How can you test probabilistic predictions?

Bet against them.

Test statistical hypotheses the same way.

• New use of likelihood ratios.
• Alternative to power.
Testing pundits
and weather forecasters
Changing probabilities for Democratic candidate

Screen shot from fivethirtyeight.com on March 29
You can create this situation by betting more when you are behind.

So testing by betting requires that the amount you risk be fixed at the outset.

Let K be your investment (the amount you risk), and let G be your net gain. Suppose $E(G) = 0$, but K is also random and

$$\text{Cov} \left(\frac{1}{K}, G \right) > 0.$$

Because $E(G) = 0$, this reduces to

$$E \left(\frac{G}{K} \right) > 0.$$
Risk is random:
The magic of the d’Alembert

Harry Crane and Glenn Shafer

Working Paper #57

www.probabilityandfinance.com
Predictions for the NBA (National Basketball Association) championship

<table>
<thead>
<tr>
<th></th>
<th>January 7</th>
<th>March 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucks</td>
<td>25%</td>
<td>20%</td>
</tr>
<tr>
<td>Clippers</td>
<td>19%</td>
<td>26%</td>
</tr>
<tr>
<td>Lakers</td>
<td>17%</td>
<td>27%</td>
</tr>
<tr>
<td>76ers</td>
<td>17%</td>
<td>10%</td>
</tr>
<tr>
<td>Rockets</td>
<td>12%</td>
<td>7%</td>
</tr>
<tr>
<td>Raptors</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Celtics</td>
<td>3%</td>
<td>6%</td>
</tr>
<tr>
<td>Nuggets</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Mavericks</td>
<td>2%</td>
<td><1%</td>
</tr>
</tbody>
</table>

March 12 was the last update before the season was suspended.
Testing by betting for statisticians
Hypothesis: P describes random variable Y.

Question: How do we use $Y = y$ to test P?

Conventional answer:

- Choose *significance level* α, say 0.05.
- Choose E such that $P(E) = 0.05$.
- Reject P if $y \in E$.
Hypothesis: P describes random variable Y.

Question: How do we use $Y = y$ to test P?

Conventional answer:
- Choose significance level α, say 0.05.
- Choose E such that $P(E) = 0.05$.
- Reject P if $y \in E$.

Betting interpretation:
- Put £1 on E.
- Get back £0 if E fails.
- Get back £20 if E happens.
 - You multiplied your money by a large factor.
 - This discredits P.
 - What better evidence could you have?
Question: How do we measure the strength of evidence against P?

Conventional answer:

- Use a test statistic to define a test for each $\alpha \in (0, 1)$.
- The p-value is the smallest α for which the test rejects.
- The smaller the p-value, the more evidence against P.

Too complicated!
Question: How do we measure the strength of evidence against P?

Conventional answer:
- Use a test statistic to define a test for each $\alpha \in (0, 1)$.
- The p-value is the smallest α for which the test rejects.
- The smaller the p-value, the more evidence against P.

Betting alternative:
Make a bet on Y that can pay many different amounts
- Such a bet is a function $S(Y)$.
- Choose S so that $E_P(S) = 1$.
- Pay £1 and get back £$S(y)$.
- The larger $S(y)$, the more evidence against P.
Call $S(y)$ the *betting score*.

This is the factor by which you multiplied your money.

If $E_P(S) \neq 1$, betting score is

$$\frac{S(y)}{E_P(S)}.$$
Likelihood Ratios
A betting score, as just defined, is the same thing as a likelihood ratio.

- A bet S is a function of Y satisfying $S \geq 0$ and $\sum_y S(y)P(y) = 1$.
- So SP is also a probability distribution. Call it the alternative Q.
- But $Q(y) = S(y)P(y)$ implies $S(y) = Q(y)/P(y)$.
- A bet against P defines an alternative Q and the betting score $S(y)$ is the likelihood ratio $Q(y)/P(y)$.
Conversely, if you start with an alternative Q, then Q/P is a bet.

Proof:

$$\frac{Q(y)}{P(y)} \geq 0 \text{ for all } y.$$

$$E_P \left(\frac{Q}{P} \right) = \sum_y \frac{Q(y)}{P(y)} P(y) = \sum_y Q(y) = 1.$$

But is wanting to test against Q good reason for using the bet Q/P?
Multiple Testing
You say P describes Y.
I want to bet against you.
I think Q describes Y.
Should I use Q/P as my bet?

$S = Q/P$ maximizes $E_Q(\ln S)$.

$$E_Q \left(\ln \frac{Q(Y)}{P(Y)} \right) \geq E_Q \left(\ln \frac{R(Y)}{P(Y)} \right) \forall R$$

Gibbs's inequality

Why maximize $E_Q(\ln S)$? Why not $E_Q(S)$? Or $Q(S \geq 20)$?

When S is the product of successive factors, $E(\ln S)$ measures the rate of growth (Kelly, 1956). This has been used in gambling theory, information theory, finance theory, and machine learning. Here it opens the way to a theory of multiple testing and meta-analysis.
Successive tests of P

- P purports to describe Y_1, Y_2, \ldots.
- I test P by buying $S_1(Y_1)$ for $\$1$. Betting score $S_1(y_1)$ is mediocre — not much larger than 1.
- I continue testing. Score $S_2(Y_2)$ again mediocre.
Two ways of filling out the story

- I made the second bet by taking another $1 out of my wallet. So I risked $2. Final betting score is the mediocre

\[
\frac{S_1(y_1) + S_2(y_2)}{2}
\]

- I made the second bet risking the winnings from the first. Final betting score is

\[
S_1(y_1)S_2(y_2)
\]

The second way is more powerful. So aim for large \(S_1(y_1)S_2(y_2)\) rather than large \(S_1(y_1) + S_2(y_2)\).
Replace power with *implied target*.
The *implied target* of the test $S = Q/P$ is $\exp(E_Q(\ln S))$.

$$E_Q(\ln S) = \sum_y Q(y) \ln S(y) = \sum_y P(y)S(y) \ln S(y) = E_P(S \ln S)$$

Use the implied target to evaluate the test in advance.

Even if I do not take Q seriously, my critics will.

Why should the editor invest in my test if it is unlikely to produce a high betting score even when it is optimal?
Elements of a study that tests a probability distribution by betting

<table>
<thead>
<tr>
<th>Proposed study</th>
<th>name</th>
<th>notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>initially unknown outcome</td>
<td>phenomenon</td>
<td>Y</td>
</tr>
<tr>
<td>probability distribution for Y</td>
<td>null hypothesis</td>
<td>P</td>
</tr>
<tr>
<td>nonnegative function of Y with expected value 1 under P</td>
<td>bet</td>
<td>S</td>
</tr>
<tr>
<td>$S \times P$</td>
<td>implied alternative</td>
<td>Q</td>
</tr>
<tr>
<td>$\exp(\mathbf{E}_Q(\ln S))$</td>
<td>implied target</td>
<td>S^*</td>
</tr>
</tbody>
</table>

Results		
actual value of Y	outcome	y
factor by which money risked has been multiplied	betting score	$S(y)$
Three Examples
Example 1.

Result statistically and practically significant but hopelessly contaminated with noise.

\[
P: \ Y \sim \mathcal{N}(0, 10) \\
Q: \ Y \sim \mathcal{N}(1, 10) \\
y = 30
\]
\(P: Y \sim \mathcal{N}(0, 10) \)
\(Q: Y \sim \mathcal{N}(1, 10) \)
\(y = 30 \)

- p-value: \(P(Y \geq 30) \approx 0.00135 \).
- 5% test rejects when \(y \geq 16.445 \).
 Power 6%.
- Bet \(Q/P \) has implied target 1.005.
 Betting score is \(S(30) \approx 1.34 \).

- Power and implied target agree: study is worthless.
- But Neyman-Pearson rejects with low p-value, while betting score sees that evidence is slight.
Example 2.

Test with $\alpha = 5\%$ and high power rejects with borderline outcome even though likelihood ratio favors alternative.

\[
P: \ Y \sim \mathcal{N}(0, 10)\\
Q: \ Y \sim \mathcal{N}(37, 10)\\
y = 16.5
\]
\[P: \ Y \sim \mathcal{N}(0, 10) \]
\[Q: \ Y \sim \mathcal{N}(37, 10) \]
\[y = 16.5 \]

- p-value: \[P(Y \geq 16.5) \approx 0.0495. \]
- 5% test rejects when \[y \geq 16.445. \] Power 98%.
- Bet \(Q/P \) has implied target 939. Betting score is \(S(16.5) \approx 0.477. \)

- Power and implied target agree: study is good.
- Neyman-Pearson rejects.

Betting score says evidence slightly favors null.
Example 3.

High p-value is interpreted as evidence for null.

\[P: Y \sim \mathcal{N}(0, 10) \]

\[Q: Y \sim \mathcal{N}(20, 10) \]

\[y = 5 \]
\[
P: Y \sim \mathcal{N}(0, 10) \\
Q: Y \sim \mathcal{N}(20, 10) \\
y = 5
\]

- p-value: \(P(Y \geq 5) \approx 0.3085 \).
- 5% test rejects when \(y \geq 16.445 \).
 Power 64%.
- Bet \(Q/P \) has implied target 7.39.
 Betting score is \(S(5) \approx 0.368 \).

- Power and implied target agree: study is marginal.
- Neyman-Pearson simply does not reject.
 Betting score says evidence slightly favors null.
Warranties
• A \((1 - \alpha)\)-confidence set consists of all \(\theta\) not rejected at level \(\alpha\).

• A \((1/\alpha)\)-warranty set consists of all \(\theta\) for which a strategy that always avoids bankruptcy does not multiply its initial capital by \(1/\alpha\) or more.

• A warranty set can fail a \textit{posteriori} in the same way a confidence set can.
A Glimpse at the game-theoretic foundations for probability
Markov’s inequality. If S is a nonnegative random variable and $E_P(S) = 1$, then

$$P(S \geq c) \leq \frac{1}{c}.$$

Ville’s inequality. Suppose Y_1, Y_2, \ldots is a stochastic process, and you bet on the Y_n in order, starting with capital 1 and following a strategy that always keeps your capital nonnegative no matter how the bets come out. Let S_1, S_2, \ldots be the resulting capital process (nonnegative martingale). Then

$$P(S_n \geq c \text{ for some } n) \leq \frac{1}{c}.$$
Markov’s inequality. If S is a nonnegative random variable, $E_P(S) = 1$, and $c > 0$, then

$$P(S \geq c) \leq \frac{1}{c}.$$ (1)

- “$P(E)$ is very small” is usually taken as a prediction that E will not happen. This gives empirical content to P.

- The inequality (1) is thus taken as predicting $S < c$.

- Another way of giving empirical content to P: A bet at P’s odds will not multiply its capital by a large factor.

- Game-theoretic definition of probability: $\overline{P}(E) = p$ means that p is the least capital needed to 1 if E happens.
Vovk’s inequality. Suppose you make successive bets starting with capital 1, not necessarily knowing what bets will be offered or having a strategy. Each time you bet so that your capital cannot become negative. Let S_1, S_2, \ldots be the resulting capital process. Suppose $c > 0$. Then

$$\overline{P}(S_n \geq c \text{ for some } n) \leq \frac{1}{c},$$

where $\overline{P}(E) = p$ means that p is the least capital needed to play so that $\lim_{n \to \infty} S_n = 1$ if E happens.
Base mathematical probability on testing by betting.

Working papers at www.probabilityandfinance.com:
• 47 (efficient markets)
• 55 (history of testing)
• 56 (statistics)
• 57 (random risk)