is able to achieve these disparate goals by emphasizing

graphical representations of probability distributions.

Pearl uses both undirected and directed graphs to represent

conditional independence structures for multivariate probability

distributions.  The nodes of these graphs represent variables and the links

(in the undirected case) or arrows (in the directed case) represent

dependencies.  More precisely, missing links or arrows represent
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conditional independence relations.  In the undirected graphs, separation

means conditional independence; if two sets of variables are separated by a

third, then they are conditionally independent given the third.  In the

directed graphs, the representation is more complex.  The directed graph is

assumed to have no directed cycles, so that the variables can be numbered

(say X1,...,Xn) in such a way that all arrows are from lower to higher

numbers (i<j whenever Xi → Xj); we then assume that each Xi is

independent of {X1,...Xi-1} given the subset of {X1,...Xi-1} with arrows to Xi.

This is equivalent, as it turns out, to requiring that each variable be

independent, given its ‘parents’, of its ‘non-descendants.’  Pearl is most

interested in directed graphs, because he believes they can be used to

represent the most powerful kind of human reasoning—causal reasoning.

The idea of using separation in undirected graphs to mean conditional

independence was well established in probability before Pearl; it is the basis

of the theory of Markov fields.  Pearl's use of directed graphs is more

original.  In retrospect, we can see such graphs embedded in Sewall

Wright’s method of path analysis, which dates back to the 1930s, and in the

tradition of ‘linear structural models’ that it helped establish.  But Wright

and his successors did not thoroughly analyze their directed graphs in terms

of conditional independence, and Pearl’s analysis has greatly clarified one

interpretation of these graphs and widened their scope of application.

Pearl brings a novel viewpoint to mathematical probability, raising

and sometimes answering whole new classes of questions.  The standard

framework for mathematical probability, inspired by statistical problems,

begins with a fixed probability space and defines variables in terms of that
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space.  Pearl explores frameworks more natural for computer scientists.  For

example, he considers variables names (what are called ‘attributes’ in some

branches of computer science) and asks about the possibilities for

constructing a probability space for variables with these names.  He asks,

for example, what constellations of conditional independence relations

among the variables are possible.  This is a constructive approach:  we

begin with a sketch and then fill in the details.  And it indicates a direction

in which mathematical probability needs to grow in order to be more useful

in computer science.

A substantial portion of Probabilistic Reasoning in Intelligent

Systems is devoted to a message-passing scheme for carrying out various

probabilistic computations within a directed probability graph.  This scheme

is perhaps the most original and influential idea in the book.  In the simplest

form of the scheme, the directed probability graph is thought of as a

computer architecture, and each variable is thought of as a processor.  Each

variable communicates its own prior probabilities to its daughters (Xj is a

daughter of Xi when Xi∅ Xj), and gets likelihoods back.  These local and

relatively simple messages enable the variables to compute their own

posterior probabilities, and similar messages are used to find the likeliest

joint configurations of the variables.  This scheme achieves a number of

Pearl's goals.  Since the prior probabilities and likelihoods have verbal

interpretations, a qualitative trace of the computation can often, in simple

cases, be translated into a verbal explanation.  At the same time, the

computations for complex cases (involving many variables) are made

manageable (reduced to computations involving only a few variables at a
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time).  And the scheme incorporates or extends ideas that had been

developed within AI without reference to probability.  It is similar to

message-passing schemes for inheritance hierarchies and other semantic

nets, and it can easily be programmed in an object-oriented language.

Though Pearl emphasizes the subjective interpretation of probability,

he is also interested in the case where a person bases his or her beliefs on

experience or statistical data, and hence he is interested in understanding the

extent to which and the computational ease with which the structures

represented by his directed graphs can be discovered or verified in data.

Suppose, for example, that we use data to make a list of the conditional

independence statements satisfied by a collection of variables.  If these

statements are consistent with some directed graph, is there a

computationally efficient (say polynomial in the number of variables and

the number of independence statements) algorithm for identifying this

graph?  Pearl made limited progress on this and similar questions in

Probabilistic Reasoning in Intelligent Systems, but as I shall emphasize later

in this review, much more has been accomplished in recent years, both by

Pearl in collaboration with his student T.S. Verma, and by others, especially

Spirtes, Glymour, and Scheines.

Another important contribution of Probabilistic Reasoning in

Intelligent Systems is its discussion of non-monotonic and default logic.

These terms refer to formal reasoning systems, developed in AI in the

1980s, which allow conclusions to be retracted in the light of later

information.  The proponents of these systems have sought to avoid

probabilistic interpretations, but Pearl shows that such interpretations can be
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helpful in two circumstances.  The first is where reasoning is based on the

idea of ‘almost all’; in this case a formalization in terms of relative

frequency or probability close to one leads to simple inference rules that

were first formulated by Adams (1975).  The second is where a causal

model is involved; Pearl shows that in this case defaults can be handled

more sensibly if they are labelled as causal (when they reason from cause to

effect) or evidential (when they reason from from effect to cause), just as

they often are in a directed probability graph.

I should mention yet one more contribution in Probabilistic

Reasoning in Intelligent Systems: Pearl's interpretation and critique of the

Dempster-Shafer theory, an alternative to Bayesian probability that I have

promoted over the course of two decades.  I will leave the issues raised in

this critique aside in this review; they have been debated in detail by Pearl,

myself, and others in the September 1990 (Vol. 4, no. 5/6) and May 1992

(Vol. 6, no. 3) issues of the International Journal of Approximate

Reasoning.

Assessment.  In the seven years since Probabilistic Reasoning in

Intelligent Systems appeared, Pearl and others have developed many of its

ideas further, and their connections to established or developing ideas in

other areas have become clearer.  With the hindsight this makes possible, I

would like to give my own current assessment of the book—my own

outline, as it were, for a revised edition.2

In many ways, my revision would make the book less exciting.  In

place of Pearl's attempt to show how one unified approach to probabilistic

reasoning can meet all our goals, I would ask for a sorting out.  Directed
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graphs seem to be more successful for some of Pearl's purposes than for

others, and more successful in some problems than in others.  Where do

these relative advantages lie, and what are the alternatives when directed

graphs are not so successful?  Similarly, Pearl's conditional independence

mathematics seems to be more relevant to some applications than others.

What exactly is its role?  Pearl's technical contributions would survive this

sorting out, but they would emerge looking more like a sharpening of some

of the items in our probabilistic and statistical toolboxes than like a general

way of looking at reasoning.

Pearl's conditional-independence mathematics actually play little role

in the current practice of probabilistic expert systems.  Typically, the

construction of such systems does not start with a random assortment of

conditional independence relations, whose implications and representation

we then investigate using Pearl's algorithms.  Instead, as Pearl himself

points out, we look at the variables in some order X1,...,Xn, chosen in

accordance with our a priori judgments of possible causal influence, and we

subjectively assess probabilities for each Xi conditional on a subset of

{X1,...,Xi-1}.  By  multiplying these conditional probabilities, we construct a

probability distribution for the whole set of variables.  This multiplication

expresses implicit judgments of conditional independence, for in the

constructed distribution, Xi is conditionally independent of {X1,...,Xi-1}

given the subset, but we need not emphasize this fact or investigate what

other conditional independence relations hold.  Instead, we can get on with

the practical tasks:  using observations to monitor and update probabilities
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in the model and computing probabilities and expectations for particular

individuals.

The problem of monitoring and correcting subjectively assessed

probabilities in a directed graphical model is a complicated one, and has

been receiving increasing attention from statisticians (for a good review, see

Spiegelhalter et al. 1993).  This has produced some new ideas for statistics;

most importantly, it has brought to the fore new ideas about ‘prequential’

monitoring that significantly generalize the traditional framework for

statistical testing (see Dawid 1984 and Vovk 1993).  But it has also brought

Pearl's ideas into much closer contact with the statistical literature.  After we

have grappled at length with problems of monitoring and estimation in

directed graphical models, we are apt to think of these graphs as one more

kind of statistical model.

Another important area of progress has been in computing prior and

posterior probabilities for directed graphical models.  Pearl’s message-

passing scheme did this for simple cases in a way that allows us to interpret

many of the auxiliary quantities used in the course of the computation as

probabilities or likelihoods, and this permitted him to translate the

computation into a verbal explanation.  But this works well only if the graph

forms a tree.  It turns out that in more densely connected graphs, the desire

for verbal interpretation conflicts with the goal of computational efficiency,

which seems to be better served by methods most easily understood in terms

of undirected graphs (see, e.g., Jensen et al. 1990).  These methods still use

message-passing, but the messages can no longer be interpreted in terms of

prior probabilities and likelihoods.  This decoupling of verbal explanation
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from computation deprives us of some of the excitement we found in Pearl's

text, but it is consistent with progress in experimental pschology.  Human

beings apparently do not always use the same system for verbal reasoning

and recognition that they use for more computationally intensive tasks—the

system we use to recognize objects, for example, seems to be distinct from

the system we use to navigate their three-dimensional geometry.

The passage of time has also made more salient a number of other

connections between Pearl’s modelling and computational ideas and similar

ideas in other domains.  Most striking in this regard is the mushrooming use

of Gibbs sampling in Bayesian statistics.  An old idea from statistical

mechanics, Gibbs sampling has long been used in physics and operations

research, but it was brought to the attention of statisticians primarily by

Pearl's advocacy of its use in directed graphical models and by Stuart and

Don Geman’s work (Geman and Geman 1984) on undirected graphical

models for image recognition.  As it turns out, Gibbs sampling has been of

limited use in expert sytems, because its requirement that probabilities

always be positive rules out the categorical or logical relationships that are

often expressed in these models.  But the method is enjoying great success

in image recognition, where each pixel of the picture is a variable, and in

Bayesian statistics, where posteriors may be difficult to compute by

integration even when there are relatively few variables (Gelfand and Smith

1990, Gelman and Rubin 1993, Geyer 1993).

Time has also revealed the close similarity between Pearl’s message-

passing methods and the computational methods used for hidden Markov
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models in speech recognition (Rabiner 1989) and other engineering

problems and for the Kalman filter in control problems (Dempster 1990).

In view of all these connections, an up-to-date treatment of Pearl’s

topic would need to take a broader view its relation to other widely used

probabilistic methods in engineering and science.  This, in turn, would

broaden the philosophical basis of the discussion, for while Pearl

emphasizes the subjective interpretation of his models, related models are

widely used in non-Bayesian as well as Bayesian contexts.  Hidden Markov

models for speech recognition, for example, are usually treated as objective

models and tested and compared in the traditional sense of non-Bayesian

statistics.

This review of recent progress has been limited to probability, but

there is also vigorous continuing work on non-probabilistic and quasi-

probabilistic methods for handling uncertainty in expert systems.  In

particular, it has been shown that many of the computational methods

developed for probabilitistic systems, especially the message-passing

schemes, can also be used by non-probabilistic systems.  Shenoy and Shafer

(1990) have analyzed axiomatically the abstract structure that is common to

systems that can use such schemes.

Bacchus on Statistical and Propositional Probability.  Symbolic

logic has probably played as important a role in philosophy as it has in AI,

but AI researchers often approach logic with an optimism beyond the

wildest dreams of philosophical logicians; they imagine that logical

deduction can serve as a tool for commonsense reasoning, and they treat the
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completeness results of first order logic as reassurance about this

possibility.

Fahiem Bacchus, in Representing and Reasoning with Probabilistic

Knowledge, has constructed a synthesis of logic and probability in this

spirit.  And he has done so in a way that makes room for both frequencies,

which he calls statistical probabilities, and degrees of belief, which he calls

propositional probabilities.

Bacchus treats statistical probabilities by adding to first-order logic

the facility to form terms that refer to the frequency with which a formula is

satisfied.  These terms can then be combined in other formulas, using

arithmetic relations and logical connectives.  Conditional frequencies (the

frequency with which one formula is satisfied when another is satisfied) are

also allowed.  This logic has both a semantics—a model is a domain

together with a measure—and an axiomatization, which is complete with

respect to denumerable domains.

Inspired by earlier work by Halpern (1989), Bacchus adds to his

statistical logic ‘propositional’ probability and expectation operators, which

can again be used to form new terms that enter into new formulas.  The

resulting logic can be used to discuss probabilities for arbitrary

propositions, including propositions that involve statistical assertions.

Bacchus puts a rather Carnapian interpretation on his ‘propositional’

probabilities.  They are hypothetical rather than actual degrees of belief.  An

actual subjective probability measure enters the story only as part of a

model for interpreting the logic; subjectivity is thus relegated to the

semantics of the logic.  We are supposed to use the logic to reason about our
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probabilities before committing ourselves to values for them, just as we

might use unadorned first-order logic to reason about sentences before

committing ourselves to an interpretation of the predicates in the sentences.

Bacchus provides an axiomatization for his combined logic, but his

real interest lies not in reasoning within the logic but in using it in the spirit

in which AI writers on default and non-monotonic reasoning have

previously used ordinary first-order logic.  That is to say, he is interested in

principles for jumping to conclusions.  The principles that he advances are,

of course, the familiar ones:  the principle of direct inference (which

philosopher’s are accustomed to calling Miller’s principle) and various

principles for narrowing reference classes.

The originality and importance of Bacchus’s work lies, I think, in the

simple fact that he has insisted on taking statistical knowledge seriously

within the framework of symbolic logic.  This provides a clear challenge to

the many logicians, in both philosphy and AI, who have sought to avoid

statistical knowledge or even to substitute logic for it.  Bacchus’s logic is a

logic in the traditional sense, and it is comprehensive as a treatment of

probabilty; it encompasses both statistical knowledge and belief in a

straightforward way.  So it is natural to see formal logics that deal with

frequency or belief in a more restricted way as subsets of Bacchus’s logic.

We can apply this attitude, for example, to the logics of probability

quantifiers, developed in the philosophical literature by Keisler (1977),

Hoover (1978) and Vickers (1988).  These authors aim to capture a logical

conception of probability distinct from any frequency conception, but it is

hard to see how the intutitions that justify their logics can be restrained from
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leading us to Bacchus’s more comprehensive logic, at which point we

clearly have a statistical semantics.  Similarly, as Bacchus himself

emphasizes, the Hintikka-style logic for fallible and recursive belief (KD45

or weak S5 with consistency) is a subset of Bacchus’s logic, and its belief

operator can be derived from Bacchus’s propositional probability operator.

Thus Bacchus’s logic provides a framework within which to evaluate

debates between those who treat default reasoning probabilistically and

those who would treat it in terms of self-referential belief.

Does Representing and Reasoning with Probabilistic Knowledge

advance the project of implementing probability in artificial intelligence?

This is doubtful; being an extension of first-order logic, Bacchus’s logic is

no more implementable than first-order logic is.  More than sensitive to this

point, Bacchus argues at length that formal logics are essential tools for

analyzing knowledge, even if they do not give us practical ways to

manipulate it.  Like many other logicians working in AI, Bacchus claims

that he is showing us what we should do in principle.  We cannot do it in

practice, but it provides a standard of coherence to our practice.

This last argument does not make sense to me; I do not see how the

internal coherence of any logic can suffice to make it a standard for practice

or a useful tool for analyzing our knowledge.  A logic can be relevant to our

knowledge only if our knowledge takes the particular form the logic treats.

So Bacchus's logic does nothing to get us past the traditional objections to

the generality of probability.  Before it makes sense to use his logic we must

have both a well-defined reference class that makes it meaningful to talk

about frequencies and well-defined betting rates that make it meaningful to
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talk about subjective probabilities.  There must be reference in application

as well as in semantics.  In my judgment, real progress in integrating

probability and logic will require the use of a constructive approach to

logic, such as Per Martin Löf’s type theory, which integrates syntax and

semantics (Ranta 1994).

Causation from Correlation?  Spirtes, Glymour, and Scheines are

philosophers, but they are Carnegie-Mellon philosophers.  In their treatment

of probability and causation they have largely abandoned the philosophical

tradition associated with Reichenbach and Salmon in favor of ideas coming

from statistics and artificial intelligence.  Their earlier book (Glymour,

Scheines, Spirtes, and Kelly 1987) showed how to use partial correlations

from data to search for structural or causal models.  The book was strongly

influenced by the AI tradition associated with Herbert Simon, with its

emphasis on search, by the early psychometricians, especially Charles

Spearman, and by the current use of linear structural modelling in

psychology and sociology.  It was a very literate book, and it attracted

considerable attention, but many would-be readers, myself included, were

unable to make sense of its mathematical foundations.  In retrospect, what

was missing was Pearl's conditional-independence ideas, which provide a

clear mathematical definition, at least, of what we are searching for.  Their

new book, Causation, Prediction, and Search, is founded on Pearl's

conditional-independence mathematics and thus is able to take a large step

towards a deeper and more coherent understanding of causal modelling.

Causation, Prediction, and Search is aptly placed in Springer's

Lecture Notes in Statistics series.  It is as unpolished as one would expect
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lecture notes to be, and though its authors are philosophers, it is weak in its

philosophical explication of causation.  Its greatest contributions are its

algorithms for finding directed graphical models that fit the conditional-

independence structure observed in data and its application of these

algorithms to real examples.

The algorithms that form the backbone of Causation, Prediction, and

Search are the product of interaction between its authors and Verma and

Pearl, whose work is reported in Pearl and Verma (1991) and Verma and

Pearl (1992).  I have not sorted out the relative contributions of the two

research groups, but I can report the basic ideas of the algorithms.

We start with the assumption that the variables with which we are

working can be put into a directed graph (initially unknown to us) in which

arrows have a subtle causal interpretation.  The subtlety lies in the fact that

we must interpret groups of arrows rather than individual arrows.  The

arrows pointing to a given variable X indicate that the variables from which

they point—X’s parents—interact to influence X, while earlier ancestors

have only an indirect influence on X.  This leads to the conditional

independence relations we discussed earlier:  since the influence of

ancestors is through the parents; X is conditionally independent of ancestors

(and other non-descendants as well) given the parents.  We further assume

that these causal conditional independence relations and the further

conditional independence relations that they imply (which can be listed

using Pearl's graphical criterion of ‘d-separation’) are the only conditional

independence relations obeyed by the joint distribution of the variables;
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there are no other causal relations, and conditional independence does not

happen by accident, with no causal explanation.

Given these assumptions, can we identify the directed graph from

data—i.e., from observations of all the variables for a number of

individuals?  In principle, we sometimes can, if we observe enough

individuals.  With enough observations, we could identify all the

conditional independence relations that hold among the variables, and we

could then identify the graph or graphs that imply exactly these conditional

independence relations—all of them and no others.  It seems doubtful,

however, that this project could really be carried out.  There are so many

conditional independence relations involved and so many potential graphs

that merely counting them all may be computationally impossible, and the

statistical problem of interpreting so many simultaneous dependent tests of

independence appears insoluble.  Much to the surprise of statisticians such

as myself, however, Pearl, Verma, and the Carnegie-Mellon philosophers

have shown that the problem often is soluble at a practical level.  It is true

that it is impractical to give simultaneous significance levels for the tests of

independence, and it is also true that we never have enough data to test

conditional independencies that involve conditioning on many variables, but

if the graph we are trying to identify is relatively sparsely connected, we

take a relaxed attitude towards the significance level, and we are shrewd in

our choice of which conditional indpendencies to test first, we can often

idenify the graph.  And our ability to identify it improves dramatically if we

have a priori knowledge that constrains the possible causal relations.
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The algorithms reported in Causation, Prediction, and Search can

give several kinds of results.  We may find a unique directed graph that fits

the data.  We may find several directed graphs that fit the data—several

directed graphs that imply exactly the same conditional independence

relations that we find in the data.  We may be told that there is no directed

graph that implies exactly the conditional independence relations found in

the data, but that the addition of more variables to the graph—unobserved or

latent variables—could remedy the situation.  Or we may be told that it is

impossible to reproduce observed conditional independencies with a

directed graph even if we allow latent variables.

It should be emphasized that the progress reported in Causation,

Prediction, and Search has depended on sidestepping a number of

problems, especially the problem of providing a probabilistic interpretation

for the simultaneous tests of significance.  Statisiticians have been so

impressed by these problems, and so chastened by experience with the

nonsense that can result from cavalier use of simultaneous tests, that they

have counseled against ever expecting to prove causation from correlation.

Computer science has produced new attitudes, which may be more

approrpriate when the observations number in the thousands rather than the

tens or hundreds.  For computer scientists, problems related to the fallibility

of individual tests seem secondary; the pressing question is whether we

have time to perform enough tests to draw a conclusion.  In addition to the

progess in causal inference that we are considering here, the new computer-

science attitudes have also led to several other new branches of statistical

theory, including Vapnik's work on identifying functions, Valiant's work on



19

learning, and the whole research community that has recently grown up

under the rubric of “computational learning theory.”

The mathematics of Causation, Prediction, and Search is unpolished,

especially when it delves into the possibilities for latent variables.  And it is

a rather unfamiliar mathematics for the applied statisticians who will be

most interested in the results.  Consequently, it make take considerable time

for the new methods to be integrated into statistical practice.  In the long

run, however, I think that this approach to causal search will contribute to

greater understanding and discipline in the use of factor analysis.

From the philosophical viewpoint, there remains a huge gap in the

argument.  This is the causal intepretation of the unknown directed graph

for which we are searching.  What do we mean when we say that X is

directly caused by its parents and only indirectly caused by earlier variables,

and how do we get from an answer to this question to the idea of conditional

independence?  Chapter 3 of Causation, Prediction, and Search is devoted

to this question, but it is the weakest chapter of the book, and in the end it

takes refuge in the contention that we should go aheand and talk about

causation even if we do not understand it.  After all, we have done a lot with

probability, and no one understands it either.

In recent work (Shafer 1995), I have made some suggestions of my

own for closing the gap between causation and conditional independence.

These suggestions begin with the contention that it is more natural to talk

about causation in the context of an event tree—a tree that lays out the

possible ways that a sequence of experiments might come out.  (Perhaps we

spin a fair coin, then roll a fair die or draw a card depending on how the flip
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comes out, etc.  Or perhaps there is an experiment determining the

occupations of a person’s parents, then another experiment, the probabilities

for which depend on how the first experiment comes out, determining the

person’s education, etc.)  It is natural and unmysterious to say that a certain

event, or the value of a certain variable, can be caused by certain

experiments in an event tree—or more precisely, by certain outcomes of

these experiments.  If we do not see the the experiments or the tree—if

instead we observe only certain events or variables—then we cannot talk so

directly about causation.  But we can make less direct statements that lead to

conditional independence for variables.  One key concept is ‘tracking.’  We

say that a set of variables A tracks a variable X if at all the points in the tree

where A is resolved in a given way (i.e., points where the variables in A

come to have certain definite values), the probabilities for X are always the

same.  It turns out that if A tracks X and if after A’s determination the

probabilities for X do not change at the same time as the probabilities for

the variables in another set B, then X and B are conditionally independent

given A.  Thus the conditional independence relations found in directed

graphs can be interpreted in terms of qualitative conditions (when

probabilities change) on an unseen event tree.  These qualitiative conditions,

in turn, can be interpreted as statements about causation; they say something

indirectly about the experiments which influence the happening of events

and the values of variables.

The interpretation in terms of event trees can be used to make precise

Reichenbach’s principle of the common cause (when events or variables are

correlated, there is always at least one experiment that affects both), and it
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also permits an interpretation of Reichenbach’s contention that the direction

of time can sometimes be deduced from statistics.  If we suppose that the

conditional independencies within a family of variables result from the

process of tracking that I have just described—then the directed graphs for

the family produced by the Pearl-Verma-Spirtes-Glymour-Scheines

algorithms imply constraints on the order in which the values of the

variables are determined.

The Interpretation of Probability in AI Systems.   In Probabilistic

Reasoning in Intelligent Systems, Pearl argues for a synthesis of subjective

and objective probability—what he calls in his preface a ‘computation-

minded’ interpretation of probability.  For Pearl, probability is initially

subjective, but it follows the rules for frequencies for two reasons:  because

we want to match our beliefs with our experience, and because the rules for

frequency are unique in the flexible way in which they handle dependency

information.

Pearl does not give much more argument or explanation than this for

his computation-minded interpretation, but I believe that the development of

the theory of probabilistic expert systems has given it a deeper justification.

As I mentioned above, probabilistic expert systems turn out to be a natural

setting for the ideas of Dawid and Vovk on the evaluation of probabilistic

predictions.  The probabilities in a system may initially be subjective, but as

we use the system, we have more and more opportunity to evaluate and

improve its probabilistic predictions.  These predictions usually do not

involve the identical and independent trials that inspired the frequency

interpretation, but they can nevertheless be scored, using a proper scoring
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rule.  Scores for successive predictions, even successive predictions

involving different questions, can be added, and as Dawid and Vovk show,

the cumulative score should, if the probability predictions are valid, follow a

law of large numbers and even a central limit theorem.  This implies a

limited frequency interpretation of the probabilities:  if we make successive

predictions, each hedged with a probability, the average probability will

approximate the proportion of correct predictions.  But this limited

frequency interpretation is embedded in a framework that is subjective

inasmuch as it describes the epistemic situation of a particular system; the

frequency is relative to the events on which the system ventures to bet and it

expresses limits on the system’s ability to predict these events; it is not

relative to a reference class defined independently of the system.

When we turn to the task of inferring conditional independencies

from data, the subjective aspect of probability recedes.  Now we are in the

world of statistics, trying to infer probabilistic structure from data, and we

are not even doing so in a Bayesian way.  Spirtes, Glymour, and Scheines

accordingly adopt a propensity interpretation for the probabilities they are

investigating.  Interestingly, however, the event-tree story that I sketched

above brings us back to the predictive framework.  The event tree is not

observed by us, but in order to make sense of the probabilities in this tree,

we must consider an ideal observer whose knowledge unfolds as events

move down the tree (Shafer 1993).  Indeed, event trees provide a general

framework for the Dawid-Vovk theory of probabilistic prediction.

The interaction of probability with AI obviously has not produced a

new consensus about the meaning of probability.  All the traditional
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interpretations are now being espoused or used in various ways within AI.

We see probabilistic expert systems touted as an application of purely

subjective probability, we see the statistical methods emerging from AI used

with a propensity interpretation, and we see logics intended to make room

for both frequencies and beliefs.  But for my own part, I see the ingredients

for a new synthesis, a computation-minded and prediction-minded

interpretation of probability that recognizes both the belief and frequency

aspects of the same system of probabilities, and that sees in this dual role a

necessary condition for the successful application of mathematical

probability to reasoning tasks.  Different applications may emphasize more

the objective or subjective aspect of mathematical probability, but no

application can do without both, and when there is no way to bring the two

together, we are outside the domain where mathematical probability is

useful.

NOTES

Research for this essay has been partially supported by the National

Science Foundation through grant #SBE9213674.  The essay has also

benefited from the author’s participation in a seminar on probabilistic

causation in the Department of Philosophy at Princeton University.  The

author would like to acknowledge the contributions of the other

participants:  Dick DeVeaux, Adam Grove, Gil Harman, Paul Holland, Dick

Jeffrey, and Bas van Fraassen.

1  In the spirit of full disclosure, I should mention that I have enjoyed

a direct professional relationship with Pearl.  The most notable fruit of this
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relationship is a jointly edited book of readings, Readings in Uncertain

Reasoning, published by Morgan Kaufmann in 1990.

2  The second revised printing, published in 1991, is not a major

revision; it retains the page numbering of the 1988 edition.  It does,

however, give many references to more recent work.
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