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Abstract
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be used directly for causal reasoning in any computational logical framework that
accommodates type theory. We also put the axiomsin classical form and show that in this
form they are adequate for the representation in terms of event trees established by Shafer
(1998a) using stronger axioms.

1 Research for this article has benefited from NSF Grant SES-9819116 to the three
authors and from support for Glenn Shafer by the Fields Institute for Research in the
Mathematical Sciences. We have aso benefited from comments by Tatsiana Levina, Ross
Shachter, and two referees.

2 Glenn Shafer isin the Department of Accounting and Information Systems, Rutgers
University, 180 University Avenue; Newark, New Jersey 07102-1897. Phone 973-353-1604.
Heisaso Visiting Professor, Department of Computer Science, Royal Holloway College,
University of London.

3 Peter R. Gillett isin the Department of Accounting and Information Systems, Rutgers
University, Janice H. Levin Building, 94 Rockafeller Road; Piscataway, New Jersey 08854-
8054. Phone 732-445-4765.

4 Richard B. Scherl isin the Department of Computer and Information Science, New
Jersey Institute of Technology, Newark, New Jersey 07102-1982. Phone 973-596-2657.


mailto:gshafer@andromeda.rutgers.edu
mailto:gillett@business.rutgers.edu
mailto:scherl@cs.njit.edu

Shafer, Gillett, and Scherl May 8, 2000

Table of Contents

1T e e 3
[T1. AnTnformal LOOK at EVENt SPACES.........oocoveeeeeeeeeseeeseeeereseeerseeseseeeseseeseseeseseseesereeseesees 4
L Y g O I == TP PPPPP 4

P. Philosophical Aside: Nature @S WITNESS.........ccuvvivveieieeeeeeeeeeeeeeeeeeeeeeea e 7

LB. Clades......coovsssisiisiiiisisssssscsissssseissss s 7
[T, THE REFINEMENT OFOET ...co.ooooeoooeeeeoeeeeeeeeeeeeeeereeeeereenenesenenseenneseneeeeeneeseneneeseeeesesenees 9

. The TemMPOral LattiCe.......cc.eeiiiiieceieceee et e et e e 11

5. A SIMPIE TEMPOTAl LOGIC ...ttt eeee et eeeneeeeeneeeenneeens 14

7. Generdizing to aRElatiVISHC WOIT .........cooueeeeeiiieiiecieeeee e e 16

[l11. Constructive AXioms fOr EVENt SPACES..............cvveveveeeueeereriereeeeerererseseseceresenseseereeassnas 20
D. Elements of INtuitioniStic REASONING..........ccueeiiuieieiiieeiieeeeeecieeeeeeeeeeeeeveeeeneeeeas 22

1. The Refinement Order: Happening AlONE.......ccceieeeieiiiiiiieiieee e 23

R, OVEITAD. ...ttt er e e r e e reaenes 26|

SR L= (o = PP T PP TP T PP PP PP PO P PP PPPPPPPT 28

. The RESOIULTON AXIONM.....cuiiiiieiiecieeeieeeeetee ettt e et eeereeenreeereeenreeeseeenreereeenns 30

b. Possibility and ImMPOSSIDIITY . ...eeeeeieiieeeieeeeee e 32

6. Relative Complementsin the Refinement Order...........ccuvvveuveeeueeecieeeiiieiiieeeenenenns 33

7. The Refinement Order: SUMMAIY.........ccueeecueieieueiiiieieeieeeeeeeeeeeeeeeeeeseeesireeesreeens 37

B. The Temporal Order: Happening First ........cocoeeveiiieiiieiieeeeeee i, 38

0. HaPPENING ATLEY ..ottt ettt e et e e eateeeenreeeeneeeeeneeesaseeessreeens 43

10. HapPening SEHCHY ATTEN .....c..eiiieeieieeieeei ettt e e e e eeeeeeneeeeneeeeneeeans 47

11, HAPPENING CIEAN .......oovieieeeieeceeeeee et ere e e e e sneeereesreeenns 47

2. Diverging and IMPIYING.......coieuieiiiiiiiiiieieiiie ittt se i s s s e 48

13, INCOMPArADIE EVENES........oooieeiiieieeeie ettt eee e eee e et e e enteeeenreeeeneeeans 49

(T Es o 1 = o= PP PP 51

[15. The TEMPOTAl LaIliCE........cccveieeeeieeeiie ettt et eeaeeeeaeeeeeneeesseeeenneeeans 52

16. AXiomsfor Event SPaces. SUMMAIY ........ccveeeeuveeeeueeeiitiieiiteeeeteeeeiueeeeseeessseesseeeans 54

V. Classical AXiomS fOr EVENt SPACES.........c.cveveviueeeeeerereeieeeeerreneeseseeeseseeseseseesesesseseesensacas 56
1. The ClassiCal AXIONMIS......ccuueieiitieeeieeeteeeieeeeteeetee et eeeteeeteeeseeereeereeenseesseesseeenseesseeenses 56

P. The Cladesin an Event Tree Form an Event Space.........ocoveeeieieieiiceeiieeieiieeeen, 57

B. The O Ultrafiltersin an Event Space Form an Event Tree............cvovevveecevevvennne.. 58
YA S I 63
1. Putting EVENtSinto ClassiCal LOGIC .......cuuvicuieeeuiieieiiieceieeceieeeeteeeeeeeeseveeeeveeesneeeans 63

R. Putting Events into INtUitioniStiC LOQIC . ..uuiiiiiiiiiisiieieeeee et 64

BB. Conclusion and FULUrE PrOSPECES...........o.coocoeeeseeeeeseeeeseseeseseeesesneseseenesseeeeseseereseseens 65

V1. COMPAITSONS.......ceceveereeeeerseeeeeeeseseeeesesseseesesseseeeeesessessesessresseesnssesssenssrsssessnssseseenssreseens 66
R e R T 66

D. The StUation CalCUIUS...........ococooooeeeeeeeeeeeseeeeeseeeeseesesereseseeseseseeseseeeeseseeeeseseeneseseens 66)
Appendix. Additional CONSITUCLIONS.............ooueveveeeeeeeieeieeeeeseiseeeeseesesseseesenseeeessseesesesreseens 68
1. Decomposing EWith RESPECEtO F.........oovveieiiiiieceeeceee e 68

. FAIUI ..ttt e et s st s s s e s sseseasseseasseseanseseassessansessnesssnseeesresesns 69
[REFEIENCES. ...ttt eeeees s e ees et seeeeetseneeseseneeeaesesssesesnssessesnssessnenssessrenesnssreseens 71

To appear in Annals of Mathematics and Artificial Intelligence 2



Shafer, Gillett, and Scherl May 8, 2000

|. Introduction

An event space is a set of instantaneous events that vary both in time and specificity. The
concept of an event space provides a foundation for alogical—i.e., modular and open—
approach to causal reasoning. Mathematically, event spaces generalize both event trees and
Boolean algebras. Shafer (1998a) gave axioms for event spaces and demonstrated the
adequacy of these axioms by showing that they lead to a representation in terms of an event
tree, generalizing Stone' s representation of a Boolean algebrain terms of afield of subsets.
Unfortunately, Shafer’ s axioms are not intuitively transparent and do not lend themselves to
computer implementation. They are also unnecessarily strong in some respects. In
particular, they make the assumption that the failure of an event isitself awell-specified
event.

In this article, we provide simpler and more transparent axioms for event spaces. These
axioms are constructive in the intuitionistic sense, which means that they can be used directly
for causal reasoning in any computational system that supports higher-level type theory. We
analyze the axioms carefully from a constructive point of view—i.e., without the principle of
the excluded middle. We aso translate them into classical form and show that in thisform
they are adequate for the representation proven by Shafer (1998a) with his stronger axioms.

Because the concept of an event space is not yet widely understood, we preface our
axiomatization with an extended intuitive explanation of how the concept arises from the
study of event trees. Thisexplanation, in Part |1, includes a discussion of how the concept of
an event space can be generalized to accommodate the theory of relativity. Part I11, which
formulates and studies our constructive axioms, is the heart of the article. In Part IV we
tranglate the axioms into classical form and prove the representation theorem.

In Part V, we discuss briefly how our axioms can be used directly asalogic in higher-
level type theory, and in Part VI we compare our framework with other approaches to
temporal and causal reasoning. Some extensions are discussed in an appendix.

To appear in Annals of Mathematics and Artificial I ntelligence 3
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II. AnInformal Look at Event Spaces

Event spaces embed Boolean algebrasin event trees. When we think of the elements of a
Boolean algebra as events, these events are ordered by specificity; E [J F means that the
event E narrows the event F by specifying more detail about what happens. In an event tree,
on the other hand, the partial order istemporal: E < F means that the event E happens after
the event F In an event space, these two partial orders coexist.

Aswewill now explain in detail, the events in an event space can be represented as sets
of nodesin an event tree. This representation makes clear how the partial orders [J and < can
coexist: E [0 F meansthat the set representing E is contained in the set representing F, while
E < F means that the set representing E comes later in the tree than the set representing F.

We begin, in 881-2, by reviewing the concept of an event tree mathematically and
philosophically. In 83, we discuss when a set of nodesin an event tree can represent an
instantaneous event (no node in the set can lie below another one in the tree). In §884-6, we
discuss our two partial orders. [, under which the instantaneous events amost form a
Boolean algebra, and <, under which they form adistributive lattice. In 887-8, we discuss
additional constructions that were emphasized by Shafer (1998a). Finally, in 89, we discuss
how the concept of an event space can be generalized to accommodate the theory of
relativity.

This part of the articleis heuristic and intuitive. Intuitively, the eventsin event spaces
correspond to sets of nodes in event trees, and because event trees are relatively well
understood, we can use this correspondence to devel op our intuitions about event spaces.
Therest of the article will be moreformal. In Parts 1l and IV, we abstract formal axioms for
event spaces from the intuitions developed here. In Part VV, we show that these axioms are
faithful to the intuitions by showing that a space satisfying them is isomorphic to a space of
sets of nodesin an event tree.

1. Event Trees

Mathematically atreeis aset with a partial order <'in which any two elements with a
lower bound are comparable (G <' E and G <' F together imply that E <' For F<'E). This
ideaisillustrated in Figure 1.

S |t is matter of convention whether we write E < F or F < E when E happens after F.
Because we are accustomed to representing earlier times with smaller numbers, it may seem
natural to put the earlier event on the left. We choose instead to put the earlier event on the
right because, under the precise definitions that we will adopt, this makes E [1 F a special
caseof E < F. Thealternative, which is unnecessarily confusing, would be for E [0 Fto bea
special caseof F< E.

To appear in Annals of Mathematics and Artificial I ntelligence 4
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tir ee. This is at

Figure 1 When apartially ordered set is finite, we can arrange its elements in a diagram in which E <' F if and
only if thereis a path downward from F to E. The partially ordered set depicted on the left is not atree, because
the elements E and F have an element G below them both even though they are not comparable in the partial
ordering (neither is on a path below the other). The partially ordered set depicted on the right, in contrast, isa
tree; it has no incomparable pair E and F with an element G below both.

Calling atree an event tree means that we interpret its elements as instantaneous events
and that we interpret the partial order as temporal order; E <' F meansthat E, if it happens,
happens at the same time as F or after F. This permits E and Fto beequal. If E<'Fbut Eis
nottequal to F, then E can only happen if F happens strictly earlier; in this case we may write
E<F

An event tree is not necessarily finite, but we will illustrate our ideas using finite
diagramsasin Figures 1 and 2. These diagrams will follow the convention (common in the
statistics and economics literature but opposite to the most common convention in
philosophy and physics) that time runs downward. A path downward represents a history—
one possibility for how events may evolve.

Figure2 An event tree for what Rick may do after school. He may watch television right away, he may delay
watching television, or he may even end up reading instead of watching television. We assume that the
different paths down the tree represent all the ways in which the events shown can happen. At the outset, for
some reason, we can rule out the possibility that Rick might call his mother and then pump up his bicycle tire
afterwards.

To appear in Annals of Mathematics and Artificial I ntelligence 5
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A node E in an event tree has a dual meaning. On the one hand, E is an instantaneous
event—something that happens at a particular instant. On the other hand, E is a situation that
theworld isin at aparticular instant. The situation E is the situation that arises when the
event E happens. The event E isthe event that the situation E arises. The node F in Figure 2,
for example, represents both the event that Rick calls his mother and the situation in which
he does so.

The interpretation of atree as an event tree involves a number of assumptions, which are
not always made in other contexts where the words “ situation” or “event” are used, and
which should therefore be stated explicitly. These assumptions are explained most easily in
the finite case, where we can talk about the daughters of a situation—the situations
immediately below it.6

1. A daughter cannot happen until after its mother happens (strictly after; not at the
sametime).

2. Two distinct daughters of a situation are mutually exclusive; they cannot both
happen. In situation | in Figure 2, Rick may pump up his bicycle tire (G) or watch
television right away (E;), but he cannot do both.

3. Thedaughters of asituation (and even al paths down from the situation) are al
possible in that situation, no matter what else may be said about what has happened.
In situation G in Figure 2, where Rick has just pumped up his bicycletire, itis
possible that he will call his mother at the office and then read, no matter how much
pressure he put in the bicycle ti re.

4. The daughters of a situation are exhaustive; once the world isin that situation, one of
the daughters must happen. In situation | in Figure 2, if Rick does not pump up his
bicycletire (G), then he watches television right away (E;). Thereisno third
possibility.

5. Inorder to specify asituation fully, we must say how we got there. In other words,
we regard situations that are similar but are preceded by different histories as
different situations. Thisiswhy we assume that the situations form atree. If we can
get into asituation G after being in a situation E, then we cannot also get into G after
being in asituation F that is not in the same history (path down thetree) asE. If G <'
EandG<'F thenE<'ForF<'E.

6. By the same token, the same situation cannot arise twice as the world evolves (moves
down thetree). And hence the same instantaneous event cannot happen twice.

7. On the other hand, a situation does not specify completely everything that has
happened in theworld. It isonly asdetailed in its meaning asthetreein whichitis
Situated.

Another way of bringing out the density of meaning in an event tree isto consider the
different ways of explaining what is meant by E < F. One way of explaining thisrelation is
to say that E can only happen if F has already happened. Another explanationisthat in F,
E slater happening is possible. When E and F are represented by nodes in the same event

6

7 This assumption is not made in all cases. Weinsist on it here only because it gives us
aclear causal story from which to proceed. Our purposeis not to standardize the causal
assumptions made when trees are used but to develop an abstract language in which causal
assumptions can be stated precisaly, whether or not they can be or are represented in atree.

To appear in Annals of Mathematics and Artificial I ntelligence 6



Shafer, Gillett, and Scherl May 8, 2000

tree, these two conditions, which seem to have rather different content, are equivalent. As
we will see shortly, the two conditions do indeed have different content and are not
equivalent in general in an event space.

2. Philosophical Aside: NatureasWitness

From a philosophical point of view, the most challenging question raised by an event tree
isthe meaning of possibility. When we explain Figure 2, we say that it is possible at the
outset for Rick to call his mother or to watch television right away, and then we say there is
no third possibility. It isimpossible, for example, that he will read before he calls his
mother. What does this mean and how could it be known?

Over the centuries, philosophers have expounded many divergent doctrines about the
meaning of possibility. Some believe that because God knows exactly what will happen,
nothing elseis possible. This eliminates our whole enterprise, by reducing our event treeto a
straight line showing what actually happens. Others take the view that possibility isrelative
to knowledge and is therefore subjective or personal. If Peter knows more than Paul, what is
possible in Paul’s event tree may not be possible in Peter’s.

We will not try to cast new light on the meaning of possibility. Rather, we will work
under the everyday assumption that possibility is objective and evolves with time. An event
isat first objectively possible and then either happens or becomes impossible as the world
evolves. In order to acknowledge the force of the thesis that possibility must be relative to
knowledge, we will imagine a super scientist or demigod whose knowledge evolvesin step
with this objective possibility. Objective possibility is the same, we may suppose, as
possibility for this demigod. Her knowledge surpasses that of all actual agents, human or
artificial, but falls short of God' s perfect knowledge. Time does not pass for God, and events
do not happen, because God has already foreseen everything at the beginning of time. But
our demigod’ s knowledge increases with time, thus defining what is possible and marking
the happening of events. An event is possibleif the demigod has not yet ruled it out, it
happens when she witnesses it, and it becomes impossible when she rulesiit out.

The concept of a demigod whose superior knowledge defines objective possibility has a
long history. Laplace imagined such a demigod, whom he called I’intelligence superieure, in
order to explain determinism (Bru 1986), and Cournot used the same concept to explain
objective probability (Martin 1996). Shafer (1996) calls the demigod Nature and puts her at
the center of his philosophy of causality. From time to timein this article we will make use
of Nature in our intuitive explanations.

3. Clades

In our first look at event trees, in 8§ 1, we emphasized that individual nodesin an event
tree can be interpreted as instantaneous events or situations. Aswe will now emphasize, we
can also sometimes group nodes together and interpret the whole set as an instantaneous
event or situation. In Figure 2, for example, the instantaneous event that Rick calls his
mother is represented by the single node F, while the instantaneous event that he watches
television is represented by the three nodes E;, E,, and Es, taken together.

The concept of instantaneous event that we use in this article allows such an event to
happen only once as the world evolves. So we will say that a set of nodes in an event tree

To appear in Annals of Mathematics and Artificial Intelligence 7
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represents an instantaneous event if and only if none of its elements precedes another on a
path down the tree. We call a set of nodes satisfying this condition a clade.

Wat ch

Punp bi cycl e tel evi si on

tire up to B0#

Purmp bi cyclN\e
tire up to 6

Figure3 Moreor less air in the bicycletire.

We should not think of an instantaneous event represented by asingle nodein a
particular event tree as fundamentally different from an instantaneous event represented by
larger clade, since the difference liesin our choice of representation, not in the events
themselves. Indeed, any instantaneous event represented in one event tree by aclade
consisting of several nodes can equally well be represented in a different event tree by a
single node, and viceversaﬂ Figures 3 and 4 illustrate the point. In Figure 3, we add detall
to Figure 2, by specifying how much air Rick putsin histire, thus turning the single node F,
which represents the event that Rick calls his mother, into the clade { F1,F.}. In Figure 4, we
go in the opposite direction, removing detail from Figure 2 and thus representing Rick’s
watching television, which appears as the clade { E;,E,,E3} in Figure 2, as asingle node E.

Wat ch

Read .
tel evi si

Figure 4 Watching television as a single node.

We can draw event trees that disagree. But the event treesin Figures 2, 3, and 4 do not
disagree. They merely provide different levels of detail. Figure 3 says more than Figure 2,

8 A note of caution: Although any single instantaneous event can be represented by a
single node in some event tree (for example, an event tree with only asingle node, which is
taken to represent that event), there are cases where two instantaneous events cannot be
represented by single nodes in the same event tree.

To appear in Annals of Mathematics and Artificial I ntelligence 8
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and Figure 4 says less, but none of the three deny any assertion about possibility or
impossibility made by one of the others. For example, Figure 2 says that in the situation
where Rick pumps up hisbicycletire, it is possible that he will read later, and Figure 3
agrees, it tells us that no matter which pressure he putsin thetire, it is possible that he will
read later.

An event space consists of instantaneous events of the kind that can be represented as
clades. But it treats these events abstractly, without reference to their representation in any
particular event tree. An element of an event space will appear as asingle node in some
event trees, asaclade in others. Asaresult, the eventsin an event space can relate to each
other in agreat variety of ways. One instantaneous event may precede another (as F
precedes E; in Figure 2), and one may refine another (as Ez refines E in Figure 2), but often
therelation is more complex. Thereis, for example, no simple description of the relation
between { F,E;} and E in Figure 2.

F={FF B} %, B8 = {[E|F = {F, &*, B} 1 Hes BE B}
Here E strictly requires F. Thi|ls|HeaasFtsiati ctly allows E. This ne

E can happen only if F happens earhagpens, no matter how it happens,

Figure5 Ontheleft, E requires F, but we cannot say that F allows E; there is one way F can happen without E
being possible later, namely Fz*. On theright, F allows E, but we cannot say that E requires F; there is one way
E can happen without F happening first, namely E;*.

One aspect of the diversity of relations among instantaneous events is the diversity of
meanings that can be given to the statement that one event comes before or after another. In
the case of single nodes, there is no ambiguity. When we say that F strictly precedesE, this
means E is strictly below F in the treg; there is a path from F down to E. Thisimplies both
(2) that E can happen only if F happens strictly earlier (in this case, we say that E strictly
requires F), and (2) that E’s later happening is possible in the situation where F happens, no
matter what else happens then (in this case, we say that F strictly allows E). When we
consider clades consisting of larger numbers of nodes, these two conditions are not
equivalent, as Figure 5 illustrates.

4. The Refinement Order

Suppose E and F are instantaneous events, and suppose that whenever E happens, F
happens simultaneously. In this case, we say that E refines F, and wewrite E 0 F. When E

To appear in Annals of Mathematics and Artificial I ntelligence 9
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and F are represented as clades in the same event tree, E (1 F means that the set representing
E isasubset of the set representing F. Since set inclusion is a partial order, (] isapartial
order on instantaneous events. This partial order has a zero, the impossible event, which we
will designate by A, and which is represented in an event tree by the empty clade ]

Any two instantaneous events E and F have a greatest lower bound in the order [J, which
isrepresented in an event tree by the their set-theoretic intersection EnF. We call EnF the
overlap of E and F. Intuitively, EnF isthe event that E and F happen simultaneously. This
event may be possible, asin Figures 7 and 8, or impossible, asin Figure 6.

E={E,ExEs}
F={F.F}

EnF=A
EOF = {Ey,ExE3 F1,Fo}

Figure6 Two eventsthat do not overlap and can be merged.

F E= { E]_,Ez,E3,G}
F={G,F.}

EnF={G}
@ ECF = {E]_,Ez,Eg,G,F]_}

©6® ®
E OO0

Figure 7 Two eventsthat overlap and can be merged.

9 Theimpossible event isthe only instantaneous event that cannot also be thought of asa
situation.

To appear in Annals of Mathematics and Artificial Intelligence 10



F E= { E]_,Ez,E3,G}
E F={F.F2G)

‘g @ W@’ EnF={G}
d bd d) EDF does not exist. (Ez and F cannot be

in the same clade, and E; and F; cannot be
in the same clade.)

Figure 8 Two events that overlap and cannot be merged.

The story about upper boundsis not quite so simple. As Figure 8 illustrates, two
instantaneous events E and F may fail to have an upper bound in E and F. This happens
when E and F are represented by clades such that a node in one is above a node in the other
on some path. Because a clade cannot contain two such nodes, no clade can encompass both
E and F in this case; there is no instantaneous event that happens simultaneously whenever E
happens and also whenever F happens. If E and F do have an upper bound, then they have a
least upper bound, which we designate by ECJF and call the merger of E and F.

Given two instantaneous events E and F, we can aso form the event that E happens
without F happening at the same time. This event, designated by E\F, is the complement of F
relative to E.

Except for the fact that the least upper bound of E and F does not always exist, the partial
order [ has all the properties of a Boolean algebra: it isdistributive, unique relative
complements always exist, etc. Infact, if we consider only instantaneous events that refine a
fixed instantaneous event |, then we do have a Boolean algebra: the Boolean algebra
consisting of all subsets of I.

5. TheTemporal Lattice

Suppose E and F are instantaneous events, and suppose that whenever E happens, F
either happens simultaneously or else has already happened earlier. In this case, we say that
E requires F, and we write E < F.J[0] If E and F are represented as clades in the same event
tree, then E < F means that each nodein E iseither (1) in F or (2) on a path down the tree
fromanodeinF. Asitturnsout, < isalso apartial order on instantaneous events. It hasthe
same zero as [I: theimpossible event.

It is clear from the definition of < that if E [ F, then E< F. Another special caseof E<F
isthe case illustrated on the left of Figure 5—E strictly requires F. When E refines F (E O
F), dl of Eisinside F. When E strictly requires F, none of Eisinside F. These are two
extremes; in the general case where E < F, some of E may be inside F while the remainder is
below F. Noticethat “E strictly requires F” is a stronger conditionthan“E< F but E# F.”

10 Thisisthe same as the relation on the left of Figure 5, except that E and F may
overlap.
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Thisis another aspect of how cladesin an event tree relate to each other in more complicated
ways than individual nodes.

Given any two instantaneous events E and F, we may define a new event: the event that
E happens after F. (Here we use “after” in abroad sense, to mean after or at the same time).
We designate this event EF. In an event tree in which both E and F appear as clades, EF will
be the clade consisting of all nodesin E that are also in F or else on a path down from a node
in F. Noticethat E < Fif and only if E = EF. The construction EF isillustrated in Figure 9.

E ={Ey,E,E3,G}
F= { Fl,Fz,G}

E EF = {GE3}

§ & S0 en Ll
When G happens, E and F happen at the
d b d é same time. When E; happens, E happens

strictly after F. When F, happens, F
happens strictly after E.

Figure9 One event happening after another.

The significance for causal thinking of the temporal order < and the construction EF may
not be obvious at first glance, but we can use them to define relations that clearly do have
causal meaning. Here are four examples:

e IfG<sEand G<Fimply G=A, then we say E and F diverge, and we write div(E,F).
This means that they cannot both happen (because there is no situation H where they
both have happened). Thisrelation is symmetric; div(E,F) if and only if div(F,E).
But we can rephrase it in away that seems asymmetric: the happening of E makes F
impossible, if Fwas already not impossible. Or we can say that in the situation E, F
isimpossible. Figure 6 gives an example where E and F diverge.

o If div(G,F) implies div(G,E), thenwe say E implies F, and wewriteE - F. This
means that whenever happening of F isruled out (because we are in situation G that
diverges from F), the happening of E isalso ruled out. Soif E happens, and hence
will never be ruled out, F also will never be ruled out and hence must happen at some
point. (We assume that every event eventually happens or fails.) Figure 10 givesan
example.

e IfGOEandG#Aimply FG# A, then we say E allows F, and we write E 0— F.
This meansthat in the situation E, F is possible, no matter what else has happened.

* WhenE<FandF{¢- E,wesay F precedes E. This hasthe same meaning asthe
partial order in an event tree. Two instantaneous events E and F can be represented
in an event tree where they satisfy E <' Fif and only if F precedesE. If one of the
two relations E < Fand F 0— E is satisfied but the other isnot (asin Figure 5), then
there is no event tree in which both events can be represented. See (Shafer 1998a) for
further discussion.
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OO0 Je

Figure 10 EimpliesF.

As it turns out, instantaneous events form adistributive lattice with respect to the
temporal order <. This means that every two instantaneous events E and F have a greatest
lower bound ELF and aleast upper bound ELF, and [Jand [ obey the distributive laws. We
call ECF the ending of E and F. It isthe instantaneous event that E and F finish happening,
and it can happen in three different ways: E and F may happen at the same time, E may
happen after F has already happened, or F may happen after E has already happened. We
call ECJF the beginning of E and F. It isthe instantaneous event that E and F begin to
happen, by at |east one of them happening. It aso can happen in three different ways. E and
F may happen at the same time, E may happen without F yet having happened, or F may
happen with E yet having happened.

The ending and beginning of E and F can be defined in terms of the constructions we
have already mentioned: Overlap (EnF), Merger (ECJF), Complement (E\F), and After (EF).
Indeed,

ECF = EFOFE, (11.5.2)
and
ECF = (E\EF)D(R\(FE)O(EnP). (11.5.2)
Because EnF is arefinement of both EF and FE, it is contained in ECF aswell asin ECF.

In Figure 8, the beginning and ending are given by ELF = { F,,G,E3} and ELF =
{E1,E2,G,F1}. The configuration of these eventsin the event tree is depicted schematicaly in
Figure 11.

EAF EVF

Figure 11 The general shape, in an invisible event tree, of the beginning and ending of two events E and F.
Here, asin Figure 8, we suppose that the two events lie across each other in the event tree, so that either can
happen before the other. The ending is then the lower bow, possibly with its wings chopped off, while the
beginning is the upper bow, with the full extent of its wings.
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If the merger ELCJF exists, then it is the same as ELJF, and then EnF is also the same as
ECF. Thishappensin Figures6 and 7.

6. A Simple Temporal Logic

Aswe shall seein Parts |l and 111, we can provide afull set of axioms for event spaces
using only the two partial orders [J and < and the five fundamental constructions EnF, ELIF,
E\F, A, and EF. The axioms for these two partial orders and five constructions constitute a
simple but surprisingly powerful and flexible temporal and causal logic.

One aspect of the power of thislogic isits ability to encode the information in an event
tree. Figure 12 shows a straightforward encoding for a simple tree consisting of a mother
and daughters. By repeating this encoding for each mother, we can encode the information
contained in any finite event tree.

Ai<land Ainl =A,fori=1,...,n
| 0— Aj, fori=1,....n.

div(AiA), L<ij<n.

| - A0A0.--OA.

El SN o

Figure 12 Theinformationin an event tree. The four conditions correspond to the first four points about the
interpretation of an event treein 81. They do not include any requirement that the A, be “immediate”
successors of |. In an event space, we always leave open the possibility that additional situations may be
interpolated between a given situation and alater situation.

More importantly, our logic can encode information that does not fit the mold provided
by the concept of an event tree. We often find ourselves working with events,A1,Ao,..., A,
about which we know some but not all of the information listed in Figure 12. When thisis
the case, the modularity of our logic permits us to state the information we do have and draw
inferences from it. Research workers in disciplines such as operations research and decision
analysis, which use models that incorporate event trees, often note that the most difficult part
of their work is the modeling step. The analyst must put great effort into finding or
conjecturing enough information to define atree, even when thisinformation is not logically
relevant to the inferences that are needed. A more modular approach obviously alows the
analyst to concentrate instead on information that is really relevant.

Even when the available information is equivalent to that in atree, it may be more natura
to elicit and expressit logically. Consider Figure 2, where we began with these events:

| = Get home from school.

G = Pump up bicycletire.

E = Watch television.

F = Cal Mom at office.

R = Read.
Figure 2 suggests that we express our information about E in terms of the decomposition Ej,
E,, and E3, where

E;, = E\EG, E, = EG\EF, Es=EF.

Thisleads to the logical statements on the left in the following table.
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Figure 2’'sinformation expressed in terms
of l, G, F R, E]_, E2, and E3.

Figure 2’ sinformation expressed in terms
ofI,G,E, F,and R.

G=sI,Gnl=AE1<I,Eanl =A
F<SG FnG=AE<G EnG=A
R<F RnF=AE<F EnF=A

G<I,Gnl=A,E<I,IE=A
F<G,FnG=A,GE=A
R<F,RNnF=AFE=A

10 G, 10— E; 10> G, 10 E
GO~ F, G0 E GO~ F,Go- E
Fo- R FO- Es Fo- R FO- E
div(G,Ey) div(R.E)
div(F,E»)

div(R,Es)

| - GOE, | - GLE

G - FOE, G - FE

F - ROE; F_ RE

It is more likely, however, that our knowledge begins as knowledge about E, and it is clearly
simpler to expressit in thisform, asin the right column of the table. (Wewill leaveit to the
reader to verify, using the axiomsin Part 1V, that the statements on the right are equivalent,
taken together, to those on the left.)

The advantages of alogical notation over a graphical representation grow as we add more
events to the conversation. Even if the new eventsinvolve little additional information, they
may require a substantially enlarged event tree, with great repetition. This can be illustrated
by the progression from Figure 4, where we have only the three events |, R, and E, to Figure
2, where the events F and G are interpolated, to Figure 3, where G is decomposed into two
parts, G; and G,. Aswe seein thelast panel of the following table, the decomposition of G
involves only four simple statementsin the logic, whereasin Figure 3 it involves the
duplication of an entire branch of the tree.
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Graphical Representation

L ogical Representation

R<LE<I,RnI=AEnl=A

10~ R, 10> E
div(RE)
| - ROE

Wat ch
tel evisi

Read

Add to preceding:

G<l1,Gnl=A
F<G,FnG=A,GE=A
R<F, RnF=AFE=A
10— G

G- F, GO~ E

FO- R FO- E

div(R,E)

| - GLE, G - FLE, F - R(E

Add to preceding:

Wat ch
tel evision

G #A
G,z AN
(31(1(32 =A
G= (31[](32

Punp bi cyche
tire up to 6Q#

tire up to BO#

7. Generalizing to a Relativistic World™]

This article is motivated by a desire to develop systems for ordinary causal reasoning, not
reasoning systems for space travelers. A thorough logical analysis of temporal relations
should, nevertheless, respect the insights of Einstein’s theory of relativity. Inthe world as
Einstein has taught us to understand it, events do not all lie along a single universal time line.
An event E can be said to precede an event F only if the locations of E and F in space and
time permit the news of E’s happening, traveling at the speed of light from where E happens
to where F happens, to arrive by the time F happens. If the two events are far apart in space,
it may be that neither precedes the other in this sense. They are incomparable. Yet if they
both happen there is alater situation where they are both in the past—i.e., where the news of
both has arrived.

It is very easy to see that the concept of an event tree does not accommodate Einstein’s
insights. Indeed, his fundamental insight is violated by the condition that makes a partially

11 Theideasin this section are not needed for an understanding of the remainder of the
article, but they motivate the organization of the last few sections of Part I11.
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ordered set atree—the condition that if both Eand Fareinthepastof G(G<Eand G<F),
then either E or F precedesthe other (E< For F<E).

From a philosophical point of view, the difficulty can be located in the fact that an event
tree represents the possibilities for the increasing knowledge of a single witness. Aswe
explained in 82, this witness, Nature, aways knows everything that has happened so far. Her
knowledge grows only inasmuch as she learns new things as they happen. A relativistic
generalization of this picture would require a plethora of witnesses, who follow different
paths through space-time. In agiven situation E, we will find many of these witnesses, who
have followed different paths to get to the same place at the same time. In E they will all
know the same things; for they will have pooled their knowledge, so to speak, thus coming to
know everything that has happened in the Minkowski cone that constitutes the past of that
situation. But as one of these witnesses moves forward in time, her past Minkowski cone
grows; she learns not only about what happens as she moves forward but also more about
what has aready happened. Events enter her past without passing through her present.

The axiomatization of event spaces we provide in Part |11 isfaithful to the picture of an
event tree and hence isinconsistent, as awhole, with relativity. But it can easily be
generalized so it is consistent with relativity. The relativistic generalization retains the
refinement order [, the temporal order <, and the five fundamental constructions EnF, ELIF,
E\F, A, and EF, with some clarifications in their meaning. We lose only two final axioms,
which reduce the structure to a tree and permit the construction of the ending ELCJF and the
beginning ELIF.

Thefirst step in the relativistic generalization isto clarify the meaning of the refinement
order [1. We have said that E [J F means that whenever E happens, F happens
simultaneously. In anon-relativistic world, “simultaneous’ means simply “at the same
time.” Butinareativistic world, it means “at the same time and at the same place.” This
must be kept in mind in interpreting all the related constructions. For example, the greatest
lower bound EnF is characterized by two axioms, which we can state here in this form:[2]

Axiom2A EnFOEandEnFOF.

Axiom2B If GO Eand G O F, then G O EnF.

According to these axioms, EnF is the event that E and F happen at the same time and the
same place. (Axiom 2A says that when En F happens, both E and F happen at the same time
and same place, and Axiom 2A says that when E and F both happen at the same time and
place, EnF happens there, too.)

The least upper bound EL1F does not always exist, but the condition for its existence and
its characterization when it does exist can be stated in this way:[3]

Axiom3 IfEOI and F O, then ECJF can be formed, and ECIF then satisfies E [J ELIF,

and F O EOF, and EOF O 1.

This says that ELIF happens at the same time and place as E whenever E happens and at the
same time and place as F whenever F happens. It aso has an interesting further
consequence: if E and F are both refinements of the same event I, and they both happen,
then they must happen at the same time and place as each other (because they both happen at
the same time and place as ELJF and I).

12 See 82 of Part 1.
13 See 83 of Part I11.
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The condition that two refinements of an instantaneous event must happen at the same
time and place if they both happen constitutes a restriction on what we are allowed to classify
as an instantaneous event. Compare, for example, these two purported instantaneous events:

* G="Joedies”

» H="Joedieson earth during Year A, or Bill dieson aplanet around Sirius during
year B,” where Year A on earth and Year B on Sirius are a a space-like distance—
light leaving earth during Y ear A will not reach Sirius before the end of Y ear B there,
and vice versa

The event G qualifies as an instantaneous event in our system, even if Joe is a space traveler.
There are many refinements of G—many times, places, and ways Joe can die. But if Joe dies
inway 1 and Joe diesin way 2, then these two events happen at the same time and the same
place. On the other hand, H clearly does not qualify as an instantaneous event, for then Joe
dying on earth during Y ear A and Bill dying on Sirius during Y ear B would both be
refinements of H, these events, which can both happen, obviously cannot happen in the same
time and place.

We must also clarify the meaning of the temporal order <. In the non-relativistic case,
the statement E < F means that whenever E happens, no matter how it happens, F has already
happened. We can use these same words in the relativistic generalization, provided we are
clear about what “F has already happened” means; it means that the happening of F isthe
past Minkowski cone: F has happened at a place and time such that the news of its
happening, traveling at the speed of light, has had time to arrive when and where E happens.
With this interpretation, most of the axioms for < and for the construction EF appear to be
valid for the relativistic case.

The conflict with relativity theory islimited to the two final axiomsin our system, which
can be paraphrased as follows:[4]

Axiom 14 If neither E nor F can happen after the other, the merger ELJF can be formed.

Axiom 15 G<Eand G < Fimply G < EFOFE,

Fortunately, a great deal of ordinary causal reasoning can be accomplished without these two
axioms.

The difficulty with Axioms 14 and 15 isillustrated in Figure 13, which depicts the
possible trajectories of two witnesses, Solid and Dashed. Solid and Dashed are together at
two pointsin the story, first in situation | and then, depending on how events turn out, in one
of four possible later situations, A, B, C, or D. Intheinterim, they travel apart and witness
different events. For simplicity, we suppose that they travel at the speed of light. Solid,
whose event tree is drawn with solid lines, witnesses either E or H, while Dashed, whose
event tree is drawn with dashed lines, witnesses either F or G. Because they are traveling at
the speed of light, it is only when they reunite, in A, B, C, or D, that each learns what the
other witnessed. If Solid witnessed E and Dashed witnessed F, then they reunitein A, if
Solid witnessed E and Dashed witnessed G, then they reunitein B, etc.

14 See §814-15 of Part II1.
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Figure 13 Intertwined event trees for two witnesses, Solid and Dashed. They begin together in situation I, go
their separate ways to witness different events, and then meet up again to share information. Solid witnesses
whether E or H happens, while Dashed witnesses whether F or G happens.

In this example, neither E nor F can happen after the other, and hence Axiom 14 would
authorize the formation of the merger ELIF, the event that “either E happens or F happens’ at
the sametime. But thisisnot an instantaneous event in our sense. The events E and F,
although they can both happen, cannot do so simultaneoudly.

The events E and F in Figure 13 also illustrate the difficulty with Axiom 15. Because
neither E nor F can happen after the other, both EF and FE are impossible, and hence their
merger EFOFE exists and is equal to the impossible event, A. So the axiom is contradicted
by the fact that A < E and A < F hold while A < A does not hold.

When we drop Axioms 14 and 15 in order to accommodate relativity theory, it is no
longer guaranteed that two events E and F will have an ending ECJF and beginning ELF,
because the mergersin Equations (11.5.1) and (11.5.2) may fail to exist. In Figure 13, for
example, neither ECIF nor ELJF exists. The constructions EsF and E_F seem to remain
reasonable in the relativistic case, and we can still define the E;F, E,F, E5F, and ESF, but the
events EgF and E,F can no longer necessarily be interpreted in the way suggested in §6. The
construction E~, failure, is not acceptable in the relativistic case, because an event E can be
ruled out by events that are incomparable and hence cannot be merged to form a single event.

Aswe have explained, our complete system of axioms justifies a representation in terms
of “point events’ that form an event tree; thisis the topic of Part V. Without Axioms 14 and
15, we obtain only a partially ordered set of “point events’ that is not necessarily atree, asin
Figure 13. Arethere other axioms that should be added in the relativistic case? It seems
reasonable to add aweaker version of Axiom 14 If div(E,F), the merger ECIF can be
formed. But it isunclear whether other axioms should also be adopted.

In a philosophical study of point eventsin arelativistic world, Belnap (1992) advances
some suggestions for axioms concerning the existence of branching points. Although
Belnap’ s work has provided the impetus for our own thoughts on this topic, we have not
adopted hisaxioms. It isunclear how they can be expressed constructively (rather than as
statements about existence) and hence unclear how they can be used to formulate and draw
inferences from causal information.
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I11. Constructive Axiomsfor Event Spaces

We now provide an axiomatization for event spaces that is constructive in the
intuitionistic sense. This means that we avoid the principle of the excluded middle, and we
use constructions instead of existential axioms.

We take an intuitionistic approach not because we insist on an intuitionistic philosophy
of mathematics, but for more practical reasons:

* Theintutionistic emphasis on relations that can actually be observed hel ps organize the
axiomatization in away that facilitates inferences from observations.

* Thereare systems, such as Coq and ALF, which tranglate constructive axiomatizations
directly into tools for automated reasoning.

* Thediscipline provided by the intuitionistic philosophy is an aid to developing concise
and effective axiomatizations.

Readers who are unfamiliar or uncomfortable with the constructive viewpoint are
encouraged to look first at Part 1V, where the axioms we devel op in this section are presented
inaclassical form.

We follow the guidelines for constructive axiomatization developed by Jan von Plato
(1995, 1996). We postulate a set of objects (instantaneous eventsin our case) and predicates
and relations for them that may be verified, at least in principle, by finite experience. The
relations include arelation of apartness, whose negation is taken as the definition of equality
between two objects. We adopt axioms for the predicates and relations that

» reflect the structure of the verification, and

» authorize the substitution of equals for equalsin the relations and predicates.

Ideal objects—abjects with infinitely precise properties that cannot be verified by direct
experience—are introduced by construction. (In geometry, the unique straight line that goes
exactly through two given pointsis the standard example of an ideal object. In our case, an
exampleisthe precisely ssmultaneous happening of two events.) Along with constructed
objects, we introduce axioms that

» assert theideal properties of the constructed objects,

» imply that these ideal properties characterize the constructed objects—i.e., that the
constructed objects are the only ones with the properties (for example, the line In(a,b)
constructed from the distinct points aand b is the only line that goes through both a and
b), and

* imply that distinct constructions must have distinct inputs, so that equals may be
substituted for equals in the construction (for example, In(a,b) can be distinct from
In(c,d) only if the point ais distinct from the point b or the point c is distinct from the
point d).

This differs from the procedure in classical mathematics, where we first assert the existence
of an unnamed object with certain properties (we say, for example, that there exists at |east
one line between any two points), and then we may or may not prove its uniqueness.

In addition to von Plato’ s guidelines, we adopt an additional methodological principle.
The axioms we adopt for each new construction should imply necessary and sufficient
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conditions, not involving the construction, for whether any relation in the theory holds
between the construction and any other object in the theory. This principle gives a certain
primacy to the relations in the theory; it suggests that the ideal objects serve only to order
and summarize relations among other objects. In some cases, however, it will take us
somewhat outside the constructive framework, inasmuch as the necessary and sufficient
conditions involve classical existence statements.

The relations that we axiomatize can be thought of as judgments made by Nature, the
imagined demigod or super scientist who represents the limits of mortal knowledge. Nature,
we suppose, may witness and know everything that any human or artificial scientist might
witness or know at a given point in time but lacks God' s infinite scope, foresight, and
precision of knowledge. When a given event happens, Nature may be aware of its happening
and may be aware that certain other events have and have not happened. She may be able to
predict at that moment that certain other events will and will not happen in the future. (See
Shafer 1996, Chapter 1.) Our constructions define the limits of Nature's potential knowledge
and prediction and hence, like the line passing through two given points, do have a meaning
of infinite scope and precision. For example, we may construct the event that two events E
and F happen simultaneously—an infinitely precise condition on their timing. We may also
construct the event that E happensin such away that F s later happening is possible. When
we say that F' s happening is possible, we mean that Nature cannot rule it out no matter how
far she exploits the immense and perhaps even infinite information available to her.

For brevity, we drop the adjective “instantaneous’ when we speak of events, but it will
be implicit throughout. An event, as we use the word in this section, happens
instantaneously and can happen at most once in the course of events.

The concept of an event space is sufficiently complex that it can be axiomatized in a
myriad of ways, no matter whether we take a classical or a constructive approach. Our goal
in this section isto produce an intuitionistically acceptable and concise axiomatization based
on the two partial orders that we introduced informally in Part 11: [ and <.

A moment’ s thought revealsthat E [1 F and E < F are not quite appropriate starting points
for a constructive axiomatization, for they cannot be verified by finite experience. No
amount of experience can tell usthat F always happens at exactly the same time whenever E
happens, or that F must have happened by the time E happens. Our experience may, on the
other hand, authorize the opposite judgements; we may see E happen without F happening at
the same time or even without F ever having happened yet. We therefore take the following
relations as primitive:

RELATION Meaning

E-F E may happen without F happening simultaneously.

EOF E may happen without F having happened yet.

In 881-3 we axiomatize the refinement order (1. We begin, in 81, by introducing the
relation E - F. We adopt constructive axioms for - that make its negation, [, a partial order.
In 82 and 83, we adopt two constructions, En F and ECJF, which turn out to be greatest lower
and least upper bounds in the partial order [1. Our axioms in these three sections are the
same as the constructive axioms for lattices formulated by Jan von Plato (1997), except that
we authorize the construction of ECIF only under the assumption that E and F do have at
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least one upper bound. Because of this restriction, the order [ is not quite alattice; we
obtain alattice only if we limit our attention to events that refine a particular fixed event.

In 884-6, we move beyond von Plato’ s theory in the direction of aBoolean algebra. In
84, we introduce the resolution axiom, which implies distributivity and the uniqueness of
relative complements. In 85, we introduce the impossible event, which serves asthe zero in
the lattice. In 86, we introduce relative complements. These additions make our order into a
Boolean algebra, except again that not all pairs of events have an upper bound. The axioms
for this (almost) Boolean algebra are summarized in §7.

In 888-15, we turn to our second order, the temporal order <. We introduce E 0O F in 88.
The denial of EOF, E<F, isthe temporal order. We introduce EF, the part of E that requires
F to happen at the same time or earlier, in 89. In 8810-13, we study aspects of the temporal
|attice that hold even in arelativistic world. Then, in 8814-15, we impose additional axioms
that are appropriate only for anon-relativistic world and lead to the conclusion that the
temporal order isadistributive lattice. We summarize the entire axiomatic system in §16.

0. Elements of Intuitionistic Reasoning

The following brief review of the implications of rejecting the principle of the excluded
middle should help readers understand how we reason with our axioms. For more systematic
and complete expositions of intuitionistic inference, see Dummett (1977), Martin-Lof (1982,
1984), van Dalen (1986, 1997), or Ranta (1994).

The principle of the excluded middle says that for any proposition A, either A or not(A)
istrue. Thisprincipleisadopted in classical logic but not in intuitionistic logic. In
intuitionistic logic, asserting a proposition means asserting one has a proof of it, and
asserting a digunction means asserting that one has a proof of one of the diguncts. We
cannot assert “A or not(A)” unless we have a proof of A or of not(A), and we may have
neither.

Here are some implications of the intuitionistic rejection of the principle of the excluded
middle.

* not(not(A)) doesnot imply A. In the presence of the rules of inference that
intuitionists accept, the principle of the excluded middle impliesthat A and
not(not(A)) are equivalent; each implies the other. But once we reject the principle of
the excluded middle, this equivalence no longer holds. Intuitionistically, not(A) is
the same as the implication Al , where [J is the absurdity. So not(not(A)) isthe
implication (A0l )II . Thisdoesfollow from A; so A implies not(not(A)). But
there is no intuitionistic argument taking us the other way, from not(not(A)) to A.

* Proof by contradiction. Rejection of the principle of the excluded middle also puts
limits on the use of proof by contradiction. Since not(A) means Allll , we may prove
not(A) by assuming A and deriving a contradiction. But if we assume not(A) and
derive a contradiction, we have proven only not(not(A)); we have not proven A.

» Contraposition. Contraposition isintuitionistically valid; from ALl B we may
conclude (BII )O (AT ), or not(B)OI not(A). But we cannot conclude AL] B from
not(B)[J not(A).

* Usingadigunction. What may we conclude from the digunction A or B? The
intuitionistic answer is that we may conclude anything that we may conclude from A
and also from B.

To appear in Annals of Mathematics and Artificial Intelligence 22



Shafer, Gillett, and Scherl May 8, 2000

» Eliminating adigunct. From the digunction A or B and the negation not(B), we
may derive A intuitionistically. Thisis because (1) not(B) means BTl and (2)
M A isaccepted asaruleof inference. From A we conclude A. From B and not(B)
we conclude [0 and hence A. So from the digunction A or B and the negation not(B)
we conclude A.

1. TheRefinement Order: Happening Alone

Sometimes an event E can happen without another event F happening simultaneously.
This leaves open whether F has or has not already happened and whether F may or may not
happen later. It also leaves open the possibility that E and F may, under different
circumstances, happen at the sametime.

RELATION Reading Example of proof
E may happen without F An example where E happens and F
E-F . . .
happening simultaneously. does not happen at the same time.
AXIOM Explanation
1A not(E - E). E cannot both happen and not happen at the same time.
18 IfE-F,thenE- G | When E happens without F happening at the same time, either G
orGeF. also happens at that time or else it does not.

Axioms 1A and 1B were proposed by Jan von Plato as general axioms for intuitionistic
partial order (von Plato 1997), except that he used a curved inequality sign instead of our .
He called 1B a splitting axiom, and he called any relation satisfying 1A and 18 an excess
relation. Inour case, the excessis only potential; E - F means that events may turn out in
such away that E exceeds F in the sense that E happens and F does not.

The explanation given for Axiom 1B—that G either does or does not happen—sounds
like an appeal to the principle of the excluded middlie and therefore requires more
elaboration. If Nature can tell that E has happened without F happening at the same time,
should she also be able to tell whether G happened at the sametime? Our answer isyes, to
the exactness required by the axiom. Since Nature' s observations are not infinitely precise,
her judgment that F did not happen at the same time as E means that there was some finite
(as opposed to infinitesimal) interval of time between E’ s happening and the happening of F,
if F happened. If G happens so close to E that Nature, with her merely finite precision,
cannot exclude its having happened simultaneously, then it too has happened at afinite
distance from any happening of F, and Nature can make the judgment G - F. Otherwise (if G
does not happen or also happens at finite distance from the happening of E) Nature can make
the judgment E » G.[5] See Figure 14.

15 A similar argument is made in the constructive axiomatization of geometry. If two
points are distinct in the sense that they are more than infinitesimally far apart, then any third
point must be distinct, in the same sense, from at least one of them. See von Plato 1995, p.
173.
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e v G happens
~ before E,
<E> @ @ @@ CED _ after E, or
e & notatal.
v \/ \/
a b c a b c a b c
Hypothesis: F, if it Case 1: G happens Case 2: G, if it happens,
happens, happens at a infinitesmally closein at al, happens at afinite
finite distance from E, timeto E. distance from E.

either beforeE asin (a)
or after Easin (b).

Figure 14 The downward arrows indicate the direction of time. If E  F, then one of the three courses of
events on the left must be possible: (a) F happens followed by E after afinite (rather than infinitesimal) interval
of time, (b) E happens followed by F after afinite interval of time, or (c) E happens and F never happens (at
least F never happens while Natureis still watching). In case 1, Nature can make the judgment that G has
happened without F happening at the sametime, so that G ° F. In case 2, Nature can make the judgment that E
has happened without G happening at the same time, so that E ° G.

Following von Plato, we use our excess relation to define three other relations: #, [, and
=. Therelation # isasymmetrization of . These relations [J and = are the negations of - and
#, respectively. Assuch, they are less fundamental; they cannot be verified by finite
experience. Specia casesof E [J F or E = F may be adopted on theoretical grounds (asin
1A), but these relations can be confirmed by experience only in a negative and hence
indefinitely protracted way (no example where E happens without F happening at the same
time ever turns up).

RELATION Definition Reading Meaning

ExF E-ForF-E | EisdistinctfromF. |At!eastoneot theeventscan
happen without the other.

Whenever E happens, F

EUF not(E - F) ErefinesF. happens at the same time.
E=F EDFadFOE | EequasF. Whenever E or F happens, the
other also happens.

We could equivalently defineE = F as
* not(EzF),
* not(E-ForF-E),or
* not(E - F) and not(F - E).
These three assertions are constructively equivalent to each other and to the definition in the
table, E0 Fand F O E.
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Thereations #, [, and = have the properties usually associated with the symbols. #isan
apartness relation in the sense of Heyting (Dummett 1977, p. 42; van Dalen 1997, p. 179), [J
isapartial order, and = is an equivaence relation.

THEOREM Demonstration

1.1 #isirreflexive: E=E. Axiom 1A

1.2 Zissymmetric: If EZF, then F#E. Definition of #

13 IfE£F thenEZGorG#F. Axiom 1B

1.4 #isan apartness relation. Theorems 1.1, 1.2, and 1.3
1.5 Oisreflexive: EE. Axiom 1A

1.6 Oistrangitive: If E00Fand F O G, then E O G. Axiom 1B

1.7 Oisantisymmetric: If E0Fand F O E, then E=E. | Definition of =

1.8 Oisapartia order. Theorems 1.5, 1.6, and 1.7
1.9 =isreflexivee E=E. Theorem 1.1

1.10 =istrangitive. IfE=FandF=G, thenE=G. Theorem 1.6

1.11 =issymmetric. If E=F,then F=E. Definition of =

1.12 =isan equivalence relation. Theorems 1.9, 1.10, and 1.11

Because we are using only intuitionistic principles of inference, it matters that we have
defined E = F as not(E # F) rather than defining E # F as not(E = F). The two ways of
proceeding are not constructively equivalent. Aswe have defined the relations, not(E = F)
means not(not(E # F)), which is constructively weaker than E £ F.

The next two theorems show how the relation E - F respects our partial order.

THEOREM Demonstration
113 IfE-FandEOG, thenG- F. Axiom 1B
114 fE-FandGOF, thenE - G. Axiom 1B

In the classical mathematical treatment of partial order, the meaning of = isimplicit.
Here we make the meaning of = explicit (two events are equal if neither can happen without
the other happening at the same time), and we accept the responsibility of justifying any use
we make of =. In addition to verifying that = is an equivalence relation, we must justify any
substitution of “equals for equals.” The following theorems justify the substitution of equals
for equalsin therelation E - F.

THEOREM Demonstration
115 IfE-FandG=E,thenG-F. Theorem 1.13
116 fE-FandG=F, thenE- G. Theorem 1.14

Each time we introduce a predicate, relation, or construction, we will need to verify that
we can substitute equals for equalsinit. Wetakeit asaprinciple, in other words, that the
axioms accompanying a new predicate, relation, or construction should include axioms that
authorize this substitution. This principle applies only to predicates, relations, and
constructions that we introduce axiomaticaly. If we define anew expression (predicate,
relation, or construction) in terms of existing expressions, then the validity of the substitution
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of equals for equals in the new expression will follow from its validity in the existing
expressions.

Finally, we note that the equality of two eventsis determined by the events they can
happen without and also by the events that can happen without them.

THEOREM Demonstration

1.17 IfE- GimpliesF - G, thenE O F. If we assume E - F, then the hypothesis that
E-GimpliesF- GyieldsF- F,in
contradiction to Axiom 1A.

118 IfE-Gifandonlyif F- G, thenE=F. | Theorem 1.17

119 If G- EimpliesG - F, then F [ E. If we assume F - E, then the hypothesis that
Ge.EimpliesG- FyieldsF-F,in
contradiction to Axiom 1A.

1.20 If G- Eifandonlyif G- F, thenE=F. | Theorem 1.19

2. Overlap
We now study greatest lower bounds in the partial order [.
RULE OF CONSTRUCTION Explanation
Overlap From events E and F, construct the | EnF happens when E and F happen at the
event EnF. sametime.
AXIOM Explanation
2A EnFOEandEnFOF. When EnF happens, E and F both happen.
28 If G+ EnF. then G- Eor G« F. When E and F do not both happen, at least
one of them does not happen.

Contraposition of Axiom 2B produces the following more familiar statement.

THEOREM Demonstration

21 IfGOEand GOF, thenG O ENF. Axiom 2B

The overlap EnF isthe greatest lower bound for E and F in the partial order [1. (Axiom
2A saysit isalower bound, and Theorem 2.1 saysit is greater than or equal to any lower
bound.) The operation n therefore has al the algebraic properties of greatest lower bound,
some of which we now list.

THEOREM Demonstration

2.2 n isidempotent: EnE=E. An event isits own greatest lower bound.

By the symmetry of the definition of

2.3 n iscommutative: EnF=FnE. greatest lower bound.

24 nisassociative: (ENF)nG=En(FnG). E?égieemggepalﬁﬂm bound for the

25 IfEOF, thenEnF=E. E isalower bound for any event it refines.
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We next observe that overlap respects our partial order.

THEOREM Demonstration

By Axiom 2B, EnF- Gor EnF-H. Sothe

26 If EnFo GnH,thenE-Gor Fo H. conclusion follows from Axiom 2A and

Theorem 1.13.
27 fEO0Gand FOH, thenEnF O GnH. Theorem 2.6
28 If FOG, thenEnFOENG. Theorems 2.7 and 1.5
29 IFEOG, thenEnF O GnF. Theorems 2.7 and 1.5

Now we consider the principle that equals can be substituted for equals. In the case of
constructions, we insist on a constructively stronger principle: the principle of strong
extensionality (Troelstra and van Dalen 1988, p. 386; von Plato 1997, p. 6). Thisprinciple
says that if the result of applying a construction to one group of inputsis distinct from the
result of applying it to another group of inputs, then the inputs are distinct. Theorem 2.10
says this for the construction EnF. The three subsequent corollaries, Theorems 2.11, 2.12,

and 2.13, express the principle that equals can be substituted for equalsin EnF.

THEOREM Demonstration

2.10 IfEnF#£GnH,thenE# Gor F#H. Theorem 2.6

211 fE=Gand F=H, thenEnF=GnH. Theorem 2.10

212 If F=G, thenEnF=EnG. Theorems 2.11 and 1.9
213 If E=G, thenEnF=GnF. Theorems 2.11 and 1.9

We conclude with conditions under which the construction En F stands on either side of

the relation - with other events.

THEOREM

Demonstration

214 GeEnFifandonlyif GeEor G- F.

If Ge Eor G- F, then G- EnF by Axiom
2A and Theorem 1.14. The opposite
implication is Axiom 2B.

215 E-Fifandonlyif E- EnF.

Theorem 2.14 with E for G

2.16 EnF- Gif and only if there exists an
event H suchthat H O E, H O F, and H - G[T]

If EnF o G, then by Axiom 2A, EnFisthe
requisite H. If thereissuchanH, thenH [
EnF by Theorem 2.1, and henceEnF - G
by Theorem 1.13.

Theorems 2.14 and 2.16 are equivalent, in the presence of Axioms 1A and 1B, to Axioms

2A and 28B.

16 Thisisaclassical existence statement, but the proof reveals the constructive meaning:
(1) thethreerelationsHOE,HOF,andH - Gimply EnF - G, and (2) if EnF » G, then

EnFUOE,EnFOF and EnF- G.
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We now study least upper bounds in the partial order [1. We continue to follow von
Plato’ s axiomatization for lattices, except that our events do not quite form alattice, because
aleast upper bound can be constructed only under the assumption that thereis at least one

upper bound.

RULE OF CONSTRUCTION

Explanation

Merger From E, F, and |, together with a
proof that EC] | and F [ |, construct the event
EOF.

ECJF happens when at |east one of the two
events E and F happen.

There may be more than one | satisfying EJ | and F [ 1, but there must be at least one
for ECIF to be formed. Otherwise one of the two events E and F may happen before the
other, and in this case they cannot be merged into a single event that may happen at most

once.

AXIOM

Explanation

3a If EO Nl and FO I, authorizing the
construction of ELJF, then EJ ELDFand F [
EOIF.

When E happens or F happens, ELIF
happens.

3B IfEOF-G,thenE- Gor F-G.

When ELJF happens, either E happens or F
happens.

Contraposition of Axiom 3B produces the following more familiar statement.

THEOREM

Demonstration

31 IfEOGandF OG, then EOF O G.

Axiom 3B

The merger ELJF isthe least upper bound for E and F in the partial order [J. Axiom 3A
saysit isan upper bound, and Theorem 3.1 says it isless than or equal to any upper bound.
The operation [ has all the algebraic properties of least upper bound, some of which we now

list.

THEOREM

Demonstration

3.2 O isidempotent: ECJE = E.

An event isits own least upper bound.

3.3 Oiscommutative: IfEOland FOI,
authorizing the construction of ECJF and FOIE,
then ELIF = FOIE.

By the symmetry of the definition of least
upper bound.

3.4 Oisassociative: IFEOI, FOIL,and GO
|, authorizing the construction of (ECJF)OG
and EC(FOG), then (EOF)UG = EO(FOG).

Both are the least upper bound for the three
eventsE, F, and G.

35 IfEOF, thenEOF=F.

An event is an upper bound for any
refinement.
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Merger respects our partial order. (We leave implicit the assumptions required to
authorize the construction of the mergers in these theorems.)

THEOREM

Demonstration

3.6 If EOF - GOH, thenE-Gor F- H.

By Axiom 3B, E - G[JH or F - G[JH. Sothe
conclusion follows from Axiom 3a and
Theorem 1.14.

3.7 IfEOGand FO H, then EOF O GOH. Theorem 3.6
3.8 If FO G, then EOF O EOG. Theorems 3.7 and 1.5
3.9 If EO G, then EOF O GOF. Theorems 3.7 and 1.5

Merger obeys strong extensionality, so that we can substitute equals for equalsin ELIF.
(We again leave implicit the assumptions required for the construction of the mergers.)

THEOREM Demonstration

3.10 If EOF# GOH, thenE# Gor F# H. Theorem 3.6

3.11 If E= Gand F=H, then EOF = GOH. Theorem 3.10

3.12 If F=G, then EOF = EOG. Theorems 3.11 and 1.9
3.13 If E= G, then EOF = GOF. Theorems 3.11 and 1.9

A partialy ordered set in which each pair of elements has aleast upper bound and a
greatest lower bound is called alattice. Our events do not form alattice in their totality
under the partial ordering [, because upper bounds to do not exist for al pairs of events, but
we do have alattice when we limit our attention to events that refine a particular event (say

al Esuchthat E [T1).

L attices can also be characterized algebraically; instead of beginning with theideathat n
and [ represent greatest lower bound and least upper bound, respectively, one postul ates that
they obey certain algebraic axioms (Davey and Priestley 1990, Chapter 5). Of all the
standard agebraic axioms, the absorption laws are the only ones we have not yet derived.

We now derive them.

THEOREM

Demonstration

3.14 EOENF) = E.

E isthe least upper bound for EnF and E.

3.15 IfEO I and F O 1, authorizing the
construction of ELJF, then En(EOJF) = E.

E isthe greatest lower bound for ECIF and
E.

We conclude with conditions under which the construction ECJF stands on either side of

the relation - with other events.

Suppose E[JF can be constructed.

THEOREM

Demonstration

3.16 EOOF-Gifandonlyif E- G
orFoG.

If E- GorF- G, then ECF - G by Axiom 3A and
Theorem 1.13. The opposite implication is Axiom 3B.

3.17 E-Fif andonly if ECIF - F.

Theorem 3.16 with F for G
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3.18 G- EOFif and only if there | If G- ELIF, then by Axiom 3A, ELDF isthe requisite H.
existsan event H such that E [0 H, | If thereissuch an H, then ECJF [0 H by Theorem 3.1,
FOH,and G- H. and hence G - E[JF by Theorem 1.14.

Theorems 3.16 and 3.18 are equivalent, in the presence of Axioms 1A and 18, to Axioms
3a and 3B.

4. The Resolution Axiom

In this section, we adopt an axiom, the resolution axiom, that assures that the refinement
order isdistributive and that relative complementsin it are unique.

One way to motivate the resolution axiom is to argue for a strengthening of Axiom 18,
the splitting axiom. The splitting axiom saysthat if E- F,thenE- Gor G- F. Thereasonis
that either G does not happen at the same time as E (so that E happens without either F or G
happening) or else it does (so that E and G both happen without F happening). Now that we
have the concepts of overlap and merger to work with, we might express this more strongly:

If E-F, thenE- FOGor EnG- F.
But this may be too strong for our intuitionistic concept of Nature. Nature may be unable to
tell whether happenings of E and G are precisely simultaneous. We aso have the problem
that the hypothesis E - F does not imply the existence of FOG.

By putting the proposed axiom in contrapositive form, however, we obtain an
intuitionistically acceptable elaboration of the meaning of the constructions FOOG and EnG.

AXIOM Explanation

Suppose E happens. If thisimpliesthat F or G happens at
4 IfEDFOGand EnG O F, the same time, and also that G’ s happening at the same
thenE O F. time implies F happens at the same time, then it implies F
happens at the same time.

(Here the existence of FLIG isimplicit in the hypothesis.)

Axiom 4 isapowerful tool for proving inequalities; for it allows usto deduce E [1 F from
two related but weaker inequalities. If we shift the conversation from events to propositions
(interpreting [, [, and n asimplication, digunction, and conjunction, respectively), then
this axiom expresses a simple and familiar tactic in mathematical reasoning: when we are
trying to prove F and find we can prove only F or G, we adopt G as an additional assumption
and try again to prove F. We call the axiom the resolution axiom because in this context it is
aconstructive version of the method of resolution for theorem proving: from the clauses
{not(E),F,G} and { not(E),F,not(G)}, infer the clause { not(E),F} (Robinson 1965).

Aswe will see, the resolution axiom implies modularity (Theorem 4.4), distributivity
(Theorems 4.5 and 4.6), and the uniqueness of relative complements when they exist
(Theorem 6.1).

A latticeis said to be distributive if it satisfies the two distributive laws:

1. Al BnC)=(AOB)n(AOC).
2. An(BOC)=(AnB)J(ANC).

It issaid to be modular if it satisfies aweaker condition called the modular law:
3. IfAOC, then AL(BNnC) = (AOB)nC.
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The resolution axiom guarantees that these laws hold whenever the mergers in them can be
constructed.

For clarity, let us begin by noting that half of each law can be derived without using the
resolution axiom.

Suppose A[IB can be constructed.

THEOREM Demonstration

Both A and Bn C refine both AIB and C.
4.1 If AOC, then All BnC) O (AOB)nC. | Sotheinequality follows from the definitions
of least upper and greatest lower bound.

Suppose ADB and AIC can be constructed.

THEOREM Demonstration
Both A and Bn C refine both ACIB and ACIC.
4.2 Al BNnC) O (AOB)n(ACC). So the inequality follows from the definitions

of least upper bound and greatest lower bound.

Suppose BLIC can be constructed.

THEOREM Demonstration
Both AnB and AnC refine both A and BOC.
4.3 (AnB)O(ANC) O An(BOC). So the inequality follows from the definitions

of least upper bound and greatest lower bound.

Now we use the resolution axiom to prove the remaining half of each of law. We begin
with the modular law (without the assumption A [0 C, which is not needed for this half).

Suppose A[IB can be constructed.

THEOREM Demonstration

Substitute (AOB)YNC for E, All BN C) for F, and B for
4.4 (ADB)AC O Al BAC). GinAxion(n4. ) 0BnC)

Now we prove the remaining half of the first distributive law.

Suppose ADB and ATIC can be constructed.

THEOREM Demonstration

Substitute (ACB)n (AOC) for E, Al BNnC) for F, and
45 (AOB)n(AOC) O AN BNnC). | Bfor Gin Axiom 4. Thisreducesthe problem to an
instance of Theorem 4.4.

Finally, we prove the remaining half of the second distributive law.
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Suppose BLIC can be constructed.

THEOREM Demonstration

Substitute An(BOC) for E, (AnB)O(ANC) for F, and
4.6 An(BOC) O (AnB)O(ANC). | Bfor Gin Axiom4. Again, this reduces the problem
to an instance of Theorem 4.4.

We may now say that the lattice formed by the refinements of afixed event is
distributive.

5. Possibility and Impossibility

Anelement Ep in apartia order isazeroif Ep 0 E for al E. It follows from this
definition that any two zeroes for a given partia order are equal, and so we speak of the zero
when it exists.

We now construct the impossible event.

RULE OF CONSTRUCTION Explanation

Impossible Event Construct the event A. N\ isthe impossible event.

We adopt asingle axiom for A, which tellsus that it is the zero for the refinement order.

AXIOM Explanation

5AN0E. The impossible event cannot happen.
THEOREM Demonstration

51 IfE-F, thenE- A. Axiom 5 and Theorem 1.14

52 EnA=A. Axiom 5 and Theorem 2.5

53 EIA =E. Axiom 5 and Theorem 3.5

Axiom 5 suffices to specify conditions under which the construction A stands on either
side of the relation - with other events. Therelation A - E never holds (Axiom 5), and the
relation E - A holds if and only if E - F for some F (Theorem 5.1).

Because A\ U E for all E, the condition E [J A isequivalent to E = A.

We define possibility and impossibility in terms of the impossible event.

PREDICATE Definition Reading Meaning
poss(E) E-A E ispossible. E may happen.
imposs(E) not(poss(E)) E isimpossible. E cannot happen.

We call apossible event a situation.
Here are afew facts about possibility.

THEOREM Demonstration

5.4 imposs(E) if and only if E = A. Axiom 5 and the definition of imposs(E)
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|5:-5 poss(E) if and only if E - F for some Theorem 5.1 and the definition of poss(E)

5.6 If poss(E) and E [J F, then poss(F). | Theorem 1.13 and the definition of poss(E)

We define two binary predicates, lap(E,F) and dis(E,F).

RELATION Definition | Reading Meaning
lap(E,F) EnF-A E and F overlap. E and F may happen at the same time.
dis(E,F) EnF=A |EandFaredigoint. | E and F cannot happen at the same time.

Therelations lap(E,F) and dis(E,F) are symmetric; lap(F,E) if and only if lap(E,F), and
dis(F,E) if and only if dis(E,F). We will use this symmetry without comment.
Here are some implications of digointness.

THEOREM Demonstration

5.7 If dis(E,F) and poss(G), then G- E or | TheassumptionsEnF=Aand G- Aimply G -

G-F. EnF. Axiom 2B thenimpliesthat G- Eor G -
F

5.8 If dis(E,F) and G [0 F, then dis(E,G). | By Theorem 2.8, G [0 FimpliesEnG O EnF.
SOEnF=AimpliesEnG = A.

6. Relative Complementsin the Refinement Order

We now study relative complements in the partial order [1. The axioms we adopt will
assure that the refinements of a possible event form a Boolean algebra.

We say that G isacomplement of F relativeto E if

(EnF)nG=Aand (EnF)OG=E.
If Fisarefinement of E, then this condition simplifiesto
FnG=Aand FOG=E.

The general concept can be understood in terms of the special case: G isacomplement of F
relative to E if and only if it isacomplement of EnF relativeto E.

The following theorem tells us that relative complements are unique when they exist.

THEOREM Demonstration
6.1 f AnC=AnD and ALOC =A0D, | Substituting C for E, D for F, and A for G in
then C=D. Axiom 4, weobtain C [1 D. By symmetry, D [ C.

So we may call E\F the complement of F relativeto E.
We now authorize a new construction and adopt axioms that guarantee it is the relative
complement.

RULE OF CONSTRUCTION Explanation
Relative Complement FromE and F, | E\F isthe event that E happens without F
construct E\F. happening at the same time.
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AXIOM

Explanation

6A E\F- Gif and only if
E- (EnF)OENG).

Both propositions assert that E can happen with neither F nor G
happening at the same time.

6B G- E\Fif and only if
GeEorEnFnG-A.

There are two ways G can happen without E\F happening at the
sametime. Oneisfor E not to happen then (this proves G - E).
The other isfor E and F both to happen then (this proves
EnFnG-A).

These axioms state directly conditions under which the construction E\F stands on either side
of therelation - with other events.

We now establish that E\F isindeed the complement of E relative to F—the unique
refinement of E that isdigoint from EnF and has E as its merger with EnF.

THEOREM

Demonstration

6.2 E\F O E.

6.3 (EnF)n(E\F) = A.

Axiom 68, with E\F substituted for G, together with Axiom 1A

6.4 (EnF)J(EVF) =E.

Therelation (EnF)O(E\F) O E follows from Axiom 2A and
Theorems 6.2 and 3.1. To establish E [0 (EnF)O(E\F), we
assume E - (EnF)T(E\F), rewritethisas E - (EnF)(En (E\F))
using Theorems 6.2 and 2.5, and then deduce from Axiom 6A,
with E\F for G, that E\F - E\F, in contradiction to Axiom 1A.

As we noted before proving Theorem 6.1, it follows from the definition of relative
complement that the complement of E relativeto F is the same as its complement relative to
EnF. Thisisrecorded by the following theorem.

THEOREM

6.5 E\F = E\EnF).

Here are some additional properties of relative complements.

THEOREM

Demonstration

6.6 E\F- Gif andonly if EAG - F. Axiom 6A and Theorem 3.3

6.7 EF0Gifandonlyif EGOF | Theorem 6.6

6.8 Suppose FOIG can be
constructed. Then E\F - G if and

When FOG can be constructed, (EnF)(ENnG) is
equal to En(FOG) by distributivity. SOE\F- Gis
equivalent to E - En (FOG) by Axiom 6A. And E -

only if & FOG. En(FOG) isequivalent to E - FOG by Theorem 2.15.
6.9 E\E=A. Axiom 6A with E for Fand A for G
6.10 E\V\ = E. Theorem 6.4 with A for F

_ Since E\F (I E (Theorem 6.2), (E\F)nF = (E\F) nFnE
6.11 (BR)nF=A. (Theorem 2.5), which is equal to A by Theorem 6.3.
6.12 If E\F - G, thenE - G. Theorems 6.2 and 1.13

6.13 If (E\F)nG - A, then G« F,

By Theorem 6.11, (E\F)nG - A implies (E\F)n G -
(E\F)nF, and by Theorem 2.6, thisimplies G - F.
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6.14 E\F- Aif andonly if E - F.

Axiom 6A and Theorem 2.15

6.15 E\SF=Aifandonlyif EOF.

Theorem 6.14

The construction E\F is monotonic with respect to the partial order [J in both its

arguments, in opposite directions.

THEOREM

Demonstration

6.16 If G\H - E\F, then G- Eor Fo H.

Suppose G\H - E\F. By Axiom 68, G\H - E
(whichimplies G - E by Theorem 6.12) or
EnFn(G\H) o A (which impliesF - H by

Theorem 6.13).
6.17 If EO G, then E\F O G\F. Theorem 6.16
6.18 If GO F, then E\F O BE\G. Theorem 6.16

We have strong extensionality for E\F, and so we can substitute equals for equals.

THEOREM Demonstration
6.19 If E\F# G\H,thenE# G or F#H. Theorem 6.16
6.20 If E= G, then E\F = G\F. Theorem 6.17
6.21 If G=F, then E\F = E\G. Theorem 6.18

Our definition of relative complement—E\F is the unique event that is disjoint from F
and has E asits merger with EnF—is algebraic. The event E\F can also be characterized,
however, in amore order-theoretic way. It isthe largest refinement of E that is digoint from

F. Thisis established as follows.

THEOREM

Demonstration

6.22 If GOEand FnG = A, then G O E\F.

Axiom 6B

6.23 E\Fisthelargest refinement of E that is
digoint from F.

Thisisthe content of Theorems 6.2, 6.11,
and 6.22.

Moreover, (E\F)\G is the largest refinement of E that isdigoint from both Fand G. To

see this, we reason as follows.

THEOREM Demonstration
6.24 (E\F)\G O E. Theorem 6.2
6.25 ((E\P\G)NG = A. Theorem 6.11

6.26 ((EWF)\G)nF=A.

Since E\F isdigoint from F (Theorem 6.11),
and (E\F)\G U E\F (Theorem 6.2), (E\F)\G is
digoint from F (Theorem 5.8).

627 IfHOE HAF=A, and HNG = A,
then H O (E\F)\G.

By Theorem 6.22, it follows from HJ E and
HnF=Athat H O E\W. Anditfollowsfrom
HOEWFandHNG = A that H O (E\F)\G.

6.28 (E\F)\G isthe largest refinement of E
that is digoint from both F and G.

Thisisthe content of Theorems 6.24, 6.25,
6.26, and 6.27.
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These theorems follow.

THEOREM Demonstration
6.29 (E\F)\F = E\F. Theorems 6.23 and 6.28
6.30 (E\F)\G = (E\G)\F. Theorem 6.28

By Theorems 6.15 and 6.30, the four following statements are al equivalent: E\F [0 G,
E\G O F, (E\F)\G = A, and (E\G)\F = A.
Here are some further results that will prove helpful.

THEOREM Demonstration
By Theorems 6.2, 6.17, and 2.1, G\F [
6.31 If GO E, then Gn (E\F) = G\F. Gn(E\F). By Axiom 2a and Theorems
6.11 and 6.23, Gn (E\F) [0 G\F.
6.32 If E\F- (E\A)\B, thenA-ForB-F. Axiom 6B and Theorems 6.13 and 6.16
6.33 If A0 FandB [OF, then E\F [0 (E\A)\B. | Theorem 6.32

Hereis atheorem that does not involve relative complements in its statement but which
apparently requires the axioms for relative complements for its proof.

THEOREM Demonstration

Theorem 6.4 saysthat (EnF)O(E\F) = E. If E- A, then
?'24 ITE- A, thenlap(EF) or E Axiom 3B yields the conclusion that EnF - A (i.e.,

lap(E,F)) or E\F - A\ (whence E - F by Theorem 6.14).

This leads to the following symmetric interpretation of (H\E)\F being impossible.

THEOREM Demonstration

Suppose [poss(G) and G [ H] doesimply [GNE - A or GnFo
A]. Taking (H\E)\F for G, we see that (H\E)\F - A would
imply ((HNE)\F)nE - A or (H\E)\F)nF - A, in contradiction
to Theorems 6.25 and 6.26. Going the other way, suppose
|20(G.F)] (H\E)\F = A\, poss(G), and G [0 H. By Theorem 6.15, H\E [

n F. By Theorem 6.34, G - H\E (whichimpliesGnE - A\ by
Axiom 6B) or Gn(H\E) - A (which impliesGnF - A).

6.35 (H\E)\F = A if and
only if [poss(G) and G [0 H]
implies [lap(G,E) or

Intuitively, (H\E)\F = A means that H’ s happening must involve either E’'s happening or F's
happening. Theorem 6.35 yields thisinteresting implication: If G 0 H and G are digoint
from both E and F, then G isimpossible.

We now show that our other constructions, EnF, ELJF, and A, can be defined in terms of
relative complement. First, EnF = E\(E\F).
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THEOREM Demonstration

If E\(E\F) - EnF, then Axiom 6A, givesE - (E\F)LJ(EnF),
contradicting Theorem 6.4. If EnF - E\(E\F), Axiom 6B gives
either EnF - E, contradicting Axiom 2A, or (EnF)n(E\F) - A,
contradicting Theorem 6.3.

6.36 EnF = E\E\F).

Second, ECJF = I\((NE)\F), where | is any event refined by both E and F.

SupposeE 1l and F 1 1.

THEOREM Demonstration
6.37 F O IN(NE)\F). Axiom 6B and Theorem 6.11
6.38 E [0 IN((NE)\F). Theorem 6.30 and 6.37
6.39 If EO G, and F O G, then By Theorem 6.33, I\G O (NE)\F. So by Theorem 6.7,
N(NE)\F) O G. N(NE)\F) O G.

_ By Theorems 6.37, 6.38, and 6.39, I\((I\E)\F) isthe least
6.40 EOF = N(NE)F). upper bound of E and F in the refinement order.

Third, the impossible event is equal to E\E for any event E.

THEOREM Demonstration

6.41 A\ =E\E. Theorem 6.9

Finally, we prove DeMorgan’s laws.

SupposeE Ol and F 1 1.

THEOREM

6.42 \EnF) = (\E)T(I\F).

6.43 INEOF) = (NE)n (I\F).

To prove Theorem 6.42, wefirst use EnF O E and EnF O F to conclude, by Theorem
6.18, that \E O IEnF) and \F O IEnF), so that (NE)O(I\F) O I(EnF). To provethe
opposite refinement, we use Theorem 6.17 to obtain E\F (I I\F and then Theorem 6.18 to
obtain E\(I\F) O E\(E\F), whence, by Theorem 6.36, E\(I\F) [0 EnF. Because E = I\(I\E) (by
Theorem 6.36), we obtain (IN(NE))\(I\F) OO EnF. Another application of Theorem 6.18 yields
NENF) O N(NNE)\(\F)). By Theorem 6.40, this can be written IN(EnF) O (NE)CI(1\F).

To prove Theorem 6.43, wefirst use E [J ELJF and F [0 ELIF to conclude, by Theorem
6.18, that IN(EOJF) O \E and IECJF) O I\F, so that IECIF) O (NE)n (I\F). To show the
opposite refinement, we use (INE)n (I\F) O (NE)\F to obtain I\((NE)\F) O I\((NE) n (I\F)), or
EOF O I(NE)n (INF)), which yields (NE)n (I\F) O I(EDJF) by Theorem 6.7.

7. The Refinement Order: Summary

Hereis asummary of the axioms and primitive relations and constructions we have
introduced so far.
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Relation

E-F

We write E [J F for not(E - F).

RuULE oF CONSTRUCTION

Overlap From events E and F, construct the event EnF.

Merger FromeventsE, F, and | and proofsof E [0 | and F [ |, construct the event ECIF.

Impossible Event Construct the event A.

Relative Complement From events E and F, construct the event E\F.

AXIOM

1A ELUE

1B IfE-F, thenE-GorG-F.

2A EnFOEandEnFOF.

28 If GoEnF, thenG-EorG-F.

3A If EOF can be constructed, then E O EOOF and F O ECF.

3B IfEOF-G,thenE- Gor F-G.

4 IfEODFOGand EnGUOF, thenEOF.

5 AU E.

6A E\F- Gif and only if E - (EnF)O(EnG).

68 G-E\Fifandonlyif Ge Eor EnFNnG - A.

We could make this system more parsimonious, if we wished, by defining the other
constructions in terms of the relative complement, asin Theorems 6.36, 6.40, and 6.41.
However, this would make the axioms much less readable.

Recall that a Boolean algebra is a complemented distributive lattice with a zero (an
element A such that A O E for all E) and aunit (an element Q such that E [0 Q for al E).
Our axioms postul ate the existence of a zero but do not postulate the existence of a unit.
They also do not quite give alattice, since two events may fail to have amerger. If we were
to add the construction Q and the axiom E [0 Q to our system, a merger could be constructed
for any pair of events, and so we would have a constructive system of axioms for the concept
of aBoolean algebrafl7] In any case, our axioms as they stand imply that the refinements of a
fixed possible event E form a Boolean algebra, with E as its unit.

8. TheTemporal Order: Happening First

We now turn to the temporal ordering of events—the possibility that one may occur after
another. We begin with another excess relation.

17 Asfar aswe are aware, no constructive system of axioms for Boolean algebras has
previously been published. We are also not aware of any previous use of our resolution
axiom, Axiom 4, in any axiomatization for Boolean algebras, constructive or classical.
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RELATION Reading Example of proof
E E may happen without F ever An example where E has happened
OF )
having happened. and F has not.
AXIOM Explanation

8A IFEOF, thenE-F.

If E has happened and F has not, then F did not happen
at the same time E happened.

8 IFECOF thenEOGor GOF.

Suppose E happens without F yet having happened.
Then G has either happened or not. In thefirst case, G
has happened and F has not. In the second case, E has
happened and G has not.

8 IfE-FthenEOForFOG
orE-G.

Suppose E happens without F happening at the same
time. If G did not happen as E happened, E- G. If F
did not happen earlier, EO F. If G did happen at the
same time and F happened earlier, then F happened
without G ever having happened, for otherwise G would
happen twice.

8 IfFE0JlandFOI, thenG DO
EnFimpliesGOEorGOF.

Because E and F are refinements of the same
instantaneous event, they can both happen only by
happening at the same time.

Axiom 8D requires the relation 0 to respect the instantaneous nature of the event I.
The following figures lay out the constructive intuition behind the specific instances of
the principle of the excluded middle embodied in Axioms 88 and 8c.
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Case 1:
G happens at a
_ finite distance
before E or s
E) « — infinitesmally ase 2:
<> closeto E. <E> G happ_ens ata
finite distance
~ after E or
not at all.
v v
a b a b

Hypothesis: F happens at afinite distancein
time after E, asin (a), or not at all, asin (b).

Figure 15 An explanation of Axiom 88. If E 0 F, then one of two courses of events must be possible: (a) E
happens followed by F after afinite interval of time, or (b) E happens and F never happens. In case 1, Nature
can make the judgment that G has happened without F yet having happened, so that G O F. In case 2, Nature
can make the judgment that E has happened without G yet having happened, so that E [ G.

e w G happens
~ before E,

<E> @ @ @@ CED _ afte?rré, or
A& notatall.

v v v
a b c a b c a b c
Hypothesis: F, if it Case 1: G happens Case 2: G, if it happens,
happens, happens at a infinitesmally closein at al, happens at afinite
finite distance from E, timeto E. distance from E.

either before E asin (a)
or after Easin (b).

Figure 16 To explain Axiom 8c, we use the same picture that we used to explain Axiom 1B. If E o F, then one
of the three courses of events on the left must be possible: (a) F happens followed by E after afinite interval of
time, (b) E happens followed by F after afinite interval of time, or (c) E happens and F never happens. In case
1a, Nature can make the judgment that F has happened without G yet having happened, so that F [0 G. In cases
1b and 1c, Nature can make the judgment that E has happened without F yet having happened, sothat ECI F. In
case 2, Nature can make the judgment that E has happened without G happening at the same time, so that E  G.
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THEOREM Demonstration

8.1 not(E D E). Axioms 8A and 1A

82 IfE-F thenEOFor FOE. Axiom 8c with E for G and Axiom 1A
By Theorem 8.2, E- A impliesE O A

83 IfE-A,thenEOA. or A O E. Butby Axiom8aA, ADE
implies A\ - E, contradicting Axiom 5.

84 [E-ForF-E]ifandonlyif[EOForFOE]. | Axiom 8A and Theorem 8.2

Theorem 8.1 and Axiom 8B tell usthat O, like -, is an excess relation. So we can draw all
the conclusions about O that we drew about - in 81.

Theorem 8.4 tells us that the excess relation O produces the same apartness relation # and
hence the same equality relation = as the excess relation - produces. (Recall from 81 that E #
F means, by definition, that E - F or F - E, while E = F means not(E # F).)

We now introduce the relation that deniesE O F.

RELATION Definition Reading Meaning
E<F not(E 0 F) E requiresF. E can happen only if F happens at the
sametime or earlier.

Because it is the negation of an excessrelation, < isapartial order. Wecall it the
temporal order. Aswe notein Theorem 8.5, E < F holds whenever E [1 F does. Aswe note
in Theorem 8.7, < coincides with [ when we consider only refinements of afixed event.
(Thisiswhy < pointsin the direction it does, which might otherwise seem odd.)

THEOREM Demonstration

85 IfEOF thenE<F. Axiom 8aA

86 ITE0IlandF I, thenE - FimpliesE O F. Axiom 8c with | for G

87 IfE0landF I, thenE<FimpliesE [ F. Theorem 8.6

It follows from Theorem 8.5 that A, the zero for [J, is also the zero for <.
The next two theorems are exactly analogous to Theorems 1.13 and 1.14; they show that
0 respects the partial order < just as - respects the partial order [.

THEOREM Demonstration
88 IfEOFandE<G,thenGOF. Axiom 8B
89 IfEOFandG<F, thenEOG. Axiom 8B

Hence we can substitute equals for equalsin E 0O F.

THEOREM Demonstration
810 fEOFandG=E,thenGOF. Theorem 8.8
811 fEOFand G=F, thenEOG. Theorem 8.9

Next, we note that O respects [J in the same way as it respects <.
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THEOREM Demonstration

812 fEODFandEOG,thenGOF. Theorems 8.5 and 8.8

813 IfEOFand GOF, thenE O G. Theorems 8.5 and 8.9

Contraposing these last two theorems, we obtain the following statements, which can al'so be
thought of as aspects of the transitivity of <.

THEOREM Demonstration
814 TEOGand G<F thenE<F Theorem 8.12
815 fE<GandGOF,thenE<F. Theorem 8.13

When do the constructions we have already introduced, EnF, ECIF, A, and E\F, stand on
one or the other side of the relation O with another event? One way to answer this question
iSto use the characterizations of these constructionsin terms of the order [1. Thisis
straightforward, but we spell it out for the sake of compl eteness.

THEOREM

Demonstration

8.16 EnF 0O Gif and only if there exists
aneventH suchthat HO E, HO F, and
HOG.

If EnF O G, then EnFistherequisite H. Going
the other way, supposeHO EandHO F. ThenH
0 EnF by Theorem 2.1. This, together with H O
G, impliesEnF 0 G by Theorem 8.12.

8.17 GOEnFifandonlyif [HO E and
HOFimply G O H]J.

Suppose GO EnF. FromHO Eand H O F, we
obtain H O EnF by Theorem 2.1 andthen GO H
by Theorem 8.13. Going the other way, suppose
HOEandHOFimply GO H. By Axiom 2A,
EnFOEandEnFOF. SoGOENF.

8.18 Suppose E[JF can be constructed.
Then EOF O Gif and only if [EQ H and
FOHimply HO G].

Suppose ECDOF 0 G. FromEO H and FO H, we
obtain ECJF 00 H by Theorem 3.1 andthenH 0 G
by Theorem 8.12. Going the other way, suppose
EOHand FOHimply HOG. By Axiom 3A, E
O EOFand FO EOF. So EOF O G.

8.19 Suppose E[JF can be constructed.
Then GO ECJF if and only if there exists
anevent H suchthat ECJH, FOO H, and
GOH.

If GO EOF, then EOF istherequisite H. If EO
H, FO H, and G O H, then ECJF O H, and hence
G 0 EOJF by Theorem 8.13.

8.20 A 0O E does not hold for any E.

A 0 Ewould imply A - E by Axiom 8A, in
contradiction of Axiom 5.

821 EOAifandonlyif E- A.

By Axiom 8A, EO A impliesE - A. If E- A, then
Axiom 8c, with E for G and A for F, together
with 8.20, impliesthat E O A.

822 FTE<FandE- A, thenF- A.

Theorems 8.8 and 8.21
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8.23 E\F O Gif and only if thereisa
refinement H of E that isdigoint from F
and satisfiesH O G.

If E\F O G, then E\F istherequisite H. Going the
other way, if H isarefinement of E that is digoint
from F, then H 00 E\F. So E\F O G follows from
Theorem 8.12.

8.24 GO EWifandonlyif [HOEand
HnF=Aimply G OH].

Weknow that H D Eand HNF=Aimply H [
E\F. This, together with G 0 E\F, impliesG 0O H
by Theorem 8.13. Going the other way, we know
that E\F 0 Eand (E\SF)nF=A. So[H O E and
HnF=Aimply G 0H] impliesG 0 E\F.

To conclude, we put Axioms 8c and

8D in contrapositive form.

THEOREM Demonstration
825 IFTEOGandE<F<G,thenEOF. Axiom 8¢
826 IfEOILFOI,H<E,andH<F,thenH<EnF. Axiom 8D

We will use Theorem 8.26 in §12.

9. Happening After

After studying the partial order [ in 81, we introduced the construction EnF, which is

the largest part of E that standsin the rel

ation 0 with F. We now proceed analogously for

the binary relation <, by introducing a construction that represents the largest part of E that

standsin the relation < with F.

RULE OF CONSTRUCTION Explanation
After From events E and F, construct | EF happens when E happens and F happens at the
the event EF. same time or has already happened.

We call EF the happening of E after
“simultaneously or later.”

F. Here“after” isused in aweak sense, to mean

AXIOM Explanation
on EFOE. When EF happens, E happens.
% EF<E When EF happens, F happens simultaneously or has

aready happened.

9c If G-EF, thenG-Eor GhEOF.

In asituation G where E does not happen after F,
either E does not happen at all, or else E happens
without F having happened yet.

9 IfEOIN FOI, and GEUF. A,
then GE - A or GF s A.

When G happens after ELIF, it happens after E or
after F.

Contraposition of Axiom 9c produces the following statement.
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THEOREM Demonstration

91 fGOEand G< F, then G O EF. Axiom 9c

The event EF isthe least upper bound in the partial order O for the events that refine E
and follow F. Theorem 9.1 saysthat it isan upper bound for these events, and Axioms 9A
and 98 imply that there is no smaller upper bound. Speaking less precisely, we say that E is
the largest part of E that follows F.

Asit turns out, the relation 0O can be defined in terms of the relation - and the
construction After. Thisis spelled out in Theorem 9.4.

THEOREM Demonstration

9.2 If EOF, then E0 EF. Axiom 88, with EF for G, and Axiom 98
9.3 IfE-EF, thenEDOF, Axiom 9c, with E for G, and Axiom 1A
9.4 E0Fif and only if E - EF Theorems 9.2 and 9.3

Here are a couple of consequences of Theorem 9.4.

THEOREM Demonstration

95 E<Fif and only if E = EF. Axiom 9a and Theorem 9.4

96 IFEOIand FO 1, then G- GENF

implies G - GE or G- GF Axiom 8D and Theorem 9.4

Note the analogy of Theorem 9.6 with Axiom 9D.
We now state conditions for EF to stand on one side or another of the relations 0 and o
with another event.

THEOREM Demonstration

If EF 0 G, then EF isthe requisite H, by Axioms 9a
9.7 EF 0 Gif andonly if thereexists | and 98. If H O E, H < F, then H O EF by Theorem
Hsuchthat H OE,H<F,andH 0 G. | 9.1, and this, together withH O G, impliesEF 0 G
by Theorem 8.12.

If G 0 EF, then we can use H O EF, which follows
9.8 GoEFifandonlyif HOEandH | fromH O E and H < F by Theorem 9.1, to obtain G
<Fimply G O H. O0Hby Theorem8.13. THOEandH <Fimply G
0 H, then we get G 0 EF from Axioms 9a and 9s.

If EF o G, then EF isthe requisite H, by Axioms 9a
9.9 EF - Gif and only if thereexists | and9s8. If HOEand H < F, thenH O EF by
Hsuchthaa HOE,H<F,andH - G. | Theorem 9.1, and this, together with H - G, implies
EF - G by Theorem 1.13.

Theimplication to theright isAxiom 9c. If G- E,
then G - EF by Axiom 9a and Theorem 1.14. If
GNE OF, then G - EF by Theorem 9.2.

9.10 G- EFif andonlyif G- Eor
GnEOF

The next theorems explore the strong extensionality of EF.
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THEOREM Demonstration

By Axiom 9c, EF - GH impliesEF - G or
EFnG OH. FromEF - G, weobtain E - G by
Axiom 9A and Theorem 1.13. FromEFnG O
H, we obtain EF 0 H by Theorem 8.12. By
Axiom 9B and Theorem 8.9, we then obtain F O
H. Then, from Axiom 8A, we obtain F - H.

9.11 IfEF - GH, thenE- Gor F- H.

9.12 If EO0Gand FOH, then EF 0 GH. | Contraposition of Theorem 9.11

9.13 If EO G, then EF O GF. Theorem 9.12
9.14 If EOH, then EF O EH. Theorem 9.12
9.15 IfEF2GH, thenEZ Gor F# H. Theorem 9.11
9.16 fE=Gand F=H, thenEF=GH. | Theorem9.12
9.17 If E=G, then EF = GF. Theorem 9.13
9.18 If F=H, then EF = EH. Theorem 9.14

We now provide a necessary and sufficient condition for ECJF O G that is more
interesting than the one given in Theorem 8.18.

THEOREM Demonstration

Suppose EOF O G. By Theorem 9.4, EOF - (EOF)G. By
Axiom 38, E - (EOF)SG or F- (EOF)G. If E - (EOR)G,

9.19 I EDFD G, then ED G then E « EG by Axiom 3a and Theorems 9.13 and 1.14,

orFO0G. whence E 0 G by Theorem 9.4. Similarly, if F - (EOF)G,
then F O G.
9.20 Suppose ELIF can be If EOF O G, thenE 0O Gor FO G by the preceding

constructed. Then ECOF O G if | theorem. If EO G or F O G, then ELF 0O G by Theorem
andonlyif [ E0OGor FOGl. 8.12.

Thereis an interesting parallel between Theorem 9.20 and Axiom 8D, both of which involve
the assumptions E (I | and F [0 1. Axiom 8D implies that under this assumption, G 0 EnF if
andonly if GO E or G OF. Theorem 9.20 says that under this assumption, ECJF O G if and
onlyif EDGorFOG.

Here are some additional properties of the construction EF.

THEOREM Demonstration
9.21 EnFOEF. Theorem 9.1 withEnFfor G
Therelation (EF)F O EF is Axiom 9a with EF for E. The
9.22 (EFHF=EF, relation EF O (EF)F follows from Theorem 9.1 with EF for
GandE.

Therelation (GF)E O GE follows from Axiom 9a and
Theorem 9.13. Using Theorems 9.22, 9.14, and 9.13, we
obtain and GE = (GE)E O (GF)E.

9.23 If EO F, then (GP)E =
GE.
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9.24 IfEO I and FO 1, then
EF=EnF.

By Theorem 9.21, it suffices to show that EF O EnF. We
assume EF « EnF and derive a contradiction. From EF -
EnF, we obtain EF - E or EF - Fby Axiom 2a. ButEF - E
contradicts Axiom 9a. And when we apply Axiom 8c to EF
» F, we find that EF 0 F (contradicting Axiom 98), F O |
(contradicting the assumption F [ 1), or EF - |

(contradicting the assumption E [1 1).

9.25 (EnF)G=EGNFG =
EGnF.

By Theorem 9.13, (EnF)G 0 EG and (EnF)G O FG. So
(EnF)G 0 EGNFG by Theorem 2.1. Because FG O F
(Axiom 94), we obtain EGn FG [0 EGn F by Theorem 2.8.
So (EnF)G 0 EGNFG 0 EGAF. From EG O E (Axiom 9a
again), we obtain EGNF O EnF by Theorem 2.9. By
Axiom 98, EG < G, and hence EGnF < G by Theorem
8.12. So EGnF O (EnF)C by Theorem 9.1.

9.26 If FOE, then FG =
EGnhF.

Theorem 9.25

9.27 If E0land FO 1, then
(EORG = EGOFG,

Using the relation (EOF)G O EOF, distributivity, and
Theorem 9.26, we may write (EDF)G = (EDF)n (EOF)G =
[En(EORSG]0[Fn (EOFR)G] = EGOFG.

9.28 EG\FG = (E\F)G.

Using Theorems 6.5 and 9.25, we may write EG\FG =
EG\(EGNFG) = EG\(EGnF) = EG\F. So we only need to
show that (E\F)G = EG\F. From Theorem 9.13, we obtain
(EVF)G O EG. We have (E\F)G O E\F by Axiom 9a and
hence (E\F)Gn F = A by Theorems 6.11 and 5.8. Hence
(E\F)G O EG\F by Theorem 6.22. We obtain EG\F O E\F
from Axiom 9a and Theorem 6.17. And we obtain EG\F <
G from Axiom 98 and Theorem 8.12. So EG\F O (E\F)G by
Theorem 9.1.

9.29 EF=Aif and only if [G
OEand G<FimpliesG =
Al.

If [GOEandG < FimpliesG = A], then we obtain Axiom
EF = A by Axioms 9a and 98. If EF = A, then we obtain [G
[JEand G < FimpliesG = A] by Theorem 9.1.

9.30 IFE0land F O, then
HELUF = HEOHF.

By Theorem 9.14, HEOHF 0 HELF, To prove the
equality, we set G = (HEUF)\(HEOHF). Because G < EOF,
GEUF = G. Using Theorems 9.28, 9.23, and 9.27, we find
that GE = HE\(HEO(HF)E) = A. Similarly, GF=A. Soby
Theorem 9.10, GEUF = A or G= A,

9.31 fE<FandEG = A,
then E< F\G.

Since F = (FnG)J(R\G), Theorem 9.30 yields EF =

EFNG OERG, From EG = A and Theorem 9.14, we obtain
EFNG = A, and from E < F and Theorem 9.4, we obtain E =
EF. so EF = EFNG OERG reducesto E = EF\G. Again
using Theorem 9.4, we obtain E < R\G.

Theorem 9.30 marks our first use of Axiom 9D.
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10. Happening Strictly After

Sometimes we are interested in the event that E happens strictly after F. This event does
not require anew rule of construction; it can be constructed using rules we have already
adopted: After and Relative Complement.

CONSTRUCTION Definition Reading

E,F ERF The happening of E strictly after F.

We can characterize E,F order-theoretically: it isthe largest refinement of E that requires
F but isdigoint from F.

THEOREM Demonstration

10.1 E,FOE. Axiom 9a and Theorem 6.2

10.2 E,F <F. Axiom 9a and Theorems 6.2 and 8.5

10.3 EFnF=A. Theorem 6.11

104 IfGOE,G<F,andGnF=A, |ByAxiom9c, G O EF, and it follows by Theorem
then G O E,F. 6.22 that G 0 ERF.

Here are some additional properties.

THEOREM Demonstration

RE = EF(EF
= By Theorem 6.5, EF\F = EF\(EFnF). By
10.5 B7=EN(ENF). Theorem 9.21, EFnF = EnF.

10.6 IfEOland FO I, then EF = A Theorems 9.22 and 10.5

10.7 f ESFOGand E,F = A, thenE<F. | Theorem 9.31

11. Happening Clear

We can also construct, using After and Relative Complement, the event that E happens
without F yet having happened. We may call this event the happening of E clear of F.

CONSTRUCTION Definition Reading

E\F E\EF The happening of E without F yet having happened.

Here are some properties of E\\F.

THEOREM Demonstration

By Theorem 6.34, G - A implies G - GF or
lap(G,GF). By Theorem 9.6, G - GF meansG O F.
On the other hand, 1ap(G,GF) means GF - A, which
implies, by Axiom 1B, that GF - GhnEF or GnEF »
A. From GF « GnEF, we obtain GF « (GnE)F by
Theorem 9.25 and then G - E by Theorem 9.5.
Finally, by Axiom 6a, GnEF - A and G - E both
imply G - E\EF, or G - E\F.

111 If G- A, thenGOFor G- E\.
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112 IfGOEWand G<F, thenG =

A Theorem 11.1
11.3 (E\F)F=A Theorems 9.22 and 9.28
11.4 (E\F)P\E= A Theorems 9.14 and 11.3

By definition, E\F = E\EF, and since EF O E, this
implies E = (E\F)OJ(EF). By Theorem 10.5, E,F =
EF\(EnF), and since EnF O EF, thisimplies EF =
(E.;HOENF).

115 E = (E\PI(E,PT(ENF).

12. Diverging and Implying
We say two events diverge if they cannot both happen. Thisis made precise by the
following definition.

RELATION | Definition Reading Meaning
. IfH<EandH<F, : There is no situation (possible event)
dv(EF) | ihenH = A Eand Fdiverge. |\ here both E and F have happened.

Thisrelation is obviously symmetric: div(F,E) if and only if div(E,F). We will use the
symmetry without comment. Depending on the context, we will read “div(E,F)” as“E and F
aredivergent,” “E and F diverge,” E divergesfrom F,” or “F diverges from E.”

Theidea of divergence takes on a different significance when we think of one of the
instantaneous events involved as a situation. If Eisasdituation (i.e., if E isan instantaneous
event and E - A), and div(E,F), then we may say that F has failed in the situation E: itisno
longer possible for F to happen, because there is no possible situation H after E where F has
happened.

If two events cannot both happen, then they cannot both happen at the same time:
divergent events are digoint. Thisintuition is confirmed by the following theorem.

THEOREM Demonstration

. . By Axiom 2a and Theorem 8.5, EnF< E and
12.1 1t div(E,F), then dis(EF). EnF<F. Sodiv(E,F) impliesEnF = A.

Digoint events are not necessarily divergent, for one can happen after the other. But
digoint refinements of a single event are divergent.

THEOREM Demonstration

122 If EOland F O 1, then div(E,F) if
and only if dis(E,F). Theorems 12.1 and 8.26

18 Perhaps we should use the constructively stronger condition, “If H A, then H O E or
HOF.” (Inwords. inany situation H, either E has not happened or else F has not
happened.) It isnot clear to us how to choose between the two conditions as the definition of
divergence.
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Implication is arelation between propositions. As such, it can be regarded as a primitive.
It can also be explained semantically: A impliesB if B istruein all situationswhere A is
true.

Instantaneous events are not true or false. They happen or fail. So does it make sense to
talk about one instantaneous event implying another? What would this mean? A natural
way of responding to this question is to shift our attention from the instantaneous events to
related propositions. Situating ourselves at the beginning of time, we might consider
propositions of the form, “E will happen,” where E is an instantaneous event. We could then
discuss whether “E will happen” implies “F will happen”—without regard to which
happening will come first. Such a discussion seems, however, to require philosophical and
mathematical assumptions going far beyond what we have adopted so far.

Instead of speculating about propositions, we will use the concept of divergence, whichis
already in our framework, to define implication. We can do this because, as we have already
noted, the relation div(G,F) can be interpreted by saying that F has failed in the situation G.

If we assume that any event eventually happens or fails (it does seem reasonable to make this
part of our intuitive concept of an instantaneous event), the proposition that F must happen if
E happensis equivaent to the proposition that E must fail if F fails. So we adopt the
following definition.

RELATION Definition Reading Meaning
If div(G,F), then T Whenever the happening of Fisruled
E-F div(G,E). EimpliesF. out, the happening of E isalso ruled out.

It follows directly from this definition that — isreflexive and transitive:

THEOREM

123 E- E

124 IfE - FandF - G, thenE - G.

If E - Fand F - E, we say that E and F are logically equivalent instantaneous events.
Either both eventually happen or else neither ever happens.

13. Incomparable Events
Let us call two eventsincomparable if neither can happen after the other.

RELATION | Definition Reading Meaning

. F_ E_ , Neither E nor F can
inc(E,F) EF=Aand FE=A. | Eand F areincomparable. happen after the other.

The condition EF = A meansthat G 0 E and G < Fimplies G = A (see Theorem 9.29).
So the precise meaning of incomparability is that there is no situation in which one of the
events happens and the other also happens or has already happened. Divergence is stronger:
it says there is no situation in which both events have happened.

In ordinary reasoning, we assume that all events that actually happen fall along asingle
time-line, and hence incomparability is the same as divergence. If two events both happen,
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one must happen after or simultaneously with the other. In the theory of relativity, however,
thereis no universal time-line. In the relativistic world, E can be said to happen after F only
if the locations of the two eventsin space and time permit the news of F' s happening,
traveling at the speed of light from where F happens to where E happens, to arrive by the
time E happens. If the two events are far apart in space, it may be that neither precedes the
other in this sense. The two events are then incomparable, and yet if they both happen there
isalater situation where they are both in the past (where the news of both has arrived), and
hence they are not divergent.

The axioms and rules of construction we have adopted so far appear do not involve
assuming the existence of a universal time-line, and they appear, therefore, to be valid for a
relativistic world. It isinteresting that most of the axioms we need for causal reasoning are
valid in this general context. We are primarily interested, however, in systems for ordinary
causal reasoning, not in systems for space travelers. So in the next section we will finally
adopt axioms that are valid only in anon-relativistic world, where there is a universal time-
line.

The following theorems clarify the relationship among the concepts of incomparability,
divergence, and digointness under the axioms adopted so far.

THEOREM Demonstration
13.1 If div(E,F), then inc(E,F). Theorem 9.29
13.2 If inc(E,F), then dis(E,F). Theorem 9.21

133 IfEOland F O 1, then div(E,F),

inc(E,F), and dis(E,F) are all equivalent. Theorem 12.2

Hereis an additional property of incomparability.

THEOREM Demonstration

134 If EOland FO I, inc(E,G), and inc(F,G),
then inc(ECIF,G). Theorems 9.27 and 9.30

Here are some examples of incomparable events.

THEOREM Demonstration

By Theorem 9.29 (and symmetry), it suffices to show that G O E;F
and G < F,E imply G = A. Obtaining G O E from G O E,F and
13.5 inc(E;F,FE). expanding G < F,E to G < F,E < E, we see, by Theorem 8.25, that
G O F,E, whence G O F. But G O E,F also impliesthat G is
digointfromF. So G = A.

Again, it sufficesto show that G 0 E\\F and G < R\E imply G = A.
13.6 inc(E\\F,R\E). But G < RF\E implies G < F, and thisimplies G = A by Theorem
11.2.

This follows from Theorem 13.3, because E,F and EnF are both

no(EF
13.7Inc(€"ENF)- | efinements of E and are digjoint.

This follows from Theorem 13.3, because E\\F and En F are both

13.8 Inc(BFENF). refinements of E and are digoint.
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Hereis an application of Theorem 13.5.

THEOREM Demonstration

13.9 E,F < RA(E.E). Theorems 9.31, 10.2, and 13.5

14. Digoint Merger
We now make our theory non-relativistic by assuming that incomparable events can
always be merged into a single instantaneous event.

RULE OF CONSTRUCTION Explanation

Digoint Merger FromeventsEand | Wewill adopt axiomsthat imply ECJF = ECIF. So
F such that inc(E,F), construct the the rule says that incomparable events can be
event ELIF. merged into a single instantaneous event.

The axioms that we adopt for EL1F are essentially the same as Axioms 3A and 38, the
axioms we adopted for ECIF in Chapter 3.

AXIOM Explanation
14A If inc(E,F), authorizing the construction | When E happens or F happens, ELIF
of EODF, then E 0 EODF and F O ECIF. happens.

When ELJF happens, either E happens or F

148 If EOF - G,thenE-Gor F- G.
happens.

From Axioms 3A and 3B, we deduced that EL1F, when it can be constructed, is the least
upper bound of E and F in the refinement order. We can similarly deduce from Axioms 14A
and 148 that EC1F, when it can be constructed, is also the least upper bound of E and F in the
refinement order. It follows that when both ECJF and ECIF can be constructed, they are

equal.

THEOREM Demonstration

14.1 If inc(E,F), then EODF = EOIF. By the reasoning just explained

By Theorem 13.1, div(E,F) impliesinc(E,F). If
14.2 inc(E,F) if and only if div(E,F). inc(E,F), then E O ECJF and F O EOJF by Axiom
15a, and so div(E,F) by Theorem 13.3.

Suppose ELJF exists and dis(E,F). Since ELIF
exists, E 00 EOOF and F (0 EOJF, and hence, by
14.3 EDF existsif and only if [ECJF Theorem 13.3, dis(E,F) impliesinc(E,F). And so
exists and dis(E,F)]. EDF exists. Going the other way, if ELJF exists,
then inc(E,F). So ELIF exists by Theorem 14.1,
and dis(E,F) by Theorem 13.2.

Theorem 14.3 explains the name digjoint merger for ECIF.
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The following theorem clarifies further the relationship between merger and digoint
merger.

THEOREM Demonstration

By Theorem 12.1, E[JF = EJF. By Theorem
13.4, inc(ELJF,G), and hence (ELIF)JG exists.
It isequal to both (EOF)OG and (ECF)OIG.
Analogously, we find that EC](FOG) exists and
isequa to ELI(FOG).

14.4 SupposeE, F, and G are pairwise
incomparable: inc(E,F), inc(F,G), and
inc(E,G). Then (EOF)OG and EO(FOG)
exist and are equal.

It follows from this theorem that we can speak unambiguously of the digoint merger of any
number of pairwise incomparable events.

15. The Temporal Lattice

With the help of one additional axiom, we can now show that the temporal order < isa
distributive lattice.

We will write ELIF for the greatest lower bound of E and F with respect to <, and we will
write ECF for the least upper bound. These constructions are defined as follows.

CONSTRUCTION Definition Reading
ECF (E.NHOFEOENF) The ending of E and F
ELF (EWNF)O(R\E)(EnF) The beginning of E and F.

Theorems 13.5 and 13.7 authorize the digoint merger in the definition of ECIF, while
Theorems 13.6 and 13.8 authorize the digoint merger in the definition of ECIF. We call ELIF
the ending of E and F because it happens when the happening of the pair ends—either by
their happening at the same time or by one happening after the other has aready happened.
We call ECJF the beginning of E and F because the two begin to happen when the first
happens. The happening of a pair of events can begin (when one of them happens) without
ever ending (because the second never happens).

Here are alternative expressions for ELIF and ELF.

THEOREM Demonstration

F-(EE E
— eFAeE By Theorems 9.31 and 10.5, EF = (F,5)J(EnF) and F
151 ELF=EPLUF= = (E,P)0(EnF). So EFOFE = (E,NO(F.B)OENF).

By Theorem 11.5, E\(E,F) = (E\F)O(EnF) and A\(F,E)
15.2 ELF = (EEP))O(R\(F.E). | = (R\E)J(EnF). So (E\EN)D(R\(FE)) =
(E\P)D(R\E)T(EnF).

In order to establish that ECIF and ELCF are the greatest lower bound and least upper
bound, respectively, for E and F, we need to prove or assume statements anal ogous to
Axioms 2A, 2B, 3A, and 38. We adopt as an axiom the statement analogous to Axiom 2B.
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AXIOM

Explanation

15 IfGOELF thenGOEorGOF.

If E and F have not ended happening, at least one of
them hasn’t happened.

The other statements we prove from axioms already adopted, as follows.

THEOREM

Demonstration

153 EF<Eand ELF<F.

By Theorem 15.1, we can prove ELJF < E by
proving EFOFE < E. By Axiom 9a, EF O E and
hence, by Theorem 8.5, EF < E. By Axiom 98, FE
<E. So, by Theorem 9.19, EFOFE<E.

154 E<E[Fand F< ELF.

By Theorem 16.2, we can prove E < ECIF by
proving (E\(E-F)) DE,F < (EVEN)D(R\(F5)).
But this follows from applying Theorems 9.19 and
8.15 to Theorem 14.9.

155 IfELFOG,thenEOGor FOG.

By Theorem 15.2, E[F 0 G can be written
(E\E.F)O(R\(F,E)) 0 G. By Theorem 9.19, this
implies E\(E,F) 0 G or A\(F,E) 0 G, whence ED G
orFOG.

Using Theorem 15.3 and Axiom 15 just as we used Axioms 2A and 2B in 82, we can
establish that ECIF isindeed the greatest lower bound of E and F with respect to <, with
properties analogous to the properties for EnF listed in Theorems 2.1 through 2.13.
Similarly, using Theorems 15.4 and 15.5, we can establish that ELF is the least upper bound
of E and F with respect to <, with properties analogous to the properties for ELJF listed in
Theorems 3.1 through 3.13. Because both ELJF and ELJF exist for every pair E and F, we
may conclude that the temporal order < isalattice.

Moreover, as the following theorem establishes, this lattice obeys the resolution axiom.

THEOREM

Demonstration

By Theorem 11.5, our task isto show that
(ENG)I(E,C)J(ENG) < F. The condition
ELG < Ftells us that (E,C)0(EnG) < F. And

156 fE<FOGand EOG < F, thenE<F. | thecondition E < FOG talls us that E\G <

(F\G)J(G\F)O(FNG). Since (A\G)C = A, it
follows by Theorem 10.7 that E\G <
(F\G)I(Fn G), and hence that E\G < F.

Aswe learned in 84, thisimplies that the lattice is distributive.

Here are some further results.

THEOREM Demonstration
15.7 (E\F)(R\E) = A. Theorems 11.4 and 15.1
158 fEOland FOI, then ECOF = EnF. Theorem 10.6
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16. Axiomsfor Event Spaces. Summary

Hereisasummary of our relations, constructions, and axioms. Altogether, there are two
primitive relations, six primitive constructions, and twenty-one axioms. When a set with the
two relations and six constructions obey the twenty-one axioms, we call the set an event

space.

RELATIONS

E-F

EOF

RULES OF CONSTRUCTION

Overlap From events E and F, construct the event EnF.

Merger From eventsE, F, | and proofs of not(E - 1) and not(F - 1), construct the event ELJF.

Impossible Event Construct the event A.

Relative Complement From events E and F, construct the event E\F.

After From events E and F, construct the event EF.

Digoint Merger From events E and F such that inc(E,F), construct the event ELC1F.

DEFINED PREDICATES Definition
Possible poss(E) E-A
Impossible imposs(E) not(poss(E))
DEFINED RELATIONS Definition
Refines ELJF not(E - F)
Unequal EZF E-ForF-E
Equals E=F EOFandFOE
Requires E<F not(E 0 F)
Overlaps lap(E,F) EnF-A
Digoint dis(E,F) EnF=A

Diverges div(E,F)

IfH<EandH<F, thenH =A.

Implies ET] F

If div(G,F), then div(G,E).

I ncompar able inc(E,F)

EF=AandFE=A.

DEFINED CONSTRUCTIONS Definition

Strictly After E,F ERF

Clear E\WF E\EF

Ending ECF CNESEE)
Beginning E[F (E\F)O(R\E)I(EnF)
AXIOMS

1A EOE.

1B IfE-F, thenE-GorG-F.

2A EnFOEandEnFOF.
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28 If GoEnF, thenG-EorG-F.

3a IfEOland FOI, then E 0 EOF and F O EOF.

38 IfEOF-G,thenE-Gor F-G.

4 IfEOFOGand EnGUOF, thenEOF.

5 AU E.

6A E\F- G if and only if E - (EnF)I(ENG).

68 G-E\Fifandonlyif Ge Eor EnFNnG - A.

8A IFEOF, thenE-F.

8 IfEOF thenE0GorGOF.

8 IfE-FthenEOForFOGorE-G.

8 IFEOlandF I, then GOEnFimpliesGOEor GOF.

oA EFOE.

9 EF<F.

oc f G- EF, thenG-Eor GnEOF.

oo IfEOIN FOI, and GEUF . A, then GE - A or GF 5 A.

14A If inc(E,F), authorizing the construction of ECIF, then E 0 ECIF and F [0 ECIF.

148 If EOF-G,thenE-Gor F- G.

15 f GOEFR thenGOEor GOF.

The concept of an event space isvery general. An event space, like a Boolean algebra,
can be finite or infinite. Although our axioms are motivated in part by pictures of finite
trees, they do not require that time be discrete, or that Nature foresee only a finite number of
possibilities for the situation a short time in the future, or that time end at any point. On the
contrary, these axioms are fully consistent with continuous time, in which situations do not
necessarily have immediate successors. They permit a situation to decompose into a
continuum of alternatives, and they permit open sequences of situations—sequences of
situations E;,E»,... such that Ej+1 < E; but thereisno Ewith E< E; for dl i. (See Shafer
1998a.)

Like all constructive axiomatizations, our axiomatization is open-ended; we can
introduce further constructions if we want. Some possibilities are discussed in the appendix.
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V. Classical Axiomsfor Event Spaces

We now trandate our axioms into classical form and use the classical form to prove a
generalization of the Stone representation theorem, asin Shafer (1998a).

Our work in this section brings us back to the intuitive idea with which we began in
Section 3 of Part II: an instantaneous event can be represented as a clade in an event tree.
We show first that the set of all cladesin an event tree satisfies our classical axioms for an
event space. Our representation theorem is a converse to this statement: any other structure
that satisfies our classical axioms for an event space isisomorphic to a collection of cladesin
an event tree.

The reasoning in this section is necessarily classical. A clade, by definition, is a subset,
which isaclassical mathematical idea. And the proof of the representation theorem involves
classical reasoning about ultrafilters. But the consequences of our axioms that we citein the
course of our reasoning are all theorems that we proved constructively in Part I11.

1. TheClassical Axioms

From aclassical viewpoint, it ismost natural to take [ and < as basic and then to have
the constructions emerge from the axioms. We begin with a set of objects that we call
events, with the assumption that we know what is meant by equality for these objects, and
with the assumption that we can substitute equals for equalsin any relation. We posit two
relations on the set:

RELATION READING
EOF E refines F
E<F E requires F

We adopt the following axioms for the refinement ordering (0. We leave it to the reader
to verify that these axioms are classically equivalent to the constructive axioms formulated in
881-6 of Part 11l and thus imply that the refinements of afixed event form a Boolean algebra.

AXIOM COMMENTS

This meansthat [J isreflexive (E [0 E), transitive (E U
1 Therelation Oisapartia order. | Fand F [0 G impliesE O G), and antisymmetric (E O F
and FOEimply E=F).

A greatest lower bound in a partialy ordered set is
unique. Wewrite EnF for the unique greatest lower
bound of E and F.

2 Every pair of eventsE and F
have a greatest lower bound.

A least upper bound in apartially ordered set is unique.
We write ELIF for the unique least upper bound of E
and F when it exists.

3 If E and F have an upper bound,
then they have aleast upper bound.
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Asobserved in 84 of Part I, thisimpliesthat the
distributive laws hold whenever the least upper bounds
in them exist.

4 If EDFOGand EnG O F, then
EOF

5 There exists an event that This event is unique; we designate it by A.
refines every other event.

A complement of F relativeto E is an event H such that
6 For every pair of eventsEand F, | (EnF)nH = A and (EnF)JH = E. With the help of the
there exists a complement of F preceding axioms, it can be shown that such a

relative to E. complement isunique. We write E\F for the unique
complement of F relativeto E

Next we adopt axioms for the temporal ordering < that are classically equivalent to the
constructive axioms formulated in 888-9 of Part II1.

AXIOM COMMENTS

8A IFEOF thenE<F.

88 Therelation < isapartia order.

8 fE<F<GandELOG,thenEOF.

Looking back from the situation G, we may say
8 IFEOILFOI,GSE andG<F, that if two refinements of an event have
thenG<EnF. happened, they must have happened
simultaneously.

9 Thereisalargest refinement of E that | Thisrefinement is easily seen to be unique; we

requires F. designate it by EF.
9 IFEOI FOI,GE=AandGF=A, |If Gisimpossiblein both E and F, then G is
then GELF = A impossible in ECF.

Finally, we adopt classical versions of the axiomsthat are not valid in arelativistic world.

14 1f EF = A and FE = A, then E and F have | This means the least upper bound ECIF exists.
an upper bound.

The existence of EFOFE follows from the

i FOEE
15 GsEand G<Fimply G < EFOFE preceding axiom.

We call aset = an event space if hasrelations [J and < satisfying these axioms. A
bijection between two event spaces is an isomorphismif it preserves the two relations [ and
<. A subset = of an event space = isitself an event space with the same relations [J and <
provided that (1) A O =, (2) EnF O =0, E\F O =, and EF 0 = whenever E0 =g and F O
=0, and (3) EOOF [0 =p whenever E [ =y, F [I =y, and E and F have an upper bound in =.

2. TheCladesin an Event Tree Form an Event Space

Aswe learned in Part |, an event treeis a set O with a partial order <' such that two
elements Sand T are comparable (S<' T or T <'S) whenever they have acommon lower
bound (there exists an element U such that U <' Sand U <' T). Let us call the elements of an
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event tree situations. A subset E of an event treeiscalled acladeif every two distinct
situations in E are incomparable (neither S<' T nor T <'S). The empty set qualifiesasa
clade.

Write =([) for the set of all cladesin the event tree [, and define relations (1 and < on
=(0) asfollows:
* E [ F meansthat E isasubset of F.
« E<Fmeansthat for every SO E thereexists T O F such that S<' T.
We leave it to the reader to verify that this defines an event space—i.e., to check that all the
axioms listed in 81 are satisfied. In fact, we carried out this verification, implicitly but
thoroughly, when we explained the constructive versions of these axiomsin Part 111.

3. The O Ultrafiltersin an Event Space Form an Event Tree

Now we show that starting from an event space we can construct an isomorphic space of
cladesin an event tree. Our demonstration is a straightforward generalization of the usual
demonstration of the Stone representation theorem for Boolean algebras (Davey and
Priestley, 1990, p. 196). Starting with an arbitrary Boolean algebra, Ston€e’ s theorem
constructs an isomorphic algebra of sets—the pointsin the sets being ultrafilters with respect
to the partial order in the Boolean algebra. In our generalization, ultrafilters with respect to
our partial order [ turn out to be nodes in an event tree, and the event space is then seen to
be isomorphic to a set of cladesin this event tree. (Ultrafilters with respect to our other
partial order, <, correspond to paths down the tree.)

The concept of an ultrafilter can be defined in any semilattice = withazero A. (A
semilattice is a set with a partial order [ in which any two elements E and F have a greatest
lower bound EnF.) We call anonempty subset S of such a semilattice = an uItrafiIterEﬁf

@ AOS

(2 ifEOSandF O S, thenEnF O S, and

(3) if Tisasubset of = containing S, A T,andEnFO T whenever EO T and F [

T,thenS=T.

In other words, an ultrafilter in = isamaximal subset satisfying (1) and (2). Sincean
ultrafilter is maximal, two distinct ultrafilters must each contain an event not in the other. By
the axiom of choice, any nonempty subset S of =satisfying (1) and (2) is contained in an
ultrafilter (Davey and Priestley, p. 189). Because the set containing asingle element of =
satisfies (1) and (2), thisimplies that each element of = isacontained in an ultrafilter.

Here are some general properties of ultrafilters—properties that hold in any semilattice
with a zero.

19 A more common way of defining this concept begins with the concept of filter. A
filter isasubset of the semilattice that satisfies (i) if ELd Sand E F, then F O S, and (ii) if
EOSandFOS, thenEnFOS. A filter Sisproper if it does not contain the whole
semilattice; or, equivaently, if A 0 S. A filter ismaximal if thereisno distinct filter that
containsit. We then say that an ultrafilter isamaximal proper filter. Condition (1) isthe
condition that the ultrafilter be proper. Condition (2) isthe same as (ii), and condition (3) is
the condition of maximality. Condition (ii) appears to be missing from our definition, but as
we shall see (Theorem A2), it isimplied by the maximality.
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THEOREM

Demonstration

Al. SupposeSisan
ultrafilter. ThenEO S
if andonly if EnF# A
foral FOS.

Conditions (1) and (2) imply that if EO S, then EnF # A for all F
[JS. Ontheother hand, if EnF# A foral FO S, then

SC{E}{ EnFJFO S} satisfies (1) and (2) and henceis equal, by
(3),t0 S, and henceEJ S.

A2. Suppose Sisan
ultrafilter, EO S, and
EOF ThenFOS.

By the preceding theorem, EnG# A forall GO S. BecauseE O F,
it followsthat FnG # A for all GO S. Hence, again by the
preceding theorem, F [1 S.

The following theorems, familiar from the theory of ultrafiltersin Boolean algebras, are
also valid in the more general context of an event space.

THEOREM

Demonstration

A3. Suppose Sisan ultrafilter and E
OS ThenFOSorEWFOS.

Set T:=SI{F{ FnGIGOS} andU :=

SC{E\F} (E\F)nG|IG O S}. Both T and U contain
Sand are closed under pairwise overlap. At least
one of them is composed exclusively of possible
events. Indeed, if A werein both T and U, then we
would have FnG; = A and (E\F)n G, = A\, where G;
O0Sand G, JS. Thiswouldimply FnG = A and
(E\AF) NG = A\, where G = G1n Gy, and hence EnG =
N\, contradicting the definition of ultrafilter. So
either T or U isan ultrafilter and henceisequal to S.

A4. Suppose Sisanonempty set of
events, (1) A 0 Sand (2) if EQJ Sand
FOS, thenEnFOS,and (3) if EO
S thenFOSorE\FOS. ThenSis
an ultrafilter O]

Let T be an ultrafilter containing S. Suppose F O T.
Choose an element E of S. By (3), either FJ Sor
E\F O S. But E\F cannot bein S, for if it were,
(E\F)nF, whichiisequal to A, would also bein T.
SOF S

AS5. EOFifandonlyif Fisinall
ultrafilters that contain E.

Theorem A2 saysthat if E [ F, then Fisinall
ultrafilters containing E. On the other hand, if E 00 F
does not hold, then E\F # A, and any ultrafilter that
contains E\F will also contain E but not F.

A6. A nonempty set of eventsisan
ultrefilter if and only if (1) A O Sand
(2ifE0OSandF O S, thenEnF O
Sand @) IfEDS EinE;=Aand
E.0E, = E, then E;0SorE,O0S

Theorems A3 and A4

20 This theorem, together with the preceding theorem, shows that the condition that E O
SimpliesF O Sor E\F O S can replace the condition of maximality in the definition of an
ultrafilter. A proper filter in aBoolean algebrais said to be prime when this condition is
satisfied, and so in the theory of Boolean algebras Theorem A4 can be expressed by saying
that a prime filter isan ultrafilter (Davey and Priestley, p. 187).
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Theorem A6 isintuitive if we think of an ultrafilter as representing an indefinitely precise
specification of what happens at a particular instant. We call an element E of our event space
an event; but E can have only some limited degree of detail. If E actually happened, much
el se happened at the sametime. If E; and E; partition E, then E; and E; represent more
detailed but mutually exclusive accounts of what happened when E happened. The fact that
one of these more detailed accounts must always be in S meansthat S specifies everything
that happened at that moment.

The different ultrafilters containing an event E constitute different ways of filling out the
details about what else happens along with E. If we write E* for the set consisting of all the
ultrafilters that contain E, then E* can be thought of as E in different clothing: E isapartia
description of what happened, whereas E* is the set of all complete descriptions that are
consistent with this partial description. The equivalence between E and E* isthe intuitive
content of Stone’ s representation theorem.

We conclude our survey of the basic properties of ultrafiltersin an event space with two
theorems that do not appear in the theory of Boolean algebras because they involve our
second partial order, <.

THEOREM Demonstration

A7. SupposeE<F. Then Suppose Sisan ultrafilter containing E. Set

for every ultrefilter S To:={Fo|Fo O FandEy< Fyfor someEy I S}.
containing E, thereisan By construction, Fisin Ty, and for every Fo (I T, thereisan
ultrafilter T containing F Eo O Ssuch that Ep < Fp. Set

such that forevery F O T, T:={F1|FoOF; for someFy [ To}.

thereisan E' 0 Ssuchthat | It hasthe same properties. So we only need to show that T is
E<F. an ultrafilter. We do this using Theorem A6.

If FL O T, thereexists Eq [ S satisfying Eg < F;1. Because S
isan ultrafilter, Eg # A. So by Theorem 8.22, F; # A.

Now we need to show that FinF O Tif F, O T and F, O
T. It sufficesto establish the analogous property for To—i.e,
to show that FinF,isin To if F and F, arein To. Choose E;
and E; in Ssuch that E; < F; and E; < F,. By Theorem 8.14,
EinEx<Fiand E;nE; < F,. So by Theorem 8.26, ExnE, <
FinFo. Since E.nE,OS, thISImp“eS FinF, O To.

Now we need to show that F, O T or F, O T whenever F
T, FinF = A, and FOF, = F. [t sufficesto establish the
analogous property for To—i.e, to show that if F; O Tgor F, [
To whenever FolTo FinFo = A, and FOF =F. Choose Eo
0 Ssuch that Ey < Fo. Set E; := EgF1 and E; := EjF2. By
Theorems 9.5 and 9.30, E;[JE; = Ey. By Theorem 8.26,
EinEs<FinF,, or EInE> <A, or EfnEy, = A. Because Sis
an ultrafilter, E, 0 SorE;, O0S. SoF, O Tgor F O To.
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A8. Supposethat for every | We argue by contradiction. Suppose E < F does not hold.
ultrafilter S containing E, Then by Theorem 9.2, E\(EF) # A. Choose an ultrafilter S
thereis an ultrafilter T that contains E\(EF) and hence E. Choose an E' 1 S such that
containing F such that for E'<F. Because Sisan ultrafilter, E'n(E\EF) O S. But by
every F OT, thereisan E Theorem 11.2, E'n (E\EF) = A, contradicting the assumption
[OSsuchthat E'<F. Then | that Sdoesnot contain A.

E<F

Aswe know, E < F meansthat E can happen only after F has already happened. No
matter what el se happens when E happens (no matter what ultrafilter S containing E we
choose), F has aready happened in some way (corresponding to some ultrafilter T containing
F). Intuitively, Sand T are infinitely detailed situations, and T precedes S, because no matter
how detailed we make our description F of T, we can find adescription E' of Sthat is
sufficiently detailed to make it clear that F must have already happened (E' < F). Thisisthe
intuitive content of Theorems A7 and A8.

Now we are ready to show that our ultrafilters form atree. We write (J(=) for the set of
ultrafiltersin =. We define arelation <' on O(Z) by saying that S<' T if forevery FO T
there exists E O S satisfying E < F. The next three theorems establish that <' is a partial
order.

THEOREM Demonstration
B1l. Therelation<'is Thisfollows from the reflexivity of <: Because E < E, we may
reflexive: S<'S say that for every E [ Sthereexists F [J S satisfying E < F.

B2. Therelation<'is Thisfollows from the transitivity of <: For every G 0 U there
transitive: 1f S<' Tand T | exists F O T satisfying F < G and then thereexistsE 0 S
<'U, then S<'U. satisfying E < F and hence, by the transitivity of <, E < G.

B3. Therelation<'is Suppose S<' Tand T <'S. Wewill consider an event E in Sand
anti-symmetric: If S<'T | show that itisaso in T; by symmetry, thiswill suffice to prove
andT<'S, thenS=T. the theorem. Choose F O T such that F< E. By Theorem A3,
either EnFOTor REOT. If EnFOT, we have our desired
conclusion: ET. Soassume RE O T; we will complete the
proof by deriving a contradiction. First choose G [ S such that
G<FE. FomEnG O Gand G FEweget EnG < F\E by
Theorem 8.14, and from EnG < RE < E and EnG [ E we get
EnG 0O RE by Theorem 8.25, and since EnG I S, thisimplies
REOS. Soweobtain En(F\E) O S, contradicting the
assumptionthat A 0 S.

Now we show that the partially ordered set [I(=) isatree.

B4. SupposeU <'SandU <'T. | Consider E 0 Sand FOT. Thenthereexist Gy O U and

ThenEOFZAwhenever EDS | G, O U suchthat G < Eand G, < F. Sothere exists G [J
andFOT. U (namely G1nG,) suchthat G Eand G< F. It follows
from Axiom 15 that G < E[JF and hence ELIF # A.
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B5. Suppose Sand T are
ultrafilters, and ECIF # A
whenever ELD0Sand FO T.
Thenforevery EOD Sand FO T,
either there exists G I S such
that GS F, orthereexistsG O T
such that G< E.

By Theorem A3, either EF or E\Fisin S, and either FE
or R\EisinT. Wecannot have ENFO Sand R\E J T,
because (EWF)[(F\E) = A (Theorem 15.8). So either EF
0Sor FEOT. Inthefirst case, we have an element G
of Ssuchthat G < F. Inthe second case, we have an
eement G of T suchthat GLE.

B6. Suppose Sand T are
ultrafilters, and forevery EL] S
and FOT, either there exists G
0 Ssuch that G < F, or there
existsG O T suchthat GS E.
ThenS<'TorT<'S.

If S<'T fails, then thereis some F O T such that thereis
no G [J Ssatisfying G < F. Then by hypothesis, for
every E 0 S, thereexists G O T such that G < E, and
hence T <'S.

B7. fU<'SandU<'T,thenS
<TorT<'s,

Theorems B4, B5, and B6.

Now we display an isomorphism between our event space = and a set of cladesin [J(=).
Thisisthe mapping from E to E*, where

E* :={S|ETS}.

(Noticethat E 0 Sisequivalent to S E*.) This mapping is one-to-one, because if E # F,
then either E\F or F\E is apossible event; if E\F is possible, then thereis an ultrafilter
containing it, which will bein E* but not in F*, and if FE is possible, then thereisan
ultrafilter containing it, which will bein F* but not in E*. We have aready shown that the
mapping preserves our two partial orders:

» Theorem A5 establishesthat E O F if and only if E* [0 F*.

* Theorems A7 and A8 establishesthat E< Fif and only if E* < F*.

So it is an isomorphism.
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V. From Axiomsto Logic

In this article, we have provided a concise constructive axiomatization for event spaces,
and we have validated this axiomatization in terms of our intuitions about event trees. What
useisthis? Aswe explained briefly in the introduction, we have been motivated mainly by
the project of using our constructive axioms directly as alogic of eventsin higher-level type
theory. Implementation of this project is beyond the scope of this article, but we need to
explain the project in slightly more detail in order to make the significance and value of our
work clear. The explanation will be easier if we first discuss the difficulties that arise when
we try to use event spacesin amore classical fashion.

1. Putting Eventsinto Classical Logic

Classica (non-intuitionistic) logic makes a clear distinction between syntax and
semantics. When we speak of aclassical logic, we mean alanguage with a well-defined
syntax—abasic symbols together with rules for forming terms and formulae from the basic
symbols. Semantics refers to the interpretation of this syntax. In this setup, a mathematical
object such as an event space enters primarily as part of the semantics, although its relations
and constructions may be mirrored somewhat in the syntax.

Hereis one way the classical approach might go in the case of an event space. To
construct alanguage L, we would introduce some symbols for events (including E, F., and
G, say), some symbols for relations between events (including [J;. and <), some function
symbols (n, 0., \., 00, and [0 ), and so on. We would also introduce symbols for objects of
other kinds, for predicates about and relations among these objects, and for the usual logical
connectives. Once the syntax is constructed out of all these symbols, we would then speak of
models and interpretations. A model would include (1) aset = of events (which should be an
event space) and (2) aset @ of other objects, together with various mathematical predicates,
relations, and functions on ®. An interpretation using such a model would include (3) a
mapping of the event symbols and terms constructed from them to elements of = and (4) a
mapping of the other object symbolsto elements of ®. If the interpretation maps E, to the
event Ein = and F_ to theevent Fin =, we would require, of course, that it also map E_ [0 F,
aterminL, totheevent ELFin =.

This seems unexceptional and not very interesting. What is interesting and leads to
difficultiesis the fact that the eventsin = can aso beinterpreted as situations. Intuitively,
whether a certain predicate, say P, holds for a certain object in @, say y, may depend on the
situation. This can be incorporated into the formalism in the manner of the situation
calculus, which we discuss briefly in Part V1, by adding the situation as another argument of
the predicate. What we were calling a predicate symbol in L, say P, then becomes a symbol
for arelation between objectsin @ and situationsin =. Given an event symbol y. and an
object symbol E,, the term P_(yi,EL) says, intuitively, that the object named by y;. has the

21 Another way of implementing the classical approach, taken by Scherl and Shafer
(1998), isto represent actions instead of eventsin the syntax.
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property named by P in the situation named by E,. Thisterm will be mapped to the truth
value True by an interpretation if P(y,E) holds, where P is the relation to which the
interpretation maps the symbol P, y the object to which it maps y,, and E the event to which
it maps E.. Otherwiseit will be mapped to False.

But wait! The last sentence of the preceding paragraph cannot be right, because our
situations differ in their specificity. The situation E might specify that the object y has the
property P, and it might specify that y does not have the property P. But it might also be too
broad to say either. It might decompose into two non-zero refinements E; and E,, such that y
has the property P in E; but does not have the property P in E,.

So what shall we do? Shall we say that we have alogic with three truth values—True,
False, and Maybe—and forge ahead? This option isexplored in Shafer (1998b), but not with
clear success. While coherent, a classical three-valued logic of eventsis not smple and has
limited appeal. For many people, the payoff of the superstructure formed by the semanticsin
classical logic isthat it gives adefinite meaning to the terms and formulae in the language,
and those who take this point of view will have little use for an exceptionally unwieldy
semantics that does not even arrive at a definite meaning in many cases.

2. Putting Eventsinto I ntuitionistic Logic

The contemporary intuitionistic literature offers a different approach to semantics. In this
approach, as articulated by Martin-Lof (1982, 1984), logic is seen as functional
programming, and the meaning of terms and propositionsis found in the rules for computing
with them. The user of the logic establishes the meaning of a symbol by declaring the
functional type of the symbol and declaring additional functions for working with it. The
concept of assigning a truth-value to a proposition symbol P is replaced by the concept of
providing a proof p for the proposition represented by P. The relation between a proposition
P and aproof p of it isitself expressed as a type declaration; we say that P is the type of p,
and we write

p:P.
The ordinary logical connectives are brought into type theory by declaring certain functions.
For example, conjunction involves a function that forms a new proposition from apair of
propositions, another function that forms proofs of the new proposition from proofs of the
pair, and yet another function that yields proofs of the individual propositions from proofs of
thepair. Inthe higher-level version of Martin- L6f’ s type theory (Nordstrom et al. 1990,
Ranta 1994), al logical judgments are expressed as type declarations.

When a mathematical theory is axiomatized constructively, in the style we followed in
Part 111, it can be used directly in thislogical framework. The rules of construction and
axioms of the theory are ssmply added as additional type declarations. For example, arule
that permits the construction of aline from two pointsis afunction that maps a pair of points
toaline. To adopt the rule, we declare the existence of afunction of thistype; thisisthe
type declaration

| - (point)(point)line.
Axioms can aso be declared as functions, which supply proofs of certain propositions from
proofs of certain other propositions. See the axiomatization of elementary geometry in type
theory by von Plato (1995).
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Thelogic of events that we envision begins by adding our axiomatization of event spaces
to the higher-level type theory in the style of von Plato. Then we develop a syntax for
representing both propositions and events. In classical logic, one applies predicate symbols
to object symbolsin order to construct terms that can name propositions. In type theory, the
role of apredicate is played by a function that maps objects of some type to propositions; for
example, the type declaration

isyoung : (Person)Prop
says that “isyoung” maps people to propositions (Ranta 1994). Because we take the meaning
of “Bill isyoung” to be relative to the situation, we add the situation as an argument in this
type declaration, obtaining
isyoung : (Situation)(Person)Prop.
In addition to these propositional functions, we also declare event functions. For example,
the function
die: (Situation)(Person)Event
maps the situation S and the person X to the event that X diesin or after S. Actions are
represented similarly. Other functions, which relate propositions and events in various ways,
can be added as the need arises in particular applications.

These ideas can be developed in any computational system that supports higher-level
type theory. These include:

* ALF (Magnusson and Nordstréom 1994), which hews strictly to Martin-L6f’s

predicative type theory (Nordstrém, Petersson, and Smith 1990),
* Nuprl (Constable 1986), based on an older variant of Martin-L6f’ s theory,
* Coqg (Dowek et al. 1993), based on Coquand and Huet’ s calculus of constructions
(Coquand and Huet 1988), and
* Lego (Luo and Pollack 1992), based on an extended version of the calculus of
constructions (Luo 1994).
Isabelle (Paulson 1994) is a more generic logical framework; it supports a variety of logics,
including classical first-order logic and Zermelo-Fraenkel set theory as well as constructive
logics based on type theory. These systems are all completely and provably adequate as
proof-checkers. They vary in the extent to which they provide tactics and other facilities for
theorem proving, but of course they provide only starting points for the devel opment of
practical reasoning systemsin any particular domain. The development of a practical version
of our logic of events within one these systems must therefore be regarded as along-term
research project.

3. Conclusion and Future Prospects

In this article, we have provided simpler and more transparent axioms for event spaces.
These axioms are constructive in the intuitionistic sense, which means that they can be used
as the starting point for computational implementations of event spaces for causal reasoning
in specific domains. We believe that this approach to causal reasoning offers greater
prospects for the implementation of event-space logics than the approaches previously
developed by Scherl and Shafer (1998) and Shafer (1998b), which stay closer to first-order
logic. In order to demonstrate the value of our approach, we plan to implement these axioms
in one or more of the logical frameworks described in 82. We also anticipate that practical
applications of our approach will require extensions to include probabilities.
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VI. Comparisons

We conclude with some comments on other well-known approaches to temporal and
causal reasoning, which may help readers form their own understanding of how our ideas fit
into awider context.

1. Temporal Logic

Temporal logics augment the syntax of classical logic with operators that represent
temporal notions. From a proposition P, these operators allow us to form additional
propositions, such as sometimes(P), always(P), nexttime(P), etc. The semantics of a
temporal logic always includes an ordered set of time points, or situations, that are used to
interpret the temporal operators. In the case of linear tempora logics, these situations fall
along asingle line, while in branching-time logics, they form atree. These situations appear
only in the semantics, however; the syntax of the language does not provide any way of
talking directly about situations, events, or pointsin time.

Event spaces go beyond the semantic picture used by branching-time temporal logicsin
at least two ways. First, event spaces allow continuous time, whereas those temporal logics
that use the operator “nexttime” require discreteness in the set of situations. Second, and
more fundamentally, the concept of refinement in event spaces means that a situation is more
than apoint in time. Even after asituation is refined enough to specify the time exactly, it
can gain further substantive content by further refinement.

Thelogic of eventsthat we outlined in the preceding section involves facilities for talking
explicitly about events and situations, and thisis not usually desired in atemporal logic. Itis
interesting to note, however, that objects functionally equivalent to events tendsto emergein
the syntax when branching-time temporal logicisfully developed. Thisisillustrated by
CTL* (Emerson and Halpern 1986; Emerson 1990), a well-known and highly expressive
branching-time temporal logic. Asit turnsout, CLT* involves two different concepts of
proposition. On the one hand, the logic has state formulae, which are true or falsein
situations and thus represent propositions of the usual kind. On the other hand, it has path
formulae, which are true or false only with respect to paths. Intuitively, a path formulaisan
assertion in future tense. It says that some event will eventually happen, without saying
when. Having such a statement in one’s language is functionally equivalent to having a
name for the event in one’ s language.

For additional information on temporal logic, see Bolc and Szalas (1995), Goldblatt
(1992), or Vila(1994).

2. The Situation Calculus

Thereisagreat deal of work on reasoning about action in artificial intelligence that
comes closer to our ideas, because it puts situations (or at least time) into the syntax. This
includes work on causal reasoning with explicit time (Shoham 1988, Stein and Morgenstern
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1994), as well as substantial body of work on the situation calculus (M cCarthy and Hayes
1969, Levesque et al. 1997, Pinto 1994).

Asformulated by Reiter (1991), the situation calculus is a sorted first-order language. It
has a constant S, which denotes the initial situation, and a distinguished binary function
symbol “do,” which allows us to talk about how actions change the situation. When o
denotes an action and s denotes a situation, do(a,s) denotes the situation that results when
one performsa ins. Timeis not represented explicitly, but time passes as actions are
preformed. (For an extension in which timeis represented explicitly, see Pinto 1998.) A
number of authors (Reiter 1993, Lin and Reiter 1994, Shanahan 1998, Pirri and Reiter 1999,
Reiter 2000) have explored foundational axioms for the situation calculus. Shanahan calls
them axioms of arboreality, because they require that the space of situations form atree. One
of these axioms is a second-order sentence that rules out the existence of situations that
cannot be obtained by actions we have named starting with S,. The axioms ensure that two
situations will be the same if they result from the same sequence of actions applied to the
initial situation.

The most fundamental difference between the situation calculus and our event-space
approach isthat in our approach we can name situations at varying levels of detail. Inthe
situation calculus, theinitia situation Sy is supposed to specify the state of the world in
complete detail, at least in all the detail that will ever be needed in the discussion that ensues,
and this completeness is supposed to persist as actions are applied. Another artificial
intelligence language, the event calculus (Shanahan 1997, Kowalski and Sergot 1986), has
been developed to represent partial information about events. But unlike the situation
calculus, the event calculusis alinear logic rather than a branching-time logic; it cannot
handle alternative sequences of events. Our event-space approach can be seen as away of
accomplishing the purposes of both the situation calculus and the event calculusin asingle
framework.

Both the situation calculus and the event cal culus make assumptions of inertia
(Sandewall 1994), which ensure that properties are persistent in the absence of the specified
actions. Such persistence is needed in order to plan and reason about actions. Although it
does not seem to make sense for us to adopt the situation-calculus axioms of inertia
wholesale, we obviously need to deal with the issue of persistence in our logic of events.
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Appendix. Additional Constructions

The constructive axiomatization we developed in Part 111 is open; additional rules of
construction, together with additional axioms, can always be added. In particular, we can
regain the fuller system of Shafer (1998a) with afew additions. These are reviewed here.

1. Decomposing E with Respect to F

It is most natural, perhaps, to introduce as additional constructions the part of E that
diverges from F and the part of E that implies F. We write EsF for the part of E that diverges
from F—i.e., the largest refinement of E that diverges from F. And we write E_F for the part
of E that implies F—i.e., the largest refinement of E that implies F. These constructions are
illustrated in Figure 17.

Figure 17 The parts of E diverging from and implying F.

Once we have defined EsF and E_F, we can decompose E into five events E;F, E,F, E5F,
E,F, and EsF asfollows.
E,F := EnF. Whenever E;F happens, F happens simultaneously.
E,F:= (EF)\(EnF). Whenever E,F happens, F has already happened strictly earlier.
EsF := (E_P)\(EF). Whenever E;F happens, Fisinevitable; it must happen later.
E.F := E\(E.PO(F.E)O(E;FH)D(ESF)). Whenever E,F happens, Fis possible but not
inevitable; it may happen later and it may fail later.

+ EsF we have constructed directly. Whenever EsF happens, Fisimpossible; either it

was already impossible or becomes impossible (fails) with the happening of EsF.

Some of these five events may sometimes be impossible. But they always decompose E,
inasmuch as they all refine E, they do not overlap; and their merger isal of E. Figure 18
gives an example in which each E;F is represented by a single node.
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Figure 18 The decomposition of E with respect to F, where E = { E;* ,E,* ,Es* E* Es*}.

Shafer (1998a) bases his axiomatization of event spaces on the constructions E;F, E,F,
EsF, E,F, and EsF, together with relations, E1F, E2F, E3F, E4F, and E5F, where Ei F holds
if EFis possible. Using these five constructions and five relations as primitives, he
constructs awide variety of causal relations, which we will not review here.

2. Failure

Figure 19 illustrates the last construction we will consider: the failure of E, which we
designate E”. Thisisthe event that happens when E fails—i.e., when Nature (who sees
everything that happens as it happens) sees that E has become impossible.

Figure 19 Thefailure of E. Here we assumethat A, B, and C mark the first point in time whereit is
determined that E will not happen. (This assumption is not part of the meaning of an event tree that we
generally giveto an event tree.)

Failureisavery powerful construction. We can useit to define the constructions
introduced in the preceding section: EsF = E(F), and E.F = E(FT), where EY = (E7). Itis
not clear to us, however, that failure should play a fundamental role in casual reasoning. In
ordinary causal talk, we often say that an event E makes an event Fimpossible: Bill’s going
to the bar made it impossible for him to get home for dinner on time, the 10 inches of snow
made it impossible for the plane to take off, etc. But usually we mean only that by the time E
happens, F isimpossible; we are not very concerned about exactly when F becomes
impossible. The plane' s take-off may have been blocked before the snowfall total reached
ten inches. Pinpointing just when this was may be difficult and not particularly helpful. We
have therefore avoided making the construction E~ fundamental in our axiom system.
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The construction also has other aspects that are restrictive. For example, it forces usto
assume that our event tree has an initial node—a starting point at the top. Thisassumptionis
not actually made in the rest of our axiomatic system; all our other axioms and constructions
permit the past to be infinite, without beginning. In order to avoid assuming thereisan
initial situation, Shafer (1998a) used arelative rather than an absolute concept of failure.
Instead of assuming that we can construct the failure of E in an absolute sense, he assumed
only that we can construct the failure of E after another event F.

Another aspect of failure that makes its representation in event trees confusing, even if
we do not assume an initial situation, isthat an event tree detailed enough to represent E is
not necessarily detailed enough to represent E~. Figure 20 illustrates the point. Thisfigure
differs from Figure 19 merely by interpolating an additional situation N between two
situations. In general, we do not consider such interpolation afasification of an event tree,
because atreeis never more than a partial description of the possibilitiesin nature. But the
interpolation of N does falsify the additional assumption, made when we identify { A,B,C} as
the failure of E, that there are no situations preceding any of them in which Nature already
knows E to have failed.

Figure 20 Thistree differsfromthetreein Figure 19 only in that anode N has been inserted between G and B.
The presence of N rules out B’s marking the first point in time where Nature knows E will not happen, because
Nature already knows thisin N. If this new treeis detailed enough to depict E-, then E™ isequal to {A,N,C},
not to { A,B,C}. If there are yet other situations, preceding A, N, or C but not shown in thisfigure, where
Nature already knows that E will not happen, then even thisfigure is not detailed enough to allow the depiction
of E".

From an abstract point of view, the existence of the failure E™ is a continuity condition on
the partial order <. It saysthat the situationsin which E has failed have aleast upper bound
in our space of events, and that E has also failed in this least upper bound. We consider it an
open question whether this kind of continuity condition is appropriate or needed for causal
reasoning. We are much more comfortable with analogous continuity conditionsin the
partial order [1, because the requisite least upper bounds necessarily exist if we have a
representation in terms of an event tree. In an event tree, refinements are represented by
subsets, and the algebra of subsets of a set is a complete Boolean algebra: every collection of
subsets has a least upper bound.

The fact that the axiomatization in this article does not rely on a concept of failureis one
of the major advances of this axiomatization over the one given by Shafer (1998a).
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