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1 Introduction

In a linear \structural equation" model, it is assumed that there is a set of variables V , and
for each variable Xi in V , there is a unique associated error term Ei with non-zero variance.
For each variable Xi in V a linear equation relates Xi to a subset of V (excluding Xi) and
its error term Ei ; the variables that do not appear in the equation for Xi are assumed
to have coe�cients �xed at zero. We assume that the error terms are jointly independent
(although in what follows, this assumption can easily be relaxed.) Associated with each such
set of equations is a directed graph in which there is an edge from Xi to Xj if and only if
Xi appears in the equation for Xj , or equivalently, the coe�cient of Xj in the equation for
Xi has not been �xed at zero. Factor anayltic models, path models, and random regression
models, are all special cases of linear structural equation models.

It is often the case that a linear structural equation model that is plausible on substan-
tive grounds fails to �t the data. One reason that a model can fail to �t the data is if it
entails some constraint on the correlation matrix which does not hold in the data. Such con-
straints are called overidentifying constraints in the econometrics literature, and prediction
equations in the social science literature. It is possible to improve the �t of such a model by
modifying it so that it entails only the constraints that (approximately) hold in the data.
Spearman(1904) analyzed the tetrad constraints entailed by particular linear models, and
Kelley(1928) analyzed the tetrad and pentad constraints entailed by particular linear models.
Simon(1953), Simon(1954), and Blalock(1961) analyzed the partial correlation constraints
entailed by particular linear models. More recent work has shown how to derive constraints
upon correlation matrices from the directed graphs that can be associated with linear mod-
els. Zero partial correlation constraints correspond to zeroes in an inverse submatrix of the
correlation matrix. The work of Kiiveri and Speed(1982), Lauritzen et al.(1990) and Verma,
Pearl, and Geiger (described in Pearl 1988) has shown how to derive the set of zero partial
correlations entailed by a given acyclic directed graph, and Spirtes(1993) extends this result
to cyclic directed graphs.

Another class of constraints, involving rank conditions on the correlation matrix, is par-
ticularly useful in the construction of linear models with latent variables, because di�erent
structures among the latent variables can generate di�erent constraints on the correlations
among the measured variables. For example, a vanishing tetrad di�erence is an equation of
the form

�(X;Y )�(Z;W )� �(X;Z)�(Y;W ) = 0:

A correlation matrix among a given set of variables has at most rank 1 if and only if all
tetrad di�erences that can be formed from the given set of variables vanish. Holzinger and
Harmon(1941) describe a hierarchy of constraints that are necessary and su�cient conditions
for a correlation matrix to have at most rank n (including the vanishing tetrad di�erences
for rank 1).

The following mathematical question thus arises: �nd necessary and su�cient conditions
for a given directed acyclic graph to entail a given rank constraint. Spirtes, Glymour, and
Scheines(1993) state conditions on a given directed acyclic graph that are equivalent to
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the vanishing of an individual tetrad di�erence vanishes. In this paper, we generalize their
result to give conditions that are equivalent to the vanishing of sets of tetrad di�erences of a
certain form, and we greatly simplify their proof. By generalizing from individual vanishing
tetrad di�erences to sets of vanishing tetrad di�erences, it is possible to place much tighter
constraints upon the set of linear models compatible with given data.

This question of the relationship between directed acyclic graphs and rank constraints is
of practical as well as theoretical interest. Spearman(1904) used vanishing tetrad constraints,
and Kelley(1928) used vanishing tetrad and pentad constraints to search for psychological
models of intelligence. Their strategy can be generalized in the following way:

1. Perform a statistical test that each tetrad di�erence is equal to zero, and form the set
of tetrad di�erences that pass the test. (Wishart(1928) described a statistical test for
vanishing tetrad di�erences drawn from a joint normal distribution, and Bollen(1990)
has described an asymptotically distribution free test.)

2. Calculate for a given model the set of tetrad di�erences that are equal to zero for all
values of the linear coe�cients and all positive values of the variances.

3. Modify the given model so that the set of tetrad di�erences entailed to vanish is closer
(relative to a suitable metric) to the set of tetrad di�erences that pass the test. (Several
di�erent strategies have been described in Spirtes, Glymour and Scheines(1993), and
Spirtes, Scheines and Glymour(1990).)

In a variety of simulation tests, variations of this strategy (implemented in the TETRAD II
program) have been shown to be reliable for multi-normal models with large (approximately
2000) samples. This algorithm has several advantages. A search guided by vanishing tetrad
di�erences does not require any iterative parameter estimates. Iterative estimates are time-
consuming and subject to convergence problems. Since the initial model is usually incorrect
(which is why it is being modi�ed), both of these problems are particularly severe and the
parameter estimates are incorrect because of the incorrectness of the model. If a model
fails to entail that a given tetrad di�erence vanishes, so does any elaboration of that model.
Hence an elaboration of a given model inherits a great deal of information from previous
stages of the search. Step 2) requires a general method for calculating the set of vanishing
tetrad di�erences, which provides a practical application of the theorem stated in this paper.

2 Treks and Choke Points in a Directed Acyclic Graph

In order to make the ideas as accessible as possible to mathematicians who might develop
them further, we begin with a thorough exposition of purely graph-theoretical aspects. We
assume that the reader is familiar with the most basic de�nitions of graph theory. Recall that
a graph is an object consisting of nodes and edges between them. It is directed if its edges are
directed (marked with arrows). We assume that we are working with a �nite directed graph,
in which edges are always between distinct nodes and there is at most one edge between
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any pair of distinct nodes. We use the usual de�nitions of parent, child, descendant, and
ancestor; if there is an edge between X and Y with its arrowing pointing from X to Y , we
say that X is a parent of Y and Y is a child of X. We call a node exogenous if it has no
parents, endogeneous if it does have parents, and barren if it has no children. A path is a
sequence of nodes connected by edges. We allow a sequence consisting of a single node to
qualify as a path. If the �rst node in a path is I, and the last is J , then we say that the
path is a path from I to J . If it is a path from I to J or a path from J to I, then we say
that it is a path between I and J .

A path < X1X2 : : :Xk > is directed if either (1) the edge between Xi and Xi+1 has its
arrow pointing to Xi+1, for i = 1; 2; : : : ; k � 1 (in this case, we say that the path is directed
from X1 to Xk), or else (2) the edge between Xi�1 and Xi has its arrow pointing to Xi�1,
for i = 2; 3; : : : ; k (in this case, we say that the path is directed from Xk to X1, even though
it is a path from X1 to Xk).

A path in which the �rst and last nodes are equal is called a cycle. A directed graph in
which there are no directed paths that are cycles (no cycles following the arrows) is acyclic;
it is a directed acyclic graph. We henceforth assume that the directed graph with which we
are working is a directed acyclic graph containing at least one node. It is easy to see that a
directed acyclic graph always has at least one barren node, and it remains a directed acyclic
graph if we delete that node and any edges to it.

We call any subsequence of a path < X1X2 : : :Xk > that is also a path a subpath. Notice
that any subpath of a directed path is also a directed path. We call a subpath of the form
< XiXi+1 : : :Xj >, where 1 � i � j � k, a chunk . If 1 < i1 < : : : < ir < k, then we say that
< X1X2 : : :Xk > is composed of the r + 1 chunks < X1X2 : : :Xi1 >, < Xi1Xi1+1 : : :Xi2 >,
: : : < XirXir+1 : : :Xk >. (Each chunk begins with the node with which the preceding chunk
ends.)

If the nodes in a path are distinct (the path does not intersect itself), then we say that
the path is simple. We leave the proof of the following lemma to the reader.

Lemma 2.1 Any path from I to J has at least one subpath that is a simple path from I to
J .

Figure 1 illustrates the lemma.
A node on a path (or more precisely, an occurrence of a node on a path) is a collider on

the path if (1) it has two neighbors in the sequence (it is not at the beginning or the end), and
(2) it has arrows directed to it from both these neighbors. In Figure 1, for example, there
are two colliders on the path < IX1X2X3X4X5X2X6J >: X1 and the second occurrence of
X2. We will leave it to the reader to prove the following lemma.

Lemma 2.2 A path < X1X2 : : :Xk > has a collider if and only if there exist integers i and
j such that 1 < i � j < k, the arrow between Xi�1 and Xi points to Xi, and the arrow
between Xj and Xj+1 points to Xj .

This lemma says that if there are arrows pointing towards each other on a path (as in
Figure 2), then there must be a collider somewhere between them.
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X1

X2 X3 X4

X5

X6

I J

K

L

Figure 1: The path < IX1X2X3X4X5X2X6J > has the simple subpath < IX1X2X6J >.

? ? ?X1 Xi

Xk

Xj

Figure 2: We do not know the directions of the arrows on the edges Xi between Xj, but no
matter what their directions, there must be a collider between Xi and Xj.

A trek between I and J is a path between I and J that does not contain any colliders.
Since there cannot be any arrows pointing towards each other in a trek, there are only a
few possibilities for how the directions of the arrows can change as we move along the trek.
First of all, there might not be any arrows at all; if I and J are identical, then < I >,
the path consisting of I alone, quali�es as a trek between I and J . Second, all the arrows
might go from I to J . Third, all the arrows might go from J to I. Fourth, the arrows might
change direction once, at a third node Q. The last three possibilities are shown in Figure 3.
(The treks shown in this �gure are simple, though this is not required by the de�nition.
It should be noted that Spirtes, Glymour, and Scheines (1993), from whom we borrow the
name \trek", do require that a trek be simple.)

Every trek has a unique node to which no arrows are directed; this is called its source.
If the trek is a path directed from I, then I is its source. If it is composed of a pair of paths
directed from Q, then Q is its source. If it consists of a single node I, then I is its source.

Every trek between I and J also has an I side and a J side. The I side is the subpath
directed from the source to I; the J side is the subpath directed from the source to J . If
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Q

I

J

I

J

J

I

I part
J part

Here I is the source, and 
the I side consists of I by 
itself.

Here Q is the source.
Here J is the source, and 
the J side consists of J by 
itself.

Figure 3: Three types of treks.

the trek is a path directed from I to J , then the I side consists of I by itself. If it is a path
directed from J to I, then the J side consists of J by itself. If it consists of a single node,
this node is both the I side and the J side.

Any subpath of a trek is also a trek { we call it, naturally, a subtrek . If � is a subtrek of
� , and both go from I to J , then the I side of � is a subpath of the I side of � , and the J side
of � is a subpath of the J side of � . By Lemma 2.1, every trek between I and J has at least
one subtrek that is simple trek between I and J . Notice also that if < X1X2 : : :Xr > and
< XrXr+1 : : :Xk > are treks, then the composition < X1X2 : : :XrXr+1 : : :Xk > is a trek if
and only if the edges Xr�1Xr and XrXr+1 do not both have their arrows pointing towards
Xr.

Though we usually think of a trek visually, as a set of edges, or as two paths directed
from the source, we will sometimes need to insist on the formal de�nition, according to which
a trek, like any path, is a sequence of nodes. We will have occasion, for example, to speak
of a trek from I to J . This refers to a sequence of nodes beginning with I and ending with
J that forms a trek between I and J ; the arrows need not be directed from I to J .

Consider two sets of nodes, I and J. We say that a trek is a trek between I and J if it is
a trek between some element I of I and some element J of J. If X is a node in such a trek
� , then we say that X is on the I side of � if X is in � 's I side, and we say that X is on the
J side of � if X is in � 's J side. If X is the source of � , then it is on both the I side and the
J side. If � is simple, its source is the only node that is on both sides. Notice also that if
one or both of I and J are empty, then there are no treks between them.

The de�nitions in the preceding paragraph apply even if the sets I and J overlap. If they
do overlap, then a trek consisting of a single node that is in their intersection quali�es as a
trek between them. A trek between two distinct nodes that are both in both I and J is also
a trek between I and J, but when we speak of it as such, we must arbitrarily specify one
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side as the I side and the other as the J side. The de�nitions even apply in the case where
I and J, as sets, are identical. In this case, we still think of I and J as two distinct labels,
and we still label one of the sides of the trek as the I side and the other as the J side.

We say that a node X is a choke point between I and J if two conditions are met:

1. every trek between I and J (if there are any) goes through X, and

2. either (a) X is on the I side of every such trek, or (b) X is on the J side of every such
trek.

If condition 2a is satis�ed, then we say that X is an I-side choke point . If condition 2b is
satis�ed, then we say that X is a J-side choke point . If condition 1 is satis�ed (whether
or not condition 2 is satis�ed), then we say that X is a weak choke point between I and J.
Figures 4 and 5 illustrate these de�nitions.

X

I1

I2

J1 J2

X

I1

I2

J1 J2

Figure 4: In both these graphs, X is a choke point between fI1; I2g and fJ1; J2g on the
fJ1; J2g side.

We may, if we wish, require that the treks in the de�nition of choke point be simple.
Every trek between I and J goes through X if and only if every simple trek between I and
J goes through X, and every trek between I and J goes through X on the I side if and only
if every simple trek between I and J goes through X on the I side.

In the case where I and J each contain exactly two nodes, our de�nition of choke point
is essentially equivalent to the de�nition given by Spirtes, Glymour, and Scheines (1993,
p. 196). It is simpler than their de�nition, however, and this simpli�cation is basic to the
contributions of this paper.

The next lemma lists some obvious consequences of the de�nition of choke point.
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X

I1

I2

J1

J2

I1 J1

J2

I2

Figure 5: There are no choke points between fI1; I2g and fJ1; J2g in either of these graphs,
though there is a weak choke point in both cases: X on the left and I2 on the right. On the
left, X is not on the fI1; I2g side of < I1XJ2 >, and not on the fJ1; J2g side of < I2XJ1 >.
On the right, I2 is not on the fI1; I2g side of < I1I2J2 >, and not on the fJ1; J2g side of
< I2J1 >.

Lemma 2.3

1. If there is no trek between I and J, then every node in the graph quali�es as a choke
point between I and J. This happens, for example, when one or both of the sets are
empty.

2. If I contains only one node, then this node is a choke point between I and J.

3. If X is a choke point between I and J, and I0 � I, then X is a choke point between I0

and J.

4. If I is in both I and J, and there is a choke point X between I and J, then X = I.

5. If I and J have more than one node in common, then they do not have a choke point
between them.

The next lemma clari�es the structure of the choke points between two sets I and J.

Lemma 2.4 Let C designate the set of weak choke points between I and J. Then every trek
from I to J goes through the nodes in C in the same order.

Proof We prove the lemma by contradiction. Suppose X and Y are distinct nodes in C, �
is a trek from I to J that goes through X �rst, and � is a trek from I to J that goes through
Y �rst. Decompose � and � into chunks as in Panel i of Figure 6; � = �1�2�3, where �1
goes from a node in I to X, �2 goes from X to Y , and �3 goes from Y to a node in J; and
� = �1�2�3, where �1 goes from a node in I to Y , �2 goes from Y to X, and �3 goes from
X to a node in J. Use these chunks to form two new paths from I to J: �1 = �1�3 and
�2 = �1�3. Neither of these new paths are treks; �1 cannot be a trek because it avoids the
weak choke point Y , and �2 cannot be a trek because it avoids the weak choke point X. So
both must contain colliders. Since there are no colliders in the chunks, the colliders must
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occur where the chunks are joined; X must be a collider on �1, and Y must be a collider on
�2, as indicated by the arrows into X and Y in Panel ii. In order to avoid X or Y being
colliders on � or � , we must then also have the arrows out of X and Y shown there. But
even this does not avoid colliders on � and � , for by Lemma 2.2, the arrows out of X and Y

imply that there must be colliders on the chunks �2 and �2. This contradicts our assumption
that � and � are treks. 2

J

X

Y

π
1

π
2

π
3

τ
1

τ
2

τ3

I J

X

Y

π
1

π
2

π
3

τ
1

τ
2

τ 3

i.  The treks π and τ. ii.  Implied arrows.

I

Figure 6:

Lemma 2.4 tells us in particular that any trek between I and J goes through all the choke
points in the same order. So if there are choke points between I and J, we can talk about
the one nearest I and the one nearest J. Similarly, if there are I-side choke points, then we
can talk about the I-side choke point nearest the sources of the treks between I and J; this is
the same choke point for all such treks. The source of a trek from I to J always lies between
the last I-side choke point and before the �rst J-side choke point, except that in some cases
it may be equal to one or the other or both.

The next lemma will help us prove Theorem 2.6, which explains what happens when a
choke point does not exist.

Lemma 2.5 Consider sets I1; I2; ; : : : ; Ik. Suppose that for each i, 1 � i � k, there is at
least one choke point between Ii and J. Let Ci designate the set consisting of all the choke
points between Ii and J. Set C =

Sk
i=1Ci and I =

Sk
i=1 Ii. Then the following statements

hold.

1. Every trek from
Tk

i=1 Ii to J (if there are any) goes through all the nodes in C and does
so in the same order.

2. Suppose there does exist a trek from
Tk

i=1 Ii to J. (This means, in particular, thatTk
i=1 Ii is non-empty.) Then the node in C nearest J is a choke point between I and J.
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Proof The truth of Statement 1 is obvious: all the nodes in C are choke points betweenTk
i=1 Ii and J (by Statement 3 of Lemma 2.3) and every trek from

Tk
i=1 Ii to J goes through

the choke points between
Tk

i=1 Ii and J in the same order (by Lemma 2.4).
We prove Statement 2 by contradiction. Choose a trek � from J to

Tk
i=1 Ii. Let X

designate the node in C nearest J, and suppose X is not a choke point between I and J. We
consider two cases: X is a weak choke point between I and J, or it is not.

First, suppose X is not a weak choke point between I and J. Then we can choose a trek
� from J to I that does not go through X at all. The last node in � is in one of the Ii, say Ij.
Both � and � are treks from J to Ij. Let Y designate a choke point between Ij and J. Then
� goes through X and then Y , and � goes through Y but not X. Decompose � and � into
chunks; � = �1�2�3, where �1 goes from J to X, �2 goes from X to Y , and �3 goes from Y

to
Tk

i=1 Ii; and � = �1�2, where �1 goes from J to Y , and �2 goes from Y to Ij. See Panel i of
Figure 7. (In interpreting Panel i, the reader should remember that we are not making any
assumptions about the number of edges in the chunks. Some chunks might have no edges
at all. For example, we might have �2 =< Y >.) Since it does not go through X, the path
�1�3 is not a trek. So Y must be a collider on it. This gives us the arrows into Y in Panel ii.
Since Y is not a collider on the treks � and � , we must also have the arrows out from Y in
that panel. The resulting picture implies that Y is on the J side (and not on the Ij side) of
the trek � but on the Ij side (and not on the J side) of the trek � , and this contradicts the
assumption that Y is a choke point between Ij and J.

I J

X

∩I

π
2

τ
1

π
1

i.  The treks π and τ. ii.  Implied arrows.

j
Y

π
3

τ
2

I J

X
π

2

τ
1

π
1

j
Y

π
3

τ
2

i ∩Ii

Figure 7:

Now suppose X is a weak choke point between I and J. Then any trek � from J to I

must go through X, and it must do so before it goes through Y (for this is the order in which
�, which is also a trek from J to I, goes through them), but we can choose � so that it and
� do not go through X on the same side. Again, we choose j so that the last node in � is
in Ij, and we choose a choke point Y between Ij and J. The graphs on the left of Figure 8
illustrate the two possibilities.

In each case, the graph on the right shows the additional arrows that are implied, and
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I

JX

π
2 τ

1

π
1

j

Y
π

3 τ
2

τ
3

I

JX

π
2 τ

1

π
1

j

Y
π

3 τ
2

τ
3

I

JX

π
2 τ

1

π
1

j

Y
π

3 τ
2

τ
3

I

JX

π
2 τ

1

π
1

j

Y
π

3 τ
2

τ
3

∩Ii

∩Ii

∩Ii

∩Ii

Figure 8: The graphs on the left show the two ways in which the treks � and � from J to
Ij might go through X on di�erent sides. The graphs on the right show the further arrows
that are implied.

these arrows imply that �1�2�3 is a trek from J to
Tk
i=1 Ii that goes through X on a di�erent

side than the trek � does, thus contradicting the assumption that X is a choke point between
J and

Tk
i=1 Ii. (Most of the arrows on the right in Figure 8 are implied by the requirement

that once one edge points towards an endpoint of a trek, all the edges between it and the
endpoint must also point towards that endpoint. The arrow into Y on �2 in the top graph
and the arrow into Y on �2 in the bottom graph are needed to prevent a cycle between X

and Y .) 2
It is evident from the de�nition of choke point that there is no choke point between I

and J if there are two non-intersecting treks between I and J, or even if there are two treks
between I and J that intersect only on the I side of the �rst and the J side of the second,
as in Figure 9. The following theorem tells us that the converse is true as well: if there is
no choke point, then there exist treks � and � such that the I side of � does not intersect �
and the J side of � does not intersect �, though possibly the J side of � and the I side of �
may intersect one or more times.

Theorem 2.6 If there is no choke point between I and J, then there exist treks � and �

between I and J such that the I side of � is disjoint from � and the J side of � is disjoint
from �.

Proof We will prove the theorem by induction on the number of nodes in the directed
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I1 I 2 J2J1

Figure 9: There cannot be a choke point between fI1; I2g and fJ1; J2g, because the fI1; I2g
side of � is disjoint from � , and the fJ1; J2g side of � is disjoint from �.

acyclic graph. If there is only one node in the graph, then the theorem holds because its
hypothesis cannot be satis�ed; as we noted in Lemma 2.3, there is necessarily a choke point
between I and J if I is empty or contains only one node. To complete the proof, we assume
that the theorem holds for directed acyclic graphs with n or fewer nodes, and we show that
it holds for any directed acyclic graph with n+ 1 nodes.

Suppose, then, that I and J are sets of nodes in a directed acyclic graph with n + 1
nodes, and that there is no choke point between them. We may assume that every node in
the graph is either an element of I or J or an ancestor of an element of I or J. For only nodes
in I and J and their ancestors can be involved in treks between I and J, and if there were
other nodes, we could delete them from the graph, thus obtaining a smaller directed acyclic
graph containing I and J and all the treks between them, and thus obtaining the conclusion
by the inductive hypothesis. Under this assumption, at least one element of I or J, say L, is
barren.

Consider �rst the case where L is in both I and J. In this case, < L > is a trek between
I and J. Since L is not a choke point between I and J, either there exists a trek � between
I and J that does not contain L, in which case < L > and � are treks that do not intersect
at all and hence satisfy the conclusion of the theorem, or else there exists a trek � from I

to J that contains < L > only on its J side and another trek � from I to J that contains
< L > only on its I side. Since L is barren, it must be the last node in � and the �rst
node in � . Suppose � and � do not satisfy the conclusion of the theorem, say because the
J side of � intersects �. Then we can combine the part of the J side of � that comes after
the intersection with the part of � that comes before the intersection to construct a trek �

between I and J that does not contain L, so that � and < L > satisfy the conclusion of the
theorem. The graph on the left in Figure 10 illustrates the case where the intersection is on
�'s J side; in this case, � is �1�2�3. The graph on the right illustrates the case where the
intersection is on �'s I side; in this case, � is �1�3.

Consider next the case where L is in only one of the sets, say in I but not in J, and L has
no parents. In this case, L is an isolated node. Since L is not in J, no trek between I and J

contains L, and hence the hypothesis that there is no choke point between I and J implies
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Figure 10: Two ways the J side of � can intersect �.

i. On �'s J side. ii. On �'s I side.

that there is no choke point between I n fLg and J. Hence we can obtain the conclusion by
applying the inductive hypothesis to the smaller graph obtained by deleting L.

Finally, consider the case where L is in I but not in J, and L has at least one parent.
Designate L's parents by I1; I2; : : : ; Ik. Set Ii = fIig

S
(I n fLg). Then

Tk
i=1 Ii = I n fLg.

Since L is not a choke point between I and J, there exists a trek between
Tk
i=1 Ii and J. So

Lemma 2.5 tells us that either (1) for some j, there is no choke point between fIjg
S
(InfLg)

and J, or (2) there is a choke point between fI1; I2; : : : ; Ikg
S
(I n fLg) and J.

Suppose there is no choke point between fIjg
S
(InfLg) and J. Then we use the inductive

hypothesis to obtain treks � and � from fIjg
S
(I n fLg) to J such that the I side of � is

disjoint from � and the J side of � is disjoint from �. Since the I sides of the two treks do
not intersect, at most one of the two can begin with Ij on the I side. If neither begins with
Ij on the I side, then they are both treks from I to J and hence satisfy the conclusion of the
theorem. If one of them begins with Ij on the I side, then the second is already a trek from
I to J, and adding L at the beginning of the �rst makes it into a trek from I to J , without
disrupting the disjointness of �'s I side and � or the disjointness of � 's J side and � (since
it is barren and is not an endpoint of either trek, L is disjoint from both treks), thus giving
us the desired treks.

Finally, suppose there is a choke point, between fI1; I2; : : : ; Ikg
S
(I n fLg) and J. Desig-

nate this choke point by X, and suppose, �rst, that it is a choke point on the J side. We
will show that every trek � from I to J goes through X on the J side, contradicting our
assumption that there is no choke point between I and J. Indeed, if � does not go through
L, then it is a trek from fI1; I2; : : : ; Ikg

S
(I n fLg) to J and hence goes through X on the J

side. And if � does go through L, then, since L is barren and is not in J, � must start from
L on the I side and immediately go to one of the Ii. Dropping L from � gives a trek that
goes from fI1; I2; : : : ; Ikg

S
(I n fLg) to J and hence goes through X on the J side. Thus

� goes through X on the J side. The argument is the same if X is a choke point between
fI1; I2; : : : ; Ikg

S
(I n fLg) and J on the fI1; I2; : : : ; Ikg

S
(I n fLg) side, in which case the
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conclusion is that every trek � from I to J goes through X on the I side. 2
In summary, there is no choke point between I and J if and only if there exist treks �

and � such that the I side of � does not intersect � and the J side of � does not intersect �.
We leave it to the reader to verify the following corollary of Theorem 2.6.

Corollary 2.7 There is a choke point between I and J if and only if there is a choke point
between fI1; I2g and fJ1; J2g whenever fI1; I2g � I and fJ1; J2g � J.

3 Linear Correlation and Covariance Structures

A linear correlation structure is a directed acyclic graph in which we have attached distinct
symbols to the edges. We are interested in polynomials formed by multiplying the symbols
along treks and then adding the products.

Given a trek � in a linear correlation structure, we write �� for the product of the edge
symbols along the trek, and we call �� the edge product over �. If � consists of a single node,
then by convention, �� is equal to 1. Given any two nodes I and J , we set

�(I; J) =
X

f��j� 2 �(I; J)g;

where �(I; J) is the set of all simple treks from I to J . We call �(I; J) the simple trek sum
between I and J . Notice that since < I > is the only simple trek between I and itself, �(I; I)
is equal to 1.

By convention, �(I; J) is equal to 0 if there are no simple treks (i.e., no treks at all)
between I and J . The converse is also true, of course. Though mathematically trivial, this
observation is su�ciently signi�cant for the application considered in the next section that
we call it a theorem:

Theorem 3.1 If I and J are nodes in a linear correlation structure, then the following
statements are equivalent:

1. �(I; J) = 0.

2. There is no trek between I and J .

3. There is no node X such that there exists a directed path from X to I and a directed
path from X to J .

Given a trek � and a node X, we write #X(�) for the di�erence between the number of
arrows on � that come into X and the number that go out of X. It is easily seen that if the
endpoints of � are distinct, then

#X(�) =

8>>><
>>>:

1; X is an endpoint and not the source;
0; X is neither the source nor endpoint;

�1; X is both the source and an endpoint;
�2; X is the source and not an endpoint:
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Given two treks, � and � , we write #X(�; � ) for the sum #X(�) + #X(� ).
The following lemma will help us understand the signi�cance of individual terms in the

product of two simple trek sums.

Lemma 3.2 Suppose the four endpoints of the treks � and � are distinct. Then #X(�; � )
is negative if and only if X is the source of one (or both) of � and � .

Proof It su�ces to notice that the distinctness of the endpoints makes it impossible that
#X(�) should equal 1 and #X(� ) should equal -1, or vice versa. 2

This lemma is useful when we are given a product �� � � but do not have the treks �
and � themselves. All we can see by looking at �� � � is the edges involved, with their
multiplicities (some edges may be in both treks or on both sides of one of the treks). But
from this information, we can calculate #X(�; � ) for every node X, and hence we can identify
the sources involved in the two treks.

The following theorem is analogous to Theorem 3.1, inasmuch as it shows how a fact
about the graph can be represented by a fact about a polynomial in the edge symbols.

Theorem 3.3 If I1; I2; J1, and J2 are distinct nodes in a linear correlation structure, then
the following statements are equivalent.

1. There is a choke point between fI1; I2g and fJ1; J2g.

2. The polynomial �(I1; J1) � (I2; J2) is equal to the polynomial �(I1; J2) � (I2; J1).

Proof First we show that Statement 1 implies Statement 2. Suppose X is a choke point
between fI1; I2g and fJ1; J2g. Given a simple trek � from I1 to J1, and a simple trek �

from I2 to J2, we may decompose the two treks as in Figure 11. Let F (�; � ) be the pair
(�1�2; �1�2). It is easy to verify that �1�2 is a simple trek from I1 to J2, and �1�2 is a simple
trek from I2 to J1. Moreover, the mapping F is its own inverse, and hence it is a one-to-one
mapping between the set of (I1 � J1 trek, I2 � J2 trek) pairs and the set of (I1 � J2 trek,
I2 � J1 trek) pairs. Since the same edges (with the same multiplicities) are involved in the
pair (�1�2; �1�2) as in the pair (�; � ), the products �� � � and �(�1�2)� (�1�2) are equal. This
establishes that the polynomials �(I1; J1)�(I2; J2) and �(I1; J2)�(I2; J1) have the same terms
and hence are equal.

Now we show that if Statement 1 is false, then Statement 2 is false. Suppose there is no
choke point between fI1; I2g and fJ1; J2g. By Theorem 2.6, we know that there exist treks �
and � between fI1; I2g and fJ1; J2g such that the fI1; I2g side of � is disjoint from � and the
fJ1; J2g side of � is disjoint from �. These treks must have distinct sources, as in Figure 12.

It is evident from Figure 12 that the edges in these two treks (with whatever multiplicities
they may have because of edges shared by � 's I2 side and �'s J1 side) cannot be rearranged
into treks from I1 to J2 and I2 to J1. Indeed, since �'s I1 side is disjoint from the rest of �
and all of � , any trek from I1 to J2 that uses only the edges in � and � must go up �'s I1 side
to X and start down �'s J1 side. Similarly, a trek from J2 to I1 using only these edges must
go up � 's J2 side to Y and start back down � 's I2 side. These two parts cannot be extended
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Figure 12:

so as to form into a trek between I1 and J2, since they have arrows pointing towards each
other. It follows that the term �� � � , which appears in �(I1; J1) � (I2; J2), does not appear
in �(I1; J2) � (I2; J1); the two polynomials are not equal. 2

We now develop an analogue of Theorem 3.3 for the case where we assume that each
endogeneous node is the only child of at least one exogeneous parent, we attach symbols to
the exogeneous nodes as well as to all the edges, and in the place of simple treks, we consider
treks that have simple sides and have exogeneous nodes as sources.

A linear covariance structure is a directed acyclic graph in which each endogeneous node
is the only child of at least one exogeneous parent, and we have attached distinct symbols
to each exogeneous node as well as to each edge.

We call a trek an ultratrek if its source is exogenous and both its sides are simple. Given
an ultratrek � between I and J , we write X(�) for the �rst node starting from I (or,
equivalently, the �rst node starting from J) where �'s I and J sides intersect. We call X(�)
the base of �. We write # � for the subtrek that follows � from I to X(�) and then directly
to J , and we write " � for the trek that follows � from X(�) to the source and then back
to X(�). (See Figure 13.) Notice that # � is a simple trek from I to J , in fact it is �'s only
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Figure 13: # � = �1�4 and " � = �2�3.

simple subtrek from I to J . On the other hand, " � is an ultratrek.
Given an ultratrek in a linear covariance structure, we write }� for the product of all

the symbols along the ultratrek (the edge symbols together with the symbol attached to the
source, which is exogenous), and we call }� the symbol product over �. If � consists of a
single node, its source, then }� is simply the symbol attached to the source. Given any two
nodes I and J , we set

}(I; J) =
X

f}�j� 2 �(I; J)g;

where �(I; J) is the set of all ultratreks from I to J . We call }(I; J) the ultratrek sum
between I and J . By convention, the ultratrek sum is equal to 0 if there are no ultratreks
(i.e., no treks) between I and J . If I is exogenous, then < I > is the unique ultratrek
between I and I, and hence }(I; I) is the symbol attached to I.

Theorem 3.4 If I1; I2; J1; and J2 are distinct nodes in a linear covariance structure, then
the following statements are equivalent.

1. There is a choke point between fI1; I2g and fJ1; J2g.

2. The polynomial }(I1; J1)}(I2; J2) is equal to the polynomial }(I1; J2)}(I2; J1).
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Proof The proof is completely analogous to the proof of Theorem 3.3.

First we show that Statement 1 implies Statement 2. Suppose X is a choke point between
fI1; I2g and fJ1; J2g; we assume without loss of generality that it is a choke point on the
fJ1; J2g side. Given an ultratrek � from I1 to J1, and an ultratrek � from I2 to J2, we
may decompose the two treks as in Figure 11. Here �2 is the part of � that goes from X

to J1, and �2 is the part of � that goes from X to J2. Since X is a choke point on the
fJ1; J2g side, the bases of two treks lie on the other parts, �1 and �1. Let F (�; � ) be the pair
(�1�2; �1�2). It is obvious that �1�2 is an ultratrek from I1 to J2, and �1�2 is an ultratrek
from I2 to J1. Moreover, the mapping F is its own inverse, and hence it is a one-to-one
mapping between the set of (I1�J1 ultratrek, I2�J2 ultratrek) pairs and the set of (I1�J2
ultratrek, I2 � J1 ultratrek) pairs. Since the same edges (with the same multiplicities) are
involved in the pair (�1�2; �1�2) as in the pair (�; � ), the products }�}� and }(�1�2)}(�1�)
are equal. This establishes that the polynomials }(I1; J1)}(I2; J2) and }(I1; J2)}(I2; J1)
have the same terms and hence are equal.

I1 I 2 J 2J 1

X Y

W Z

Figure 14:

Now we show that if Statement 1 is false, then Statement 2 is false. Suppose there is no
choke point between fI1; I2g and fJ1; J2g. By Theorem 2.6, we know that there exist treks
�0 and �0 between fI1; I2g and fJ1; J2g such that the fI1; I2g side of �0 is disjoint from �0
and the fJ1; J2g side of �0 is disjoint from �0. These treks must have distinct sources, as in
Figure 12, where we have assumed, without loss of generality, that �0 is a trek from I1 to J1
and �0 is a trek from I2 to J2. If �0 is not an ultratrek { i.e., if X is endogeneous, then we
extend it to an ultratrek � from I1 to J1 by adding an excursion from X to an endogeneous
parent for which X is the only child. We designate this parent by W , as in Figure 14;
notice that W must be distinct from Y (since Y has other children) as well as from all the
other nodes on �0 (since they are endogeneous). Similarly, we extend �0, if necessary to an
ultratrek � from I2 to J2. Thus we obtain ultratreks � from I1 to J1 and � from I2 to J2 such
that the I1 side of � is disjoint from � and the J2 side of � is disjoint from �. It is evident
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from Figure 14 that the edges in these two ultratreks (with whatever multiplicities they may
have) cannot be rearranged into treks from I1 to J2 and I2 to J1. Indeed, since �'s I1 side
is disjoint from the rest of � and all of � , any trek from I1 to J2 that uses only the edges in
� and � must go up �'s I1 side to W , go back down to X, and then start on down toward
J1. Similarly, any trek from J2 to I1 using only these edges must go up � 's J2 side to Z, go
back down to Y , and then start on down toward I2. These two parts cannot be extended
so as to form into a trek between I1 and J2, since they have arrows pointing towards each
other. It follows that the term }�}� , which appears in }(I1; J1)}(I2; J2), does not appear
in }(I1; J2)}(I2; J1); the two polynomials are not equal. 2

4 Application to Statistical Inference

Let us now interpret linear correlation structures by taking the nodes to represent real-
valued random variables, with a joint probability distribution in which each variable has
zero partial correlations, given its parents, with its non-descendants (Pearl 1988). This
implies in particular that the exogenous variables are all uncorrelated with each other. We
interpret the symbols on the edges pointing into an endogeneous variable as the regression
coe�cients in the linear regression of that variable on its parents, as in Figure 15.

X1 X2

X3 X4

X5

X6

b31 b32

b42

b53

b64

b65

31X  = b  X + b  X  + E32 213 3

42X  = b  X   + E24 4

64X  = b  X + b  X  + E65 546 6

53X  = b  X   + E35 5

Figure 15: The graph on the left is a linear correlation structure associated with the recursive
linear regression equations on the right.

We interpret linear covariance structures in a similar way: we take the nodes to rep-
resent real-valued random variables, such that the exogeneous variables are uncorrelated,
the symbols on the exogeneous variables represent their variances, and each endogeneous
variable is a linear combination of its parents, with the symbols on the edges representing
the coe�cients.

Since the errors in the regressions equations for the endogeneous variables in a linear cor-
relation structure have zero correlations with each other and with the exogeneous variables
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in the structure (this follows from the assumption that each variable has zero partial corre-
lations with all its non-descendants given its parents), we can expand the linear correlation
structure to a linear covariance structure by adding to each endogeneous variable a parent
representing the error in its regression equation, as in Figure 16. Notice that when we add
the error, we put a new symbol on it, representing its variance, and also a symbol on the
new edge. The symbol on the edge replaces the unit coe�cient for the error in the regression
equation, so that the regression equation becomes the equation representing the endogeneous
variable as a linear combination of its parents in the linear covariance structure.

E3

31X  = b  X + b  X  + b  E32 213 3

42X  = b  X   +  b  E24 4

64X  = b  X + b  X  + b   E65 546 6

53X  = b  X   + b   E35 5
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Figure 16: The linear covariance structure corresponding to the linear correlation structure
of Figure 15.

Let us write �(I; J) and Cov(I; J), respectively, for the correlation and covariance of any
pair of random variables I and J . The following theorem, which is easily proven by induction
on the number of variables in the directed acyclic graph, shows the substantive signi�cance
of the trek sums.

Theorem 4.1

1. If every variable in a linear correlation structure has variance one, then �(I; J) =
�(I; J) for every pair of variables I and J in the structure.

2. Cov(I; J) = }(I; J) for every pair of variables I and J in a linear covariance structure.

Statement 1 is due to Sewall Wright (1934); it is the centerpiece of his method of path
analysis.

We are interested in constraints on correlations or covariances that are equivalent to the
vanishing of polynomials in the symbols in a linear covariance structure. Examples include
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the constraint that a particular correlation, say �(I; J), should equal zero, which is equivalent
to

}(I; J) = 0; (1)

or the constraint that a particular \tetrad di�erence", say

�(I1; J1)�(I2; J2)� �(I1; J2)�(I2; J1);

should vanish, which is equivalent to

}(I1; J1)}(I2; J2)�}(I1; J2)}(I2; J1) = 0: (2)

We call such a constraint on correlations structural if the polynomial is identically equal to
zero { i.e., if the constraint holds for every possible choice of the exogenous variances and
endogeneous coe�cients. We call it accidental otherwise { i.e., if it holds only for particular
variances and coe�cients. It is reasonable to call such constraints accidental, for they would
not be expected if the variances and correlations were themselves chosen at random from
some continuous joint probability distribution. If we specify a �nite class of such constraints
(e.g., all possible vanishing correlations, partial correlations, and tetrad di�erences for a set
of variables) before examining a body of data extensive enough to test them, then it will be
reasonable for us to infer that those constraints that do hold are structural, and this will
give us information about the linear correlation structure.

The next theorem, the tetrad representation theorem, is an important tool in this program
of statistical inference. The ideas involved in this theorem go back to Spearman (1928), but
the theorem was formulated and proven only recently, by Spirtes, Glymour, and Scheines
(1993).

Theorem 4.2 Suppose I1; I2; J1, and J2 are distinct variables. Then

�(I1; J1)�(I2; J2)� �(I1; J2)�(I2; J1) = 0

is a structural constraint if and only if there is a choke point between fI1; I2g and fJ1; J2g.

This theorem follows immediately from Theorems 3.4 and 4.1.
The corollary to Theorem 3.4 yields the following generalization of the tetrad represen-

tation theorem.

Theorem 4.3 Suppose I and J are disjoint set of variables in a linear correlation structure.
Then

�(I1; J1)�(I2; J2)� �(I1; J2)�(I2; J1) = 0

is a structural constraint for every subset fI1; I2g of I and every subset fJ1; J2g of J if and
only if there is a choke point between I and J.



RRR 26-93 Page 21

References

[1] Bentler, P. (1985). Theory and Implementation of EQS: A Structural Equations Pro-
gram. BMDP Statistical Software Inc., Los Angeles.

[2] Blalock, H. (1961). Causal Inferences in Nonexperimental Research. University of North
Carolina Press, Chapel Hill, NC.

[3] Bollen, K. (1990). \Outlier screening and a distribution-free test for vanishing tetrads".
Sociological Methods and Research 19, 80-92.

[4] Holzinger, Karl J. and H. H. Harmon (1941). Factor Analysis: a Synthesis of Factorial
Methods. University of Chicago Press, Chicago, IL.

[5] Joreskog, K. and D. Sorbom (1984). LISREL VI User's Guide. Scienti�c Software, Inc.,
Mooresville, IN.

[6] Kelley, T. (1928). Crossroads in the Mind of Man. Stanford University Press, Stanford,
CA.

[7] Kiiveri, H. and T. Speed (1982). \Structural analysis of multivariate data: A review".
Sociological Methodology, Leinhardt, S. (ed.). Jossey-Bass, San Francisco.

[8] Lauritzen, S., A. Dawid, B. Larsen, and H. Leimer (1990). \Independence properties of
directed Markov �elds". Networks 20, 491-505.

[9] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Mateo, CA.

[10] Simon, H. (1953). \Causal ordering and identi�ability". Studies in Econometric Meth-
ods, Hood and Koopmans (eds), 49-74. Wiley, New York.

[11] Simon, H. (1954). \Spurious correlation: a causal interpretation". JASA 49, 467-479.

[12] Spearman, C. (1904). \General intelligence objectively determined and measured".
American Journal of Psychology 15, 201-293.

[13] Spearman, C. (1928). Pearson's contribution to the theory of two factors. British Journal
of Psychology 19, 95-101.

[14] Spirtes, P., C. Glymour, and R. Scheines (1993). Causation, Prediction, and Search.
Lecture Notes in Statistics 81. Springer-Verlag. New York.

[15] Spirtes, P., R. Scheines, and C. Glymour (1990). \Simulation studies of the reliability
of computer aided speci�cation using the TETRAD II, EQS, and LISREL Programs".
Sociological Methods and Research 19, 3-66.



Page 22 RRR 26-93

[16] Spirtes, P. (1993). Directed Cyclic Graphs, Conditional Independence, and Non- Recur-
sive Linear Structural Equation Models. Department of Philosophy Technical Report
04-93, Carnegie Mellon University.

[17] Wishart, J. (1928). \Sampling errors in the theory of two factors". British Journal of
Psychology 19, 180-187.

[18] Wright, S. (1934). The method of path coe�cients. Annals of Mathematical Statistics
5, 161-215.


