Testing by Betting

Glenn Shafer
Royal Statistical Society Discussion Meeting

Rutgers University
9 September 2020

How can you test probabilistic predictions?

Bet against them.

Test statistical hypotheses the same way.

- New use of likelihood ratios.
- Alternative to power.

Testing pundits and weather forecasters

Changing probabilities for Democratic candidate

Let K be your investment (the amount you risk), and let G be your net gain. Suppose $\mathbf{E}(G)=0$, but K is also random and

$$
\operatorname{Cov}\left(\frac{1}{K}, G\right)>0
$$

Because $\mathbf{E}(G)=0$, this reduces to

$$
\mathbf{E}\left(\frac{G}{K}\right)>0
$$

You can create this situation by betting more when you are behind.

So testing by betting requires that the amount you risk be fixed at the outset.

Risk is random: The magic of the d'Alembert

Harry Crane and Glenn Shafer

Working Paper \#57
www.probabilityandfinance.com

Predictions for the NBA
(National Basketball Association) championship

March 12 was the last update before the season was suspended.

January 7 March 12

$\underline{\text { Bucks }}$	25%	20%
$\underline{\text { Clippers }}$	19%	26%
$\underline{\text { Lakers }}$	17%	27%
$\underline{76 e r s}$	17%	10%
$\underline{\text { Rockets }}$	12%	7%
$\underline{\text { Raptors }}$	3%	2%
$\underline{\text { Celtics }}$	3%	6%
$\underline{\text { Nuggets }}$	2%	1%
$\underline{\text { Mavericks }}$	2%	$<1 \%$

Testing by betting for statisticians

Hypothesis: P describes random variable Y.

Question: How do we use $Y=y$ to test P ?
Conventional answer:

- Choose significance level α, say 0.05.
- Choose E such that $P(E)=0.05$.
- Reject P if $y \in E$.

Hypothesis: P describes random variable Y.

Question: How do we use $Y=y$ to test P ?

Conventional answer:

- Choose significance level α, say 0.05 .
- Choose E such that $P(E)=0.05$.
- Reject P if $y \in E$.

Betting interpretation:

- Put $£ 1$ on E.
- Get back $£ 0$ if E fails.
- Get back $£ 20$ if E happens.
- You multiplied your money by a large factor.
- This discredits P.
- What better evidence could you have?

Question: How do we measure the strength of evidence against P ?

Conventional answer:

- Use a test statistic to define a test for each $\alpha \in(0,1)$.
- The p-value is the smallest α for which the test rejects.
- The smaller the p-value, the more evidence against P.

Too complicated!

Question: How do we measure the strength of evidence against P ?

Betting alternative:

Conventional answer:

- Use a test statistic to define a test for each $\alpha \in(0,1)$.
- The p-value is the smallest α for which the test rejects.
- The smaller the p-value, the more evidence against P.
many different amounts
- Such a bet is a function $S(Y)$.
- Choose S so that $E_{P}(S)=1$.
- Pay $£ 1$ and get back $£ S(y)$.
- The larger $S(y)$, the more evidence against P.

Call $S(y)$ the betting score.

This is the factor by which you multiplied your money.

If $E_{P}(S) \neq 1$, betting score is

$$
\frac{S(y)}{E_{P}(S)}
$$

Likelihood Ratios

A betting score, as just defined, is the same thing as a likelihood ratio.

- A bet S is a function of Y satisfying $S \geq 0$ and $\sum_{y} S(y) P(y)=1$.
- So $S P$ is also a probability distribution. Call it the alternative Q.
- But $Q(y)=S(y) P(y)$ implies $S(y)=Q(y) / P(y)$.
- A bet against P defines an alternative Q and the betting score $S(y)$ is the likelihood ratio $Q(y) / P(y)$.

Conversely, if you start with an alternative Q, then Q / P is a bet.

Proof:

$$
\begin{aligned}
\frac{Q(y)}{P(y)} & \geq 0 \text { for all } y . \\
E_{P}\left(\frac{Q}{P}\right) & =\sum_{y} \frac{Q(y)}{P(y)} P(y)=\sum_{y} Q(y)=1 .
\end{aligned}
$$

But is wanting to test against Q good reason for using the bet Q / P ?

Multiple Testing

You say P describes Y.
I want to bet against you.
I think Q describes Y.
Should I use Q / P as my bet?

$$
S=Q / P \text { maximizes } \mathbf{E}_{Q}(\ln S)
$$

$$
\mathbf{E}_{Q}\left(\ln \frac{Q(Y)}{P(Y)}\right) \geq \mathbf{E}_{Q}\left(\ln \frac{R(Y)}{P(Y)}\right) \forall R
$$

Gibbs's inequality

Why maximize $\mathbf{E}_{Q}(\ln S)$? Why not $\mathbf{E}_{Q}(S)$? Or $Q(S \geq 20)$?
When S is the product of successive factors, $\mathbf{E}(\ln S)$ measures the rate of growth (Kelly, 1956). This has been used in gambling theory, information theory, finance theory, and machine learning. Here it opens the way to a theory of multiple testing and meta-analysis.

Successive tests of P

- P purports to describe Y_{1}, Y_{2}, \ldots.
- I test P by buying $S_{1}\left(Y_{1}\right)$ for $\$ 1$. Betting score $S_{1}\left(y_{1}\right)$ is mediocre - not much larger than 1.
- I continue testing. Score $S_{2}\left(Y_{2}\right)$ again mediocre.

Two ways of filling out the story

- I made the second bet by taking another $\$ 1$ out of my wallet. So I risked $\$ 2$. Final betting score is the mediocre

$$
\frac{S_{1}\left(y_{1}\right)+S_{2}\left(y_{2}\right)}{2}
$$

- I made the second bet risking the winnings from the first. Final betting score is

$$
S_{1}\left(y_{1}\right) S_{2}\left(y_{2}\right)
$$

The second way is more powerful. So aim for large $S_{1}\left(y_{1}\right) S_{2}\left(y_{2}\right)$ rather than large $S_{1}\left(y_{1}\right)+S_{2}\left(y_{2}\right)$.

Replace power with implied target.

The implied target of the test $S=Q / P$ is $\exp \left(E_{Q}(\ln S)\right)$.

$$
\mathbf{E}_{Q}(\ln S)=\sum_{y} Q(y) \ln S(y)=\sum_{y} P(y) S(y) \ln S(y)=\mathbf{E}_{P}(S \ln S)
$$

Use the implied target to evaluate the test in advance.

Even if I do not take Q seriously, my critics will.
Why should the editor invest in my test if it is unlikely to produce a high betting score even when it is optimal?

Elements of a study that tests a probability distribution by betting

Proposed study

initially unknown outcome	phenomenon	Y
probability distribution for Y nonnegative function of Y with expected value 1 under P	null hypothesis	P
$S \times P$	bet	S
$\exp \left(\mathbf{E}_{Q}(\ln S)\right)$	implied alternative	Q
	implied target	S^{*}

Results
actual value of Y
outcome y
factor by which money risked
has been multiplied
betting score $S(y)$

Three Examples

Example 1.

Result statistically and practically significant but hopelessly contaminated with noise.

$$
\begin{gathered}
P: Y \sim \mathcal{N}(0,10) \\
Q: Y \sim \mathcal{N}(1,10) \\
\quad y=30
\end{gathered}
$$

- p-value: $P(Y \geq 30) \approx 0.00135$.
$P: Y \sim \mathcal{N}(0,10)$
$Q: Y \sim \mathcal{N}(1,10)$

$$
y=30
$$

- 5% test rejects when $y \geq 16.445$. Power 6\%.
- Bet Q / P has implied target 1.005 . Betting score is $S(30) \approx 1.34$.
- Power and implied target agree: study is worthless.
- But Neyman-Pearson rejects with low p-value, while betting score sees that evidence is slight.

Example 2.

Test with $\alpha=5 \%$ and high power rejects with borderline outcome even though likelihood ratio favors alternative.

$$
\begin{aligned}
P: Y & \sim \mathcal{N}(0,10) \\
Q: Y & \sim \mathcal{N}(37,10) \\
y & =16.5
\end{aligned}
$$

- p-value: $P(Y \geq 16.5) \approx 0.0495$.
$P: Y \sim \mathcal{N}(0,10)$
$Q: Y \sim \mathcal{N}(37,10)$

$$
y=16.5
$$

- 5% test rejects when $y \geq 16.445$. Power 98\%.
- Bet Q / P has implied target 939 . Betting score is $S(16.5) \approx 0.477$.
- Power and implied target agree: study is good.
- Neyman-Pearson rejects.

Betting score says evidence slightly favors null.

Example 3.

High p-value is interpreted as evidence for null.

$$
\begin{gathered}
P: Y \sim \mathcal{N}(0,10) \\
Q: Y \sim \mathcal{N}(20,10) \\
y=5
\end{gathered}
$$

$$
\begin{gathered}
P: Y \sim \mathcal{N}(0,10) \\
Q: Y \sim \mathcal{N}(20,10) \\
y=5
\end{gathered}
$$

- p-value: $P(Y \geq 5) \approx 0.3085$.
- 5% test rejects when $y \geq 16.445$. Power 64\%.
- Bet Q / P has implied target 7.39. Betting score is $S(5) \approx 0.368$.
- Power and implied target agree: study is marginal.
- Neyman-Pearson simply does not reject.

Betting score says evidence slightly favors null.

Warranties

- A $(1-\alpha)$-confidence set consists of all θ not rejected at level α.
- A $(1 / \alpha)$-warranty set consists of all θ for which a strategy that always avoids bankruptcy does not multiply its initial capital by $1 / \alpha$ or more.
- A warranty set can fail a posteriori in the same way a confidence set can.

A Glimpse at the game-theoretic foundations for probability

Markov's inequality. If S is a nonnegative random variable and $E_{P}(S)=1$, then

$$
P(S \geq c) \leq \frac{1}{c}
$$

Ville's inequality. Suppose Y_{1}, Y_{2}, \ldots is a stochastic proces, and you bet on the Y_{n} in order, starting with capital 1 and following a strategy that always keeps your capital nonnegative no matter how the bets come out. Let S_{1}, S_{2}, \ldots be the resulting capital process (nonnegative martingale). Then

$$
P\left(S_{n} \geq c \text { for some } n\right) \leq \frac{1}{c}
$$

Markov's inequality. If S is a nonnegative random variable, $E_{P}(S)=1$, and $c>0$, then

$$
\begin{equation*}
P(S \geq c) \leq \frac{1}{c} \tag{1}
\end{equation*}
$$

- "P(E) is very small" is usually taken as a prediction that E will not happen. This gives empirical content to P.
- The inequality (1) is thus taken as predicting $S<c$.
- Another way of giving empirical content to P : A bet at P 's odds will not multiply its capital by a large factor.
- Game-theoretic definition of probability: $\bar{P}(E)=p$ means that p is the least capital needed to 1 if E happens.

Vovk's inequality. Suppose you make successive bets starting with capital 1 , not necessarily knowing what bets will be offered or having a strategy. Each time you bet so that your capital cannot become negative. Let S_{1}, S_{2}, \ldots be the resulting capital process. Suppose $c>$ 0 . Then

$$
\bar{P}\left(S_{n} \geq c \text { for some } n\right) \leq \frac{1}{c}
$$

where $\bar{P}(E)=p$ means that p is the least capital needed to play so that $\lim _{n \rightarrow \infty} S_{n}=1$ if E happens.

Game-Theoretic Foundations for Probability and Finance

Glenn Shafer I Vladimir Vovk

Base mathematical probability on testing by betting.

Working papers at www.probabilityandfinance.com:

- 47 (efficient markets)
- 55 (history of testing)
- 56 (statistics)
- 57 (random risk)

