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Abstract 
 An event space is a set of instantaneous events that vary both in time and specificity.  The 
concept of an event space provides a foundation for a logical—i.e., modular and open—
approach to causal reasoning.  In this article, we propose intuitively transparent axioms for 
event spaces.  These axioms are constructive in the intuitionistic sense, and hence they can 
be used directly for causal reasoning in any computational logical framework that 
accommodates type theory.  We also put the axioms in classical form and show that in this 
form they are adequate for the representation in terms of event trees established by Shafer 
(1998a) using stronger axioms. 
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I.  Introduction 
 An event space is a set of instantaneous events that vary both in time and specificity.  The 
concept of an event space provides a foundation for a logical—i.e., modular and open—
approach to causal reasoning.  Mathematically, event spaces generalize both event trees and 
Boolean algebras.  Shafer (1998a) gave axioms for event spaces and demonstrated the 
adequacy of these axioms by showing that they lead to a representation in terms of an event 
tree, generalizing Stone’s representation of a Boolean algebra in terms of a field of subsets.  
Unfortunately, Shafer’s axioms are not intuitively transparent and do not lend themselves to 
computer implementation.  They are also unnecessarily strong in some respects.  In 
particular, they make the assumption that the failure of an event is itself a well-specified 
event. 
 In this article, we provide simpler and more transparent axioms for event spaces.  These 
axioms are constructive in the intuitionistic sense, which means that they can be used directly 
for causal reasoning in any computational system that supports higher-level type theory.  We 
analyze the axioms carefully from a constructive point of view—i.e., without the principle of 
the excluded middle.  We also translate them into classical form and show that in this form 
they are adequate for the representation proven by Shafer (1998a) with his stronger axioms. 
 Because the concept of an event space is not yet widely understood, we preface our 
axiomatization with an extended intuitive explanation of how the concept arises from the 
study of event trees.  This explanation, in Part II, includes a discussion of how the concept of 
an event space can be generalized to accommodate the theory of relativity.  Part III, which 
formulates and studies our constructive axioms, is the heart of the article.  In Part IV we 
translate the axioms into classical form and prove the representation theorem.   
 In Part V, we discuss briefly how our axioms can be used directly as a logic in higher-
level type theory, and in Part VI we compare our framework with other approaches to 
temporal and causal reasoning.  Some extensions are discussed in an appendix. 
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II.  An Informal Look at Event Spaces 
 Event spaces embed Boolean algebras in event trees.  When we think of the elements of a 
Boolean algebra as events, these events are ordered by specificity; E ⊆  F means that the 
event E narrows the event F by specifying more detail about what happens.  In an event tree, 
on the other hand, the partial order is temporal:  E ≤ F means that the event E happens after 
the event F.5  In an event space, these two partial orders coexist. 
 As we will now explain in detail, the events in an event space can be represented as sets 
of nodes in an event tree.  This representation makes clear how the partial orders ⊆  and ≤ can 
coexist:  E ⊆  F means that the set representing E is contained in the set representing F, while 
E ≤ F means that the set representing E comes later in the tree than the set representing F. 
 We begin, in §§1-2, by reviewing the concept of an event tree mathematically and 
philosophically.  In §3, we discuss when a set of nodes in an event tree can represent an 
instantaneous event (no node in the set can lie below another one in the tree).  In §§4-6, we 
discuss our two partial orders:  ⊆ , under which the instantaneous events almost form a 
Boolean algebra, and ≤, under which they form a distributive lattice.  In §§7-8, we discuss 
additional constructions that were emphasized by Shafer (1998a).  Finally, in §9, we discuss 
how the concept of an event space can be generalized to accommodate the theory of 
relativity. 
 This part of the article is heuristic and intuitive.  Intuitively, the events in event spaces 
correspond to sets of nodes in event trees, and because event trees are relatively well 
understood, we can use this correspondence to develop our intuitions about event spaces.  
The rest of the article will be more formal.  In Parts III and IV, we abstract formal axioms for 
event spaces from the intuitions developed here.  In Part V, we show that these axioms are 
faithful to the intuitions by showing that a space satisfying them is isomorphic to a space of 
sets of nodes in an event tree. 

1.  Event Trees 
 Mathematically a tree is a set with a partial order ≤t in which any two elements with a 
lower bound are comparable (G ≤t E and G ≤t F together imply that E ≤t F or F ≤t E).  This 
idea is illustrated in Figure 1. 
 

                                                 
5  It is matter of convention whether we write E ≤ F or F ≤ E when E happens after F.  

Because we are accustomed to representing earlier times with smaller numbers, it may seem 
natural to put the earlier event on the left.  We choose instead to put the earlier event on the 
right because, under the precise definitions that we will adopt, this makes E ⊆  F a special 
case of E ≤ F.  The alternative, which is unnecessarily confusing, would be for E ⊆  F to be a 
special case of F ≤ E. 
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Figure 1  When a partially ordered set is finite, we can arrange its elements in a diagram in which E ≤t F if and 
only if there is a path downward from F to E.  The partially ordered set depicted on the left is not a tree, because 
the elements E and F have an element G below them both even though they are not comparable in the partial 
ordering (neither is on a path below the other).  The partially ordered set depicted on the right, in contrast, is a 
tree; it has no incomparable pair E and F with an element G below both.  
 
 Calling a tree an event tree means that we interpret its elements as instantaneous events 
and that we interpret the partial order as temporal order; E ≤t F means that E, if it happens, 
happens at the same time as F or after F.  This permits E and F to be equal.  If E ≤t F but E is 
not equal to F, then E can only happen if F happens strictly earlier; in this case we may write 
E <t F. 
 An event tree is not necessarily finite, but we will illustrate our ideas using finite 
diagrams as in Figures 1 and 2.  These diagrams will follow the convention (common in the 
statistics and economics literature but opposite to the most common convention in 
philosophy and physics) that time runs downward.  A path downward represents a history—
one possibility for how events may evolve. 
 

Read
Watch
television

Call Mom
at office

Watch
television

Pump up  
bicycle tire

Watch
televisi

E1

F E2

E3

G

I

R

Get home 
from school

 
Figure 2  An event tree for what Rick may do after school.  He may watch television right away, he may delay 
watching television, or he may even end up reading instead of watching television.  We assume that the 
different paths down the tree represent all the ways in which the events shown can happen.  At the outset, for 
some reason, we can rule out the possibility that Rick might call his mother and then pump up his bicycle tire 
afterwards. 
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 A node E in an event tree has a dual meaning.  On the one hand, E is an instantaneous 
event—something that happens at a particular instant.  On the other hand, E is a situation that 
the world is in at a particular instant.  The situation E is the situation that arises when the 
event E happens.  The event E is the event that the situation E arises.  The node F in Figure 2, 
for example, represents both the event that Rick calls his mother and the situation in which 
he does so. 
 The interpretation of a tree as an event tree involves a number of assumptions, which are 
not always made in other contexts where the words “situation” or “event” are used, and 
which should therefore be stated explicitly.  These assumptions are explained most easily in 
the finite case, where we can talk about the daughters of a situation—the situations 
immediately below it.6  

1. A daughter cannot happen until after its mother happens (strictly after; not at the 
same time).  

2. Two distinct daughters of a situation are mutually exclusive; they cannot both 
happen.  In situation I in Figure 2, Rick may pump up his bicycle tire (G) or watch 
television right away (E1), but he cannot do both. 

3. The daughters of a situation (and even all paths down from the situation) are all 
possible in that situation, no matter what else may be said about what has happened.  
In situation G in Figure 2, where Rick has just pumped up his bicycle tire, it is 
possible that he will call his mother at the office and then read, no matter how much 
pressure he put in the bicycle tire.7 

4. The daughters of a situation are exhaustive; once the world is in that situation, one of 
the daughters must happen.  In situation I in Figure 2, if Rick does not pump up his 
bicycle tire (G), then he watches television right away (E1).  There is no third 
possibility. 

5. In order to specify a situation fully, we must say how we got there.  In other words, 
we regard situations that are similar but are preceded by different histories as 
different situations.  This is why we assume that the situations form a tree.  If we can 
get into a situation G after being in a situation E, then we cannot also get into G after 
being in a situation F that is not in the same history (path down the tree) as E.  If G ≤t 
E and G ≤t F, then E ≤t F or F ≤t E.   

6. By the same token, the same situation cannot arise twice as the world evolves (moves 
down the tree).  And hence the same instantaneous event cannot happen twice. 

7. On the other hand, a situation does not specify completely everything that has 
happened in the world.  It is only as detailed in its meaning as the tree in which it is 
situated. 

Another way of bringing out the density of meaning in an event tree is to consider the 
different ways of explaining what is meant by E < F.  One way of explaining this relation is 
to say that E can only happen if F has already happened.  Another explanation is that in F, 
E’s later happening is possible.  When E and F are represented by nodes in the same event 
                                                 

6  
7  This assumption is not made in all cases.  We insist on it here only because it gives us 

a clear causal story from which to proceed.  Our purpose is not to standardize the causal 
assumptions made when trees are used but to develop an abstract language in which causal 
assumptions can be stated precisely, whether or not they can be or are represented in a tree. 
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tree, these two conditions, which seem to have rather different content, are equivalent.  As 
we will see shortly, the two conditions do indeed have different content and are not 
equivalent in general in an event space. 

2.  Philosophical Aside:  Nature as Witness 
 From a philosophical point of view, the most challenging question raised by an event tree 
is the meaning of possibility.  When we explain Figure 2, we say that it is possible at the 
outset for Rick to call his mother or to watch television right away, and then we say there is 
no third possibility.  It is impossible, for example, that he will read before he calls his 
mother.  What does this mean and how could it be known? 
 Over the centuries, philosophers have expounded many divergent doctrines about the 
meaning of possibility.  Some believe that because God knows exactly what will happen, 
nothing else is possible.  This eliminates our whole enterprise, by reducing our event tree to a 
straight line showing what actually happens.  Others take the view that possibility is relative 
to knowledge and is therefore subjective or personal.  If Peter knows more than Paul, what is 
possible in Paul’s event tree may not be possible in Peter’s. 
 We will not try to cast new light on the meaning of possibility.  Rather, we will work 
under the everyday assumption that possibility is objective and evolves with time.  An event 
is at first objectively possible and then either happens or becomes impossible as the world 
evolves.  In order to acknowledge the force of the thesis that possibility must be relative to 
knowledge, we will imagine a super scientist or demigod whose knowledge evolves in step 
with this objective possibility.  Objective possibility is the same, we may suppose, as 
possibility for this demigod.  Her knowledge surpasses that of all actual agents, human or 
artificial, but falls short of God’s perfect knowledge.  Time does not pass for God, and events 
do not happen, because God has already foreseen everything at the beginning of time.  But 
our demigod’s knowledge increases with time, thus defining what is possible and marking 
the happening of events.  An event is possible if the demigod has not yet ruled it out, it 
happens when she witnesses it, and it becomes impossible when she rules it out. 
 The concept of a demigod whose superior knowledge defines objective possibility has a 
long history.  Laplace imagined such a demigod, whom he called l’intelligence superieure, in 
order to explain determinism (Bru 1986), and Cournot used the same concept to explain 
objective probability (Martin 1996).  Shafer (1996) calls the demigod Nature and puts her at 
the center of his philosophy of causality.  From time to time in this article we will make use 
of Nature in our intuitive explanations. 

3.  Clades 
 In our first look at event trees, in § 1, we emphasized that individual nodes in an event 
tree can be interpreted as instantaneous events or situations.  As we will now emphasize, we 
can also sometimes group nodes together and interpret the whole set as an instantaneous 
event or situation.  In Figure 2, for example, the instantaneous event that Rick calls his 
mother is represented by the single node F, while the instantaneous event that he watches 
television is represented by the three nodes E1, E2, and E3, taken together. 
 The concept of instantaneous event that we use in this article allows such an event to 
happen only once as the world evolves.  So we will say that a set of nodes in an event tree 
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represents an instantaneous event if and only if none of its elements precedes another on a 
path down the tree.  We call a set of nodes satisfying this condition a clade. 
 

Read
Watch
television

Call Mom
at office

Watch
television

Pump bicycle 
tire up to 60#

Watch
television

Read
Watch
television

Call Mom
at office

Pump bicycle 
tire up to 50#

F1 F2

 
Figure 3  More or less air in the bicycle tire. 
 
 We should not think of an instantaneous event represented by a single node in a 
particular event tree as fundamentally different from an instantaneous event represented by 
larger clade, since the difference lies in our choice of representation, not in the events 
themselves.  Indeed, any instantaneous event represented in one event tree by a clade 
consisting of several nodes can equally well be represented in a different event tree by a 
single node, and vice-versa.8  Figures 3 and 4 illustrate the point.  In Figure 3, we add detail 
to Figure 2, by specifying how much air Rick puts in his tire, thus turning the single node F, 
which represents the event that Rick calls his mother, into the clade {F1,F2}.  In Figure 4, we 
go in the opposite direction, removing detail from Figure 2 and thus representing Rick’s 
watching television, which appears as the clade {E1,E2,E3} in Figure 2, as a single node E. 
 

Read
Watch
televisi

E
 

Figure 4  Watching television as a single node. 
 
 We can draw event trees that disagree.  But the event trees in Figures 2, 3, and 4 do not 
disagree.  They merely provide different levels of detail.  Figure 3 says more than Figure 2, 

                                                 
8  A note of caution:  Although any single instantaneous event can be represented by a 

single node in some event tree (for example, an event tree with only a single node, which is 
taken to represent that event), there are cases where two instantaneous events cannot be 
represented by single nodes in the same event tree. 
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and Figure 4 says less, but none of the three deny any assertion about possibility or 
impossibility made by one of the others.  For example, Figure 2 says that in the situation 
where Rick pumps up his bicycle tire, it is possible that he will read later, and Figure 3 
agrees; it tells us that no matter which pressure he puts in the tire, it is possible that he will 
read later. 
 An event space consists of instantaneous events of the kind that can be represented as 
clades.  But it treats these events abstractly, without reference to their representation in any 
particular event tree.  An element of an event space will appear as a single node in some 
event trees, as a clade in others.  As a result, the events in an event space can relate to each 
other in a great variety of ways.  One instantaneous event may precede another (as F 
precedes E3 in Figure 2), and one may refine another (as E3 refines E in Figure 2), but often 
the relation is more complex.  There is, for example, no simple description of the relation 
between {F,E2} and E in Figure 2. 
 

F1* F2* F3*

E2*

E1*

F = {F1*,F2*,F3*}              E = {E1*,E2*}

Here E strictly requires F.  This means that 
E can happen only if F happens earlier.

F1* F2* F3*

E2*

E1*

F = {F1*,F2*,F3*}           E = {E1*,E2*,E3*,E4*}

Here F strictly allows E.  This me
happens, no matter how it happens, 

E3* E4*

 
Figure 5  On the left, E requires F, but we cannot say that F allows E; there is one way F can happen without E 
being possible later, namely F3*.  On the right, F allows E, but we cannot say that E requires F; there is one way 
E can happen without F happening first, namely E4*. 
 
 One aspect of the diversity of relations among instantaneous events is the diversity of 
meanings that can be given to the statement that one event comes before or after another.  In 
the case of single nodes, there is no ambiguity.  When we say that F strictly precedes E, this 
means E is strictly below F in the tree; there is a path from F down to E.  This implies both 
(1) that E can happen only if F happens strictly earlier (in this case, we say that E strictly 
requires F), and (2) that E’s later happening is possible in the situation where F happens, no 
matter what else happens then (in this case, we say that F strictly allows E).  When we 
consider clades consisting of larger numbers of nodes, these two conditions are not 
equivalent, as Figure 5 illustrates. 

4.  The Refinement Order 
 Suppose E and F are instantaneous events, and suppose that whenever E happens, F 
happens simultaneously.  In this case, we say that E refines F, and we write E ⊆  F.  When E 
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and F are represented as clades in the same event tree, E ⊆  F means that the set representing 
E is a subset of the set representing F.  Since set inclusion is a partial order, ⊆  is a partial 
order on instantaneous events.  This partial order has a zero, the impossible event, which we 
will designate by Λ, and which is represented in an event tree by the empty clade.9 
 Any two instantaneous events E and F have a greatest lower bound in the order ⊆ , which 
is represented in an event tree by the their set-theoretic intersection E∩F.  We call E∩F the 
overlap of E and F.  Intuitively, E∩F is the event that E and F happen simultaneously.  This 
event may be possible, as in Figures 7 and 8, or impossible, as in Figure 6. 
 

                                                 
9  The impossible event is the only instantaneous event that cannot also be thought of as a 

situation. 

E

F

E1 E2 E3 F1

F2

 

 
 
 
E = {E1,E2,E3}  
F = {F1,F2} 
 
E∩F = Λ 
E∪ F = {E1,E2,E3,F1,F2} 

Figure 6  Two events that do not overlap and can be merged. 
 

E

F

E1 E2 E3

F1

G

 

 
 
 
E = {E1,E2,E3,G}  
F = {G,F1,} 
 
E∩F = {G} 
E∪ F = {E1,E2,E3,G,F1} 
 

Figure 7  Two events that overlap and can be merged. 
 



 
 

 

 

E
F

E1 E2 E3

F1

G

F2

 

 
 
 
E = {E1,E2,E3,G} 
F = {F1,F2,G} 
 
E∩F = {G} 
E∪ F does not exist.  (E2 and F2 cannot be 
in the same clade, and E3 and F1 cannot be 
in the same clade.) 

Figure 8  Two events that overlap and cannot be merged. 
 
 The story about upper bounds is not quite so simple.  As Figure 8 illustrates, two 
instantaneous events E and F may fail to have an upper bound in E and F.  This happens 
when E and F are represented by clades such that a node in one is above a node in the other 
on some path.  Because a clade cannot contain two such nodes, no clade can encompass both 
E and F in this case; there is no instantaneous event that happens simultaneously whenever E 
happens and also whenever F happens.  If E and F do have an upper bound, then they have a 
least upper bound, which we designate by E∪ F and call the merger of E and F. 
 Given two instantaneous events E and F, we can also form the event that E happens 
without F happening at the same time.  This event, designated by E\F, is the complement of F 
relative to E. 
 Except for the fact that the least upper bound of E and F does not always exist, the partial 
order ⊆  has all the properties of a Boolean algebra:  it is distributive, unique relative 
complements always exist, etc.  In fact, if we consider only instantaneous events that refine a 
fixed instantaneous event I, then we do have a Boolean algebra:  the Boolean algebra 
consisting of all subsets of I. 

5.  The Temporal Lattice 
 Suppose E and F are instantaneous events, and suppose that whenever E happens, F 
either happens simultaneously or else has already happened earlier.  In this case, we say that 
E requires F, and we write E ≤ F.10  If E and F are represented as clades in the same event 
tree, then E ≤ F means that each node in E is either (1) in F or (2) on a path down the tree 
from a node in F.  As it turns out, ≤ is also a partial order on instantaneous events.  It has the 
same zero as ⊆ :  the impossible event.   
 It is clear from the definition of ≤ that if E ⊆  F, then E ≤ F.  Another special case of E ≤ F 
is the case illustrated on the left of Figure 5—E strictly requires F.  When E refines F (E ⊆  
F), all of E is inside F.  When E strictly requires F, none of E is inside F.  These are two 
extremes; in the general case where E ≤ F, some of E may be inside F while the remainder is 
below F.  Notice that “E strictly requires F” is a stronger condition than “E ≤ F but E ≠ F.”  

                                                 
10  This is the same as the relation on the left of Figure 5, except that E and F may 

overlap. 



Shafer, Gillett, and Scherl  May 8, 2000 
 

To appear in Annals of Mathematics and Artificial Intelligence 12 

This is another aspect of how clades in an event tree relate to each other in more complicated 
ways than individual nodes. 
 Given any two instantaneous events E and F, we may define a new event:  the event that 
E happens after F.  (Here we use “after” in a broad sense, to mean after or at the same time).  
We designate this event EF.  In an event tree in which both E and F appear as clades, EF will 
be the clade consisting of all nodes in E that are also in F or else on a path down from a node 
in F.  Notice that E ≤ F if and only if E = EF.  The construction EF is illustrated in Figure 9. 
 

E
F

E1 E2 E3

F1

G

F2

 

E = {E1,E2,E3,G} 
F = {F1,F2,G} 
 
EF = {G,E3} 
FE = {G,F2} 
When G happens, E and F happen at the 
same time.  When E3 happens, E happens 
strictly after F.  When F2 happens, F 
happens strictly after E. 
 

Figure 9  One event happening after another. 
 
 The significance for causal thinking of the temporal order ≤ and the construction EF may 
not be obvious at first glance, but we can use them to define relations that clearly do have 
causal meaning.  Here are four examples: 

• If G ≤ E and G ≤ F imply G = Λ, then we say E and F diverge, and we write div(E,F).  
This means that they cannot both happen (because there is no situation H where they 
both have happened).  This relation is symmetric; div(E,F) if and only if div(F,E).  
But we can rephrase it in a way that seems asymmetric:  the happening of E makes F 
impossible, if F was already not impossible.  Or we can say that in the situation E, F 
is impossible.  Figure 6 gives an example where E and F diverge. 

• If div(G,F) implies div(G,E), then we say E implies F, and we write E → F.  This 
means that whenever happening of F is ruled out (because we are in situation G that 
diverges from F), the happening of E is also ruled out.  So if E happens, and hence 
will never be ruled out, F also will never be ruled out and hence must happen at some 
point.  (We assume that every event eventually happens or fails.)  Figure 10 gives an 
example. 

• If G ⊆  E and G ≠ Λ imply FG ≠ Λ, then we say E allows F, and we write E ◊→ F.  
This means that in the situation E, F is possible, no matter what else has happened. 

• When E ≤ F and F ◊→ E, we say F precedes E.  This has the same meaning as the 
partial order in an event tree.  Two instantaneous events E and F can be represented 
in an event tree where they satisfy E ≤t F if and only if F precedes E.  If one of the 
two relations E ≤ F and F ◊→ E is satisfied but the other is not (as in Figure 5), then 
there is no event tree in which both events can be represented.  See (Shafer 1998a) for 
further discussion. 
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F

E

 
Figure 10  E implies F. 
 
 As it turns out, instantaneous events form a distributive lattice with respect to the 
temporal order ≤.  This means that every two instantaneous events E and F have a greatest 
lower bound E∧ F and a least upper bound E∨ F, and ∧  and ∨  obey the distributive laws.  We 
call E∧ F the ending of E and F.  It is the instantaneous event that E and F finish happening, 
and it can happen in three different ways:  E and F may happen at the same time, E may 
happen after F has already happened, or F may happen after E has already happened.  We 
call E∨ F the beginning of E and F.  It is the instantaneous event that E and F begin to 
happen, by at least one of them happening.  It also can happen in three different ways:  E and 
F may happen at the same time, E may happen without F yet having happened, or F may 
happen with E yet having happened.  
 The ending and beginning of E and F can be defined in terms of the constructions we 
have already mentioned:  Overlap (E∩F), Merger (E∪ F), Complement (E\F), and After (EF).  
Indeed, 
  E∧ F = EF∪ FE, (II.5.1) 
and 
  E∨ F = (E\(EF))∪ (F\(FE))∪ (E∩F). (II.5.2) 
Because E∩F is a refinement of both EF and FE, it is contained in E∧ F as well as in E∨ F. 
 In Figure 8, the beginning and ending are given by E∧ F = {F2,G,E3} and E∨ F = 
{E1,E2,G,F1}.  The configuration of these events in the event tree is depicted schematically in 
Figure 11. 
 

E
F E F E F

 
Figure 11  The general shape, in an invisible event tree, of the beginning and ending of two events E and F.  
Here, as in Figure 8, we suppose that the two events lie across each other in the event tree, so that either can 
happen before the other.  The ending is then the lower bow, possibly with its wings chopped off, while the 
beginning is the upper bow, with the full extent of its wings. 
 



Shafer, Gillett, and Scherl  May 8, 2000 
 

To appear in Annals of Mathematics and Artificial Intelligence 14 

 If the merger E∪ F exists, then it is the same as E∨ F, and then E∩F is also the same as 
E∧ F.  This happens in Figures 6 and 7.   

6.  A Simple Temporal Logic 
 As we shall see in Parts II and III, we can provide a full set of axioms for event spaces 
using only the two partial orders ⊆  and ≤ and the five fundamental constructions E∩F, E∪ F, 
E\F, Λ, and EF.  The axioms for these two partial orders and five constructions constitute a 
simple but surprisingly powerful and flexible temporal and causal logic. 
 One aspect of the power of this logic is its ability to encode the information in an event 
tree.  Figure 12 shows a straightforward encoding for a simple tree consisting of a mother 
and daughters.  By repeating this encoding for each mother, we can encode the information 
contained in any finite event tree. 
 

...
A1

I

A2 An  

 
1. Ai ≤ I and Ai∩I = Λ, for i = 1,…,n. 
2. I ◊→ Ai, for i = 1,…,n. 
3. div(Ai,Aj), 1 ≤ i,j ≤ n. 
4. I → A1∪ A2∪ …∪ An. 
 

Figure 12  The information in an event tree.  The four conditions correspond to the first four points about the 
interpretation of an event tree in §1.  They do not include any requirement that the AI be “immediate” 
successors of I.  In an event space, we always leave open the possibility that additional situations may be 
interpolated between a given situation and a later situation. 
 
 More importantly, our logic can encode information that does not fit the mold provided 
by the concept of an event tree.  We often find ourselves working with events I,A1,A2,…,An 
about which we know some but not all of the information listed in Figure 12.  When this is 
the case, the modularity of our logic permits us to state the information we do have and draw 
inferences from it.  Research workers in disciplines such as operations research and decision 
analysis, which use models that incorporate event trees, often note that the most difficult part 
of their work is the modeling step.  The analyst must put great effort into finding or 
conjecturing enough information to define a tree, even when this information is not logically 
relevant to the inferences that are needed.  A more modular approach obviously allows the 
analyst to concentrate instead on information that is really relevant. 
 Even when the available information is equivalent to that in a tree, it may be more natural 
to elicit and express it logically.  Consider Figure 2, where we began with these events: 

I = Get home from school. 
G = Pump up bicycle tire. 
E = Watch television. 
F = Call Mom at office. 
R = Read. 

Figure 2 suggests that we express our information about E in terms of the decomposition E1, 
E2, and E3, where  

E1 = E\EG,          E2 = EG\EF,          E3 = EF. 
This leads to the logical statements on the left in the following table. 
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Figure 2’s information expressed in terms 
of I, G, F, R, E1, E2, and E3. 

Figure 2’s information expressed in terms 
of I, G, E, F, and R. 

G ≤ I, G∩I = Λ, E1 ≤ I, E1∩I = Λ 
F ≤ G, F∩G = Λ, E2 ≤ G, E2∩G = Λ 
R ≤ F, R∩F = Λ, E3 ≤ F, E3∩F = Λ 

G ≤ I, G∩I = Λ, E ≤ I, IE = Λ 
F ≤ G, F∩G = Λ, GE = Λ 
R ≤ F, R∩F = Λ, FE = Λ 

I ◊→ G, I ◊→ E1 
G ◊→ F, G ◊→ E2 
F ◊→ R, F ◊→ E3 

I ◊→ G, I ◊→ E 
G ◊→ F, G ◊→ E 
F ◊→ R, F ◊→ E 

div(G,E1) 
div(F,E2) 
div(R,E3) 

div(R,E) 

I → G∪ E1 
G → F∪ E2 
F → R∪ E3 

I → G∨ E 
G → F∨ E 
F → R∨ E 

 
It is more likely, however, that our knowledge begins as knowledge about E, and it is clearly 
simpler to express it in this form, as in the right column of the table.  (We will leave it to the 
reader to verify, using the axioms in Part IV, that the statements on the right are equivalent, 
taken together, to those on the left.) 
 The advantages of a logical notation over a graphical representation grow as we add more 
events to the conversation.  Even if the new events involve little additional information, they 
may require a substantially enlarged event tree, with great repetition.  This can be illustrated 
by the progression from Figure 4, where we have only the three events I, R, and E, to Figure 
2, where the events F and G are interpolated, to Figure 3, where G is decomposed into two 
parts, G1 and G2.  As we see in the last panel of the following table, the decomposition of G 
involves only four simple statements in the logic, whereas in Figure 3 it involves the 
duplication of an entire branch of the tree. 
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Graphical Representation Logical Representation 

Read
Watch
televisi

E

I

R
 

R ≤ I, E ≤ I, R∩I = Λ, E∩I = Λ 
I ◊→ R, I ◊→ E 
div(R,E) 
I → R∪ E 

Read
Watch
television

Call Mom
at office

Watch
television

Pump up  
bicycle tire

Watch
televisi

E1

F E2

E3

G

I

R

Get home 
from school

 

Add to preceding: 
 
G ≤ I, G∩I = Λ 
F ≤ G, F∩G = Λ, GE = Λ 
R ≤ F, R∩F = Λ, FE = Λ 
I ◊→ G 
G ◊→ F, G ◊→ E, 
F ◊→ R, F ◊→ E  
div(R,E) 
I → G∨ E, G → F∨ E, F → R∨ E 

Read
Watch
television

Call Mom
at office

Watch
television

Pump bicycle 
tire up to 60#

Watch
television

Read
Watch
television

Call Mom
at office

Pump bicycle 
tire up to 50#

F1 F2

E1

I

R1 R2

G1 G2

E21 E22

E31 E32  

Add to preceding: 
 
G1 ≠ Λ 
G2 ≠ Λ 
G1∩G2 = Λ 
G = G1∪ G2 

7.  Generalizing to a Relativistic World11 
 This article is motivated by a desire to develop systems for ordinary causal reasoning, not 
reasoning systems for space travelers.  A thorough logical analysis of temporal relations 
should, nevertheless, respect the insights of Einstein’s theory of relativity.  In the world as 
Einstein has taught us to understand it, events do not all lie along a single universal time line.  
An event E can be said to precede an event F only if the locations of E and F in space and 
time permit the news of E’s happening, traveling at the speed of light from where E happens 
to where F happens, to arrive by the time F happens.  If the two events are far apart in space, 
it may be that neither precedes the other in this sense.  They are incomparable.  Yet if they 
both happen there is a later situation where they are both in the past—i.e., where the news of 
both has arrived. 
 It is very easy to see that the concept of an event tree does not accommodate Einstein’s 
insights.  Indeed, his fundamental insight is violated by the condition that makes a partially 
                                                 

11  The ideas in this section are not needed for an understanding of the remainder of the 
article, but they motivate the organization of the last few sections of Part III. 
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ordered set a tree—the condition that if both E and F are in the past of G (G ≤ E and G ≤ F), 
then either E or F precedes the other (E ≤ F or F ≤ E). 
 From a philosophical point of view, the difficulty can be located in the fact that an event 
tree represents the possibilities for the increasing knowledge of a single witness.  As we 
explained in §2, this witness, Nature, always knows everything that has happened so far.  Her 
knowledge grows only inasmuch as she learns new things as they happen.  A relativistic 
generalization of this picture would require a plethora of witnesses, who follow different 
paths through space-time.  In a given situation E, we will find many of these witnesses, who 
have followed different paths to get to the same place at the same time.  In E they will all 
know the same things; for they will have pooled their knowledge, so to speak, thus coming to 
know everything that has happened in the Minkowski cone that constitutes the past of that 
situation.  But as one of these witnesses moves forward in time, her past Minkowski cone 
grows; she learns not only about what happens as she moves forward but also more about 
what has already happened.  Events enter her past without passing through her present. 
 The axiomatization of event spaces we provide in Part III is faithful to the picture of an 
event tree and hence is inconsistent, as a whole, with relativity.  But it can easily be 
generalized so it is consistent with relativity.  The relativistic generalization retains the 
refinement order ⊆ , the temporal order ≤, and the five fundamental constructions E∩F, E∪ F, 
E\F, Λ, and EF, with some clarifications in their meaning.  We lose only two final axioms, 
which reduce the structure to a tree and permit the construction of the ending E∧ F and the 
beginning E∨ F. 
 The first step in the relativistic generalization is to clarify the meaning of the refinement 
order ⊆ .  We have said that E ⊆  F means that whenever E happens, F happens 
simultaneously.  In a non-relativistic world, “simultaneous” means simply “at the same 
time.”  But in a relativistic world, it means “at the same time and at the same place.”  This 
must be kept in mind in interpreting all the related constructions.  For example, the greatest 
lower bound E∩F is characterized by two axioms, which we can state here in this form:12 

Axiom 2A E∩F ⊆  E and E∩F ⊆  F. 
Axiom 2B If G ⊆  E and G ⊆  F, then G ⊆  E∩F. 

According to these axioms, E∩F is the event that E and F happen at the same time and the 
same place.  (Axiom 2A says that when E∩F happens, both E and F happen at the same time 
and same place, and Axiom 2A says that when E and F both happen at the same time and 
place, E∩F happens there, too.) 
 The least upper bound E∪ F does not always exist, but the condition for its existence and 
its characterization when it does exist can be stated in this way:13 

Axiom 3 If E ⊆  I and F ⊆  I, then E∪ F can be formed, and E∪ F then satisfies E ⊆  E∪ F, 
and F ⊆  E∪ F, and E∪ F ⊆  I.   

This says that E∪ F happens at the same time and place as E whenever E happens and at the 
same time and place as F whenever F happens.  It also has an interesting further 
consequence:  if E and F are both refinements of the same event I, and they both happen, 
then they must happen at the same time and place as each other (because they both happen at 
the same time and place as E∪ F and I). 

                                                 
12  See §2 of Part III. 
13  See §3 of Part III. 
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 The condition that two refinements of an instantaneous event must happen at the same 
time and place if they both happen constitutes a restriction on what we are allowed to classify 
as an instantaneous event.  Compare, for example, these two purported instantaneous events: 

• G = “Joe dies.” 
• H = “Joe dies on earth during Year A, or Bill dies on a planet around Sirius during 

year B,” where Year A on earth and Year B on Sirius are at a space-like distance—
light leaving earth during Year A will not reach Sirius before the end of Year B there, 
and vice versa. 

The event G qualifies as an instantaneous event in our system, even if Joe is a space traveler.  
There are many refinements of G—many times, places, and ways Joe can die.  But if Joe dies 
in way 1 and Joe dies in way 2, then these two events happen at the same time and the same 
place.  On the other hand, H clearly does not qualify as an instantaneous event, for then Joe 
dying on earth during Year A and Bill dying on Sirius during Year B would both be 
refinements of H, these events, which can both happen, obviously cannot happen in the same 
time and place. 
 We must also clarify the meaning of the temporal order ≤.  In the non-relativistic case, 
the statement E ≤ F means that whenever E happens, no matter how it happens, F has already 
happened.  We can use these same words in the relativistic generalization, provided we are 
clear about what “F has already happened” means; it means that the happening of F is the 
past Minkowski cone:  F has happened at a place and time such that the news of its 
happening, traveling at the speed of light, has had time to arrive when and where E happens.  
With this interpretation, most of the axioms for ≤ and for the construction EF appear to be 
valid for the relativistic case. 
 The conflict with relativity theory is limited to the two final axioms in our system, which 
can be paraphrased as follows:14 

Axiom 14 If neither E nor F can happen after the other, the merger E∪ F can be formed. 
Axiom 15 G ≤ E and G ≤ F imply G ≤ EF∪ FE. 

Fortunately, a great deal of ordinary causal reasoning can be accomplished without these two 
axioms. 
 The difficulty with Axioms 14 and 15 is illustrated in Figure 13, which depicts the 
possible trajectories of two witnesses, Solid and Dashed.  Solid and Dashed are together at 
two points in the story, first in situation I and then, depending on how events turn out, in one 
of four possible later situations, A, B, C, or D.  In the interim, they travel apart and witness 
different events.  For simplicity, we suppose that they travel at the speed of light.  Solid, 
whose event tree is drawn with solid lines, witnesses either E or H, while Dashed, whose 
event tree is drawn with dashed lines, witnesses either F or G.  Because they are traveling at 
the speed of light, it is only when they reunite, in A, B, C, or D, that each learns what the 
other witnessed.  If Solid witnessed E and Dashed witnessed F, then they reunite in A, if 
Solid witnessed E and Dashed witnessed G, then they reunite in B, etc. 
 

                                                 
14 See §§14-15 of Part III. 
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A B C D

E F G H

I

 
Figure 13  Intertwined event trees for two witnesses, Solid and Dashed.  They begin together in situation I, go 
their separate ways to witness different events, and then meet up again to share information.  Solid witnesses 
whether E or H happens, while Dashed witnesses whether F or G happens.   
 
 In this example, neither E nor F can happen after the other, and hence Axiom 14 would 
authorize the formation of the merger E∪ F, the event that “either E happens or F happens” at 
the same time.  But this is not an instantaneous event in our sense.  The events E and F, 
although they can both happen, cannot do so simultaneously. 
 The events E and F in Figure 13 also illustrate the difficulty with Axiom 15.  Because 
neither E nor F can happen after the other, both EF and FE are impossible, and hence their 
merger EF∪ FE exists and is equal to the impossible event, Λ.  So the axiom is contradicted 
by the fact that A ≤ E and A ≤ F hold while A ≤ Λ does not hold. 
 When we drop Axioms 14 and 15 in order to accommodate relativity theory, it is no 
longer guaranteed that two events E and F will have an ending E∧ F and beginning E∨ F, 
because the mergers in Equations (II.5.1) and (II.5.2) may fail to exist.  In Figure 13, for 
example, neither E∧ F nor E∨ F exists.  The constructions E5F and E→→→→

F seem to remain 
reasonable in the relativistic case, and we can still define the E1F, E2F, E3F, and E5F, but the 
events E3F and E4F can no longer necessarily be interpreted in the way suggested in §6.  The 
construction E-, failure, is not acceptable in the relativistic case, because an event E can be 
ruled out by events that are incomparable and hence cannot be merged to form a single event. 
 As we have explained, our complete system of axioms justifies a representation in terms 
of “point events” that form an event tree; this is the topic of Part V.  Without Axioms 14 and 
15, we obtain only a partially ordered set of “point events” that is not necessarily a tree, as in 
Figure 13.  Are there other axioms that should be added in the relativistic case?  It seems 
reasonable to add a weaker version of Axiom 14:  If div(E,F), the merger E∪ F can be 
formed.  But it is unclear whether other axioms should also be adopted. 
 In a philosophical study of point events in a relativistic world, Belnap (1992) advances 
some suggestions for axioms concerning the existence of branching points.  Although 
Belnap’s work has provided the impetus for our own thoughts on this topic, we have not 
adopted his axioms.  It is unclear how they can be expressed constructively (rather than as 
statements about existence) and hence unclear how they can be used to formulate and draw 
inferences from causal information. 
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III.  Constructive Axioms for Event Spaces 
 We now provide an axiomatization for event spaces that is constructive in the 
intuitionistic sense.  This means that we avoid the principle of the excluded middle, and we 
use constructions instead of existential axioms.  
 We take an intuitionistic approach not because we insist on an intuitionistic philosophy 
of mathematics, but for more practical reasons: 

• The intutionistic emphasis on relations that can actually be observed helps organize the 
axiomatization in a way that facilitates inferences from observations. 

• There are systems, such as Coq and ALF, which translate constructive axiomatizations 
directly into tools for automated reasoning. 

• The discipline provided by the intuitionistic philosophy is an aid to developing concise 
and effective axiomatizations. 

Readers who are unfamiliar or uncomfortable with the constructive viewpoint are 
encouraged to look first at Part IV, where the axioms we develop in this section are presented 
in a classical form. 
 We follow the guidelines for constructive axiomatization developed by Jan von Plato 
(1995, 1996).  We postulate a set of objects (instantaneous events in our case) and predicates 
and relations for them that may be verified, at least in principle, by finite experience.  The 
relations include a relation of apartness, whose negation is taken as the definition of equality 
between two objects.  We adopt axioms for the predicates and relations that  

• reflect the structure of the verification, and 
• authorize the substitution of equals for equals in the relations and predicates. 

Ideal objects—objects with infinitely precise properties that cannot be verified by direct 
experience—are introduced by construction.  (In geometry, the unique straight line that goes 
exactly through two given points is the standard example of an ideal object.  In our case, an 
example is the precisely simultaneous happening of two events.)  Along with constructed 
objects, we introduce axioms that  

• assert the ideal properties of the constructed objects, 
• imply that these ideal properties characterize the constructed objects—i.e., that the 

constructed objects are the only ones with the properties (for example, the line ln(a,b) 
constructed from the distinct points a and b is the only line that goes through both a and 
b), and 

• imply that distinct constructions must have distinct inputs, so that equals may be 
substituted for equals in the construction (for example, ln(a,b) can be distinct from 
ln(c,d) only if the point a is distinct from the point b or the point c is distinct from the 
point d). 

This differs from the procedure in classical mathematics, where we first assert the existence 
of an unnamed object with certain properties (we say, for example, that there exists at least 
one line between any two points), and then we may or may not prove its uniqueness. 
 In addition to von Plato’s guidelines, we adopt an additional methodological principle.  
The axioms we adopt for each new construction should imply necessary and sufficient 
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conditions, not involving the construction, for whether any relation in the theory holds 
between the construction and any other object in the theory.  This principle gives a certain 
primacy to the relations in the theory; it suggests that the ideal objects serve only to order 
and summarize relations among other objects.  In some cases, however, it will take us 
somewhat outside the constructive framework, inasmuch as the necessary and sufficient 
conditions involve classical existence statements. 
 The relations that we axiomatize can be thought of as judgments made by Nature, the 
imagined demigod or super scientist who represents the limits of mortal knowledge.  Nature, 
we suppose, may witness and know everything that any human or artificial scientist might 
witness or know at a given point in time but lacks God’s infinite scope, foresight, and 
precision of knowledge.  When a given event happens, Nature may be aware of its happening 
and may be aware that certain other events have and have not happened.  She may be able to 
predict at that moment that certain other events will and will not happen in the future.  (See 
Shafer 1996, Chapter 1.)  Our constructions define the limits of Nature’s potential knowledge 
and prediction and hence, like the line passing through two given points, do have a meaning 
of infinite scope and precision.  For example, we may construct the event that two events E 
and F happen simultaneously—an infinitely precise condition on their timing.  We may also 
construct the event that E happens in such a way that F’s later happening is possible.  When 
we say that F’s happening is possible, we mean that Nature cannot rule it out no matter how 
far she exploits the immense and perhaps even infinite information available to her. 
 For brevity, we drop the adjective “instantaneous” when we speak of events, but it will 
be implicit throughout.  An event, as we use the word in this section, happens 
instantaneously and can happen at most once in the course of events. 
 The concept of an event space is sufficiently complex that it can be axiomatized in a 
myriad of ways, no matter whether we take a classical or a constructive approach.  Our goal 
in this section is to produce an intuitionistically acceptable and concise axiomatization based 
on the two partial orders that we introduced informally in Part II:  ⊆  and ≤. 
 A moment’s thought reveals that E ⊆  F and E ≤ F are not quite appropriate starting points 
for a constructive axiomatization, for they cannot be verified by finite experience.  No 
amount of experience can tell us that F always happens at exactly the same time whenever E 
happens, or that F must have happened by the time E happens.  Our experience may, on the 
other hand, authorize the opposite judgements; we may see E happen without F happening at 
the same time or even without F ever having happened yet.  We therefore take the following 
relations as primitive: 
 
RELATION Meaning 
E ° F E may happen without F happening simultaneously. 
E ∇  F E may happen without F having happened yet. 
 
 In §§1-3 we axiomatize the refinement order ⊆ .  We begin, in §1, by introducing the 
relation E ° F.  We adopt constructive axioms for ° that make its negation, ⊆ , a partial order.  
In §2 and §3, we adopt two constructions, E∩F and E∪ F, which turn out to be greatest lower 
and least upper bounds in the partial order ⊆ .  Our axioms in these three sections are the 
same as the constructive axioms for lattices formulated by Jan von Plato (1997), except that 
we authorize the construction of E∪ F only under the assumption that E and F do have at 
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least one upper bound.  Because of this restriction, the order ⊆  is not quite a lattice; we 
obtain a lattice only if we limit our attention to events that refine a particular fixed event. 
 In §§4-6, we move beyond von Plato’s theory in the direction of a Boolean algebra.  In 
§4, we introduce the resolution axiom, which implies distributivity and the uniqueness of 
relative complements.  In §5, we introduce the impossible event, which serves as the zero in 
the lattice.  In §6, we introduce relative complements.  These additions make our order into a 
Boolean algebra, except again that not all pairs of events have an upper bound.  The axioms 
for this (almost) Boolean algebra are summarized in §7. 
 In §§8-15, we turn to our second order, the temporal order ≤.  We introduce E ∇  F in §8.  
The denial of E ∇  F, E ≤ F, is the temporal order. We introduce EF, the part of E that requires 
F to happen at the same time or earlier, in §9.  In §§10-13, we study aspects of the temporal 
lattice that hold even in a relativistic world.  Then, in §§14-15, we impose additional axioms 
that are appropriate only for a non-relativistic world and lead to the conclusion that the 
temporal order is a distributive lattice.  We summarize the entire axiomatic system in §16. 

0.  Elements of Intuitionistic Reasoning 
 The following brief review of the implications of rejecting the principle of the excluded 
middle should help readers understand how we reason with our axioms.  For more systematic 
and complete expositions of intuitionistic inference, see Dummett (1977), Martin-Löf (1982, 
1984), van Dalen (1986, 1997), or Ranta (1994). 
 The principle of the excluded middle says that for any proposition A, either A or not(A) 
is true.  This principle is adopted in classical logic but not in intuitionistic logic.  In 
intuitionistic logic, asserting a proposition means asserting one has a proof of it, and 
asserting a disjunction means asserting that one has a proof of one of the disjuncts.  We 
cannot assert “A or not(A)” unless we have a proof of A or of not(A), and we may have 
neither. 
 Here are some implications of the intuitionistic rejection of the principle of the excluded 
middle. 

• not(not(A)) does not imply A.  In the presence of the rules of inference that 
intuitionists accept, the principle of the excluded middle implies that A and 
not(not(A)) are equivalent; each implies the other.  But once we reject the principle of 
the excluded middle, this equivalence no longer holds.  Intuitionistically, not(A) is 
the same as the implication A⇒⊥ , where ⊥  is the absurdity.  So not(not(A)) is the 
implication (A⇒⊥ )⇒⊥ .  This does follow from A; so A implies not(not(A)).  But 
there is no intuitionistic argument taking us the other way, from not(not(A)) to A. 

• Proof by contradiction.  Rejection of the principle of the excluded middle also puts 
limits on the use of proof by contradiction.  Since not(A) means A⇒⊥ , we may prove 
not(A) by assuming A and deriving a contradiction.  But if we assume not(A) and 
derive a contradiction, we have proven only not(not(A)); we have not proven A. 

• Contraposition.  Contraposition is intuitionistically valid; from A⇒ B we may 
conclude (B⇒⊥ )⇒ (A⇒⊥ ), or not(B)⇒ not(A).  But we cannot conclude A⇒ B from 
not(B)⇒ not(A). 

• Using a disjunction.  What may we conclude from the disjunction A or B?  The 
intuitionistic answer is that we may conclude anything that we may conclude from A 
and also from B. 
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• Eliminating a disjunct.  From the disjunction A or B and the negation not(B), we 
may derive A intuitionistically.  This is because (1) not(B) means B⇒⊥  and (2) 
⊥⇒ A is accepted as a rule of inference.  From A we conclude A.  From B and not(B) 
we conclude ⊥  and hence A.  So from the disjunction A or B and the negation not(B) 
we conclude A. 

1.  The Refinement Order:  Happening Alone 
 Sometimes an event E can happen without another event F happening simultaneously.  
This leaves open whether F has or has not already happened and whether F may or may not 
happen later.  It also leaves open the possibility that E and F may, under different 
circumstances, happen at the same time. 
 
RELATION Reading Example of proof 

E ° F E may happen without F 
happening simultaneously. 

An example where E happens and F 
does not happen at the same time. 

 
AXIOM Explanation 
1A  not(E ° E). E cannot both happen and not happen at the same time. 
1B  If E ° F, then E ° G 
or G ° F. 

When E happens without F happening at the same time, either G 
also happens at that time or else it does not. 

 
 Axioms 1A and 1B were proposed by Jan von Plato as general axioms for intuitionistic 
partial order (von Plato 1997), except that he used a curved inequality sign instead of our °.  
He called 1B a splitting axiom, and he called any relation satisfying 1A and 1B an excess 
relation.  In our case, the excess is only potential; E ° F means that events may turn out in 
such a way that E exceeds F in the sense that E happens and F does not. 
 The explanation given for Axiom 1B—that G either does or does not happen—sounds 
like an appeal to the principle of the excluded middle and therefore requires more 
elaboration.  If Nature can tell that E has happened without F happening at the same time, 
should she also be able to tell whether G happened at the same time?  Our answer is yes, to 
the exactness required by the axiom.  Since Nature’s observations are not infinitely precise, 
her judgment that F did not happen at the same time as E means that there was some finite 
(as opposed to infinitesimal) interval of time between E’s happening and the happening of F, 
if F happened.  If G happens so close to E that Nature, with her merely finite precision, 
cannot exclude its having happened simultaneously, then it too has happened at a finite 
distance from any happening of F, and Nature can make the judgment G ° F.  Otherwise (if G 
does not happen or also happens at finite distance from the happening of E) Nature can make 
the judgment E ° G.15  See Figure 14. 
 

                                                 
15  A similar argument is made in the constructive axiomatization of geometry.  If two 

points are distinct in the sense that they are more than infinitesimally far apart, then any third 
point must be distinct, in the same sense, from at least one of them.  See von Plato 1995, p. 
173. 
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F

EE E

F

a b c

Hypothesis:  F, if it 
happens, happens at a 
finite distance from E,
either before E as in (a) 
or after E as in (b).

F

E,G

F

a b c

Case 1:  G happens 
infinitesimally close in 
time to E.

F

EE E

F

a b c

Case 2:  G, if it happens, 
at all, happens at a finite 
distance from E.

E,G E,G

G happens 
before E,
after E, or 
not at all.

 
 
Figure 14  The downward arrows indicate the direction of time.  If E ° F, then one of the three courses of 
events on the left must be possible:  (a) F happens followed by E after a finite (rather than infinitesimal) interval 
of time, (b) E happens followed by F after a finite interval of time, or (c) E happens and F never happens (at 
least F never happens while Nature is still watching).  In case 1, Nature can make the judgment that G has 
happened without F happening at the same time, so that G ° F.  In case 2, Nature can make the judgment that E 
has happened without G happening at the same time, so that E ° G. 
 
 Following von Plato, we use our excess relation to define three other relations: ≠, ⊆ , and 
=.  The relation ≠ is a symmetrization of °.  These relations ⊆  and = are the negations of ° and 
≠, respectively.  As such, they are less fundamental; they cannot be verified by finite 
experience.  Special cases of E ⊆  F or E = F may be adopted on theoretical grounds (as in 
1A), but these relations can be confirmed by experience only in a negative and hence 
indefinitely protracted way (no example where E happens without F happening at the same 
time ever turns up). 
 
RELATION Definition Reading Meaning 

E ≠ F E ° F or F ° E E is distinct from F. At least one of the events can 
happen without the other. 

E ⊆  F not(E ° F) E refines F. Whenever E happens, F 
happens at the same time. 

E = F E ⊆  F and F ⊆  E E equals F. Whenever E or F happens, the 
other also happens. 

 
 We could equivalently define E = F as 

• not(E ≠ F), 
• not(E ° F or F ° E), or 
• not(E ° F) and not(F ° E). 

These three assertions are constructively equivalent to each other and to the definition in the 
table, E ⊆  F and F ⊆  E. 
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 The relations ≠, ⊆ , and = have the properties usually associated with the symbols:  ≠ is an 
apartness relation in the sense of Heyting (Dummett 1977, p. 42; van Dalen 1997, p. 179), ⊆  
is a partial order, and = is an equivalence relation. 
 
THEOREM Demonstration 
1.1  ≠ is irreflexive:  E = E. Axiom 1A 
1.2  ≠ is symmetric:  If E ≠ F, then F ≠ E. Definition of ≠ 
1.3  If E ≠ F, then E ≠ G or G ≠ F. Axiom 1B 
1.4  ≠ is an apartness relation. Theorems 1.1, 1.2, and 1.3 
1.5  ⊆  is reflexive:  E ⊆  E. Axiom 1A 
1.6  ⊆  is transitive:  If E ⊆  F and F ⊆  G, then E ⊆  G. Axiom 1B 
1.7  ⊆  is antisymmetric:  If E ⊆  F and F ⊆  E, then E = E. Definition of = 
1.8  ⊆  is a partial order. Theorems 1.5, 1.6, and 1.7 
1.9  = is reflexive:  E = E. Theorem 1.1 
1.10  = is transitive:  If E = F and F = G, then E = G. Theorem 1.6 
1.11  = is symmetric:  If E = F, then F = E. Definition of = 
1.12  = is an equivalence relation. Theorems 1.9, 1.10, and 1.11 
 
 Because we are using only intuitionistic principles of inference, it matters that we have 
defined E = F as not(E ≠ F) rather than defining E ≠ F as not(E = F).  The two ways of 
proceeding are not constructively equivalent.  As we have defined the relations, not(E = F) 
means not(not(E ≠ F)), which is constructively weaker than E ≠ F. 
 The next two theorems show how the relation E ° F respects our partial order. 
 
THEOREM Demonstration 
1.13  If E ° F and E ⊆  G, then G ° F. Axiom 1B 
1.14  If E ° F and G ⊆  F, then E ° G. Axiom 1B 
 
 In the classical mathematical treatment of partial order, the meaning of = is implicit.  
Here we make the meaning of = explicit (two events are equal if neither can happen without 
the other happening at the same time), and we accept the responsibility of justifying any use 
we make of =.  In addition to verifying that = is an equivalence relation, we must justify any 
substitution of “equals for equals.”  The following theorems justify the substitution of equals 
for equals in the relation E ° F. 
 
THEOREM Demonstration 
1.15  If E ° F and G = E, then G ° F. Theorem 1.13 
1.16  If E ° F and G = F, then E ° G. Theorem 1.14 
 
 Each time we introduce a predicate, relation, or construction, we will need to verify that 
we can substitute equals for equals in it.  We take it as a principle, in other words, that the 
axioms accompanying a new predicate, relation, or construction should include axioms that 
authorize this substitution.  This principle applies only to predicates, relations, and 
constructions that we introduce axiomatically.  If we define a new expression (predicate, 
relation, or construction) in terms of existing expressions, then the validity of the substitution 
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of equals for equals in the new expression will follow from its validity in the existing 
expressions. 
 Finally, we note that the equality of two events is determined by the events they can 
happen without and also by the events that can happen without them. 
 
THEOREM Demonstration 
1.17  If E ° G implies F ° G, then E ⊆  F. If we assume E ° F, then the hypothesis that 

E ° G implies F ° G yields F ° F, in 
contradiction to Axiom 1A. 

1.18  If E ° G if and only if F ° G, then E = F. Theorem 1.17 
1.19  If G ° E implies G ° F, then F ⊆  E. If we assume F ° E, then the hypothesis that 

G ° E implies G ° F yields F ° F, in 
contradiction to Axiom 1A. 

1.20  If G ° E if and only if G ° F, then E = F. Theorem 1.19 

2.  Overlap 
 We now study greatest lower bounds in the partial order ⊆ . 
 
RULE OF CONSTRUCTION Explanation 
Overlap  From events E and F, construct the 
event E∩F. 

E∩F happens when E and F happen at the 
same time. 

 
AXIOM Explanation 
2A  E∩F ⊆  E and E∩F ⊆  F. When E∩F happens, E and F both happen. 

2B  If G ° E∩F, then G ° E or G ° F. When E and F do not both happen, at least 
one of them does not happen. 

 
 Contraposition of Axiom 2B produces the following more familiar statement. 
 
THEOREM Demonstration 
2.1  If G ⊆  E and G ⊆  F, then G ⊆  E∩F. Axiom 2B 
 
 The overlap E∩F is the greatest lower bound for E and F in the partial order ⊆ .  (Axiom 
2A says it is a lower bound, and Theorem 2.1 says it is greater than or equal to any lower 
bound.)  The operation ∩ therefore has all the algebraic properties of greatest lower bound, 
some of which we now list. 
 
THEOREM Demonstration 
2.2  ∩ is idempotent:  E∩E = E. An event is its own greatest lower bound. 

2.3  ∩ is commutative: E∩F = F∩E. By the symmetry of the definition of 
greatest lower bound. 

2.4  ∩ is associative:  (E∩F)∩G = E∩(F∩G). Both are the greatest lower bound for the 
three events E, F, and G. 

2.5  If E ⊆  F, then E∩F = E. E is a lower bound for any event it refines. 
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 We next observe that overlap respects our partial order. 
 
THEOREM Demonstration 

2.6  If E∩F ° G∩H, then E ° G or F ° H. 
By Axiom 2B, E∩F ° G or E∩F ° H.  So the 
conclusion follows from Axiom 2A  and 
Theorem 1.13. 

2.7  If E ⊆  G and F ⊆  H, then E∩F ⊆  G∩H. Theorem 2.6 
2.8  If F ⊆  G, then E∩F ⊆  E∩G. Theorems 2.7 and 1.5 
2.9  If E ⊆  G, then E∩F ⊆  G∩F. Theorems 2.7 and 1.5 
 
 Now we consider the principle that equals can be substituted for equals.  In the case of 
constructions, we insist on a constructively stronger principle: the principle of strong 
extensionality (Troelstra and van Dalen 1988, p. 386; von Plato 1997, p. 6).  This principle 
says that if the result of applying a construction to one group of inputs is distinct from the 
result of applying it to another group of inputs, then the inputs are distinct.  Theorem 2.10 
says this for the construction E∩F.  The three subsequent corollaries, Theorems 2.11, 2.12, 
and 2.13, express the principle that equals can be substituted for equals in E∩F. 
 
THEOREM Demonstration 
2.10  If E∩F ≠ G∩H, then E ≠ G or F ≠ H. Theorem 2.6 
2.11  If E = G and F = H, then E∩F = G∩H. Theorem 2.10 
2.12  If F = G, then E∩F = E∩G. Theorems 2.11 and 1.9 
2.13  If E = G, then E∩F = G∩F. Theorems 2.11 and 1.9 
 
 We conclude with conditions under which the construction E∩F stands on either side of 
the relation ° with other events. 
 
THEOREM Demonstration 

2.14  G ° E∩F if and only if G ° E or G ° F. 
If G ° E or G ° F, then G ° E∩F by Axiom 
2A and Theorem 1.14.  The opposite 
implication is Axiom 2B. 

2.15  E ° F if and only if E ° E∩F. Theorem 2.14 with E for G 

2.16  E∩F ° G if and only if there exists an 
event H such that H ⊆  E, H ⊆  F, and H ° G.16 

If E∩F ° G, then by Axiom 2A, E∩F is the 
requisite H.  If there is such an H, then H ⊆  
E∩F by Theorem 2.1, and hence E∩F ° G 
by Theorem 1.13. 

 
 Theorems 2.14 and 2.16 are equivalent, in the presence of Axioms 1A and 1B, to Axioms 
2A and 2B. 

                                                 
16  This is a classical existence statement, but the proof reveals the constructive meaning:  

(1) the three relations H ⊆  E, H ⊆  F, and H ° G imply E∩F ° G, and (2) if E∩F ° G, then 
E∩F ⊆  E, E∩F ⊆  F, and E∩F ° G. 
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3.  Merger 
 We now study least upper bounds in the partial order ⊆ .  We continue to follow von 
Plato’s axiomatization for lattices, except that our events do not quite form a lattice, because 
a least upper bound can be constructed only under the assumption that there is at least one 
upper bound. 
 
RULE OF CONSTRUCTION Explanation 
Merger  From E, F, and I, together with a 
proof that E ⊆  I and F ⊆  I, construct the event 
E∪ F. 

E∪ F happens when at least one of the two 
events E and F happen. 

 
 There may be more than one I satisfying E ⊆  I and F ⊆  I, but there must be at least one 
for E∪ F to be formed.  Otherwise one of the two events E and F may happen before the 
other, and in this case they cannot be merged into a single event that may happen at most 
once. 
 
AXIOM Explanation 
3A  If E ⊆  I and F ⊆  I, authorizing the 
construction of E∪ F, then E ⊆  E∪ F and F ⊆  
E∪ F. 

When E happens or F happens, E∪ F 
happens. 

3B  If E∪ F ° G, then E ° G or F ° G. When E∪ F happens, either E happens or F 
happens. 

 
 Contraposition of Axiom 3B produces the following more familiar statement. 
 
THEOREM Demonstration 
3.1  If E ⊆  G and F ⊆  G, then E∪ F ⊆  G. Axiom 3B 
 
 The merger E∪ F is the least upper bound for E and F in the partial order ⊆ .  Axiom 3A 
says it is an upper bound, and Theorem 3.1 says it is less than or equal to any upper bound.  
The operation ∪  has all the algebraic properties of least upper bound, some of which we now 
list. 
 
THEOREM Demonstration 
3.2  ∪  is idempotent:  E∪ E = E. An event is its own least upper bound. 
3.3  ∪  is commutative:  If E ⊆  I and F ⊆  I, 
authorizing the construction of E∪ F and F∪ E, 
then E∪ F = F∪ E. 

By the symmetry of the definition of least 
upper bound. 

3.4  ∪  is associative:  If E ⊆  I, F ⊆  I, and G ⊆  
I, authorizing the construction of (E∪ F)∪ G 
and E∪ (F∪ G), then (E∪ F)∪ G = E∪ (F∪ G). 

Both are the least upper bound for the three 
events E, F, and G. 

3.5  If E ⊆  F, then E∪ F = F. An event is an upper bound for any 
refinement. 
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 Merger respects our partial order.  (We leave implicit the assumptions required to 
authorize the construction of the mergers in these theorems.) 
 
THEOREM Demonstration 

3.6  If E∪ F ° G∪ H, then E ° G or F ° H. 
By Axiom 3B, E ° G∪ H or F ° G∪ H.  So the 
conclusion follows from Axiom 3A and 
Theorem 1.14. 

3.7  If E ⊆  G and F ⊆  H, then E∪ F ⊆  G∪ H. Theorem 3.6 
3.8  If F ⊆  G, then E∪ F ⊆  E∪ G. Theorems 3.7 and 1.5 
3.9  If E ⊆  G, then E∪ F ⊆  G∪ F. Theorems 3.7 and 1.5 
 
 Merger obeys strong extensionality, so that we can substitute equals for equals in E∪ F.  
(We again leave implicit the assumptions required for the construction of the mergers.) 
 
THEOREM Demonstration 
3.10  If E∪ F ≠ G∪ H, then E ≠ G or F ≠ H. Theorem 3.6 
3.11  If E = G and F = H, then E∪ F = G∪ H. Theorem 3.10 
3.12  If F = G, then E∪ F = E∪ G. Theorems 3.11 and 1.9 
3.13  If E = G, then E∪ F = G∪ F. Theorems 3.11 and 1.9 
 
 A partially ordered set in which each pair of elements has a least upper bound and a 
greatest lower bound is called a lattice.  Our events do not form a lattice in their totality 
under the partial ordering ⊆ , because upper bounds to do not exist for all pairs of events, but 
we do have a lattice when we limit our attention to events that refine a particular event (say 
all E such that E ⊆  I). 
 Lattices can also be characterized algebraically; instead of beginning with the idea that ∩ 
and ∪  represent greatest lower bound and least upper bound, respectively, one postulates that 
they obey certain algebraic axioms (Davey and Priestley 1990, Chapter 5).  Of all the 
standard algebraic axioms, the absorption laws are the only ones we have not yet derived.  
We now derive them. 
 
THEOREM Demonstration 
3.14  E∪ (E∩F) = E. E is the least upper bound for E∩F and E. 
3.15  If E ⊆  I and F ⊆  I, authorizing the 
construction of E∪ F, then E∩(E∪ F) = E. 

E is the greatest lower bound for E∪ F and 
E. 

 
 We conclude with conditions under which the construction E∪ F stands on either side of 
the relation ° with other events. 
 
Suppose E∪ F can be constructed. 
THEOREM Demonstration 
3.16  E∪ F ° G if and only if E ° G 
or F ° G. 

If E ° G or F ° G, then E∪ F ° G by Axiom 3A and 
Theorem 1.13.  The opposite implication is Axiom 3B. 

3.17  E ° F if and only if E∪ F ° F. Theorem 3.16 with F for G 
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3.18  G ° E∪ F if and only if there 
exists an event H such that E ⊆  H, 
F ⊆  H, and G ° H. 

If G ° E∪ F, then by Axiom 3A, E∪ F is the requisite H.  
If there is such an H, then E∪ F ⊆  H by Theorem 3.1, 
and hence G ° E∪ F by Theorem 1.14. 

 
 Theorems 3.16 and 3.18 are equivalent, in the presence of Axioms 1A and 1B, to Axioms 
3A and 3B. 

4.  The Resolution Axiom 
 In this section, we adopt an axiom, the resolution axiom, that assures that the refinement 
order is distributive and that relative complements in it are unique. 
 One way to motivate the resolution axiom is to argue for a strengthening of Axiom 1B, 
the splitting axiom.  The splitting axiom says that if E ° F, then E ° G or G ° F.  The reason is 
that either G does not happen at the same time as E (so that E happens without either F or G 
happening) or else it does (so that E and G both happen without F happening).  Now that we 
have the concepts of overlap and merger to work with, we might express this more strongly: 

If E ° F, then E ° F∪ G or E∩G ° F. 
But this may be too strong for our intuitionistic concept of Nature.  Nature may be unable to 
tell whether happenings of E and G are precisely simultaneous.  We also have the problem 
that the hypothesis E ° F does not imply the existence of F∪ G. 
 By putting the proposed axiom in contrapositive form, however, we obtain an 
intuitionistically acceptable elaboration of the meaning of the constructions F∪ G and E∩G. 
 
AXIOM Explanation 

4  If E ⊆  F∪ G and E∩G ⊆  F, 
then E ⊆  F. 

Suppose E happens.  If this implies that F or G happens at 
the same time, and also that G’s happening at the same 
time implies F happens at the same time, then it implies F 
happens at the same time.  

 
(Here the existence of F∪ G is implicit in the hypothesis.) 
 Axiom 4 is a powerful tool for proving inequalities; for it allows us to deduce E ⊆  F from 
two related but weaker inequalities.  If we shift the conversation from events to propositions 
(interpreting ⊆ , ∪ , and ∩ as implication, disjunction, and conjunction, respectively), then 
this axiom expresses a simple and familiar tactic in mathematical reasoning:  when we are 
trying to prove F and find we can prove only F or G, we adopt G as an additional assumption 
and try again to prove F.  We call the axiom the resolution axiom because in this context it is 
a constructive version of the method of resolution for theorem proving:  from the clauses 
{not(E),F,G} and {not(E),F,not(G)}, infer the clause {not(E),F} (Robinson 1965). 
 As we will see, the resolution axiom implies modularity (Theorem 4.4), distributivity 
(Theorems 4.5 and 4.6), and the uniqueness of relative complements when they exist 
(Theorem 6.1). 
 A lattice is said to be distributive if it satisfies the two distributive laws: 

1. A∪( B∩C) = (A∪ B)∩(A∪ C). 
2. A∩(B∪ C) = (A∩B)∪ (A∩C). 

It is said to be modular if it satisfies a weaker condition called the modular law: 
3. If A ⊆  C, then A∪ (B∩C) = (A∪ B)∩C. 
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The resolution axiom guarantees that these laws hold whenever the mergers in them can be 
constructed.   
 For clarity, let us begin by noting that half of each law can be derived without using the 
resolution axiom. 
 
Suppose A∪ B can be constructed. 
THEOREM Demonstration 

4.1  If A ⊆  C, then A∪( B∩C) ⊆  (A∪ B)∩C. 
Both A and B∩C refine both A∪ B and C.  
So the inequality follows from the definitions 
of least upper and greatest lower bound. 

 
Suppose A∪ B and A∪ C can be constructed. 
THEOREM Demonstration 

4.2  A∪( B∩C) ⊆  (A∪ B)∩(A∪ C). 
Both A and B∩C refine both A∪ B and A∪ C.  
So the inequality follows from the definitions 
of least upper bound and greatest lower bound. 

 
Suppose B∪ C can be constructed. 
THEOREM Demonstration 

4.3  (A∩B)∪ (A∩C) ⊆  A∩(B∪ C). 
Both A∩B and A∩C refine both A and B∪ C.  
So the inequality follows from the definitions 
of least upper bound and greatest lower bound. 

 
 Now we use the resolution axiom to prove the remaining half of each of law.  We begin 
with the modular law (without the assumption A ⊆  C, which is not needed for this half). 
 
Suppose A∪ B can be constructed. 
THEOREM Demonstration 

4.4  (A∪ B)∩C ⊆  A∪( B∩C). Substitute (A∪ B)∩C for E, A∪( B∩C) for F, and B for 
G in Axiom 4. 

 
 Now we prove the remaining half of the first distributive law. 
 
Suppose A∪ B and A∪ C can be constructed. 
THEOREM Demonstration 

4.5  (A∪ B)∩(A∪ C) ⊆  A∪( B∩C). 
Substitute (A∪ B)∩(A∪ C) for E, A∪( B∩C) for F, and 
B for G in Axiom 4.  This reduces the problem to an 
instance of Theorem 4.4. 

 
 Finally, we prove the remaining half of the second distributive law. 
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Suppose B∪ C can be constructed. 
THEOREM Demonstration 

4.6  A∩(B∪ C) ⊆  (A∩B)∪ (A∩C). 
Substitute A∩(B∪ C) for E, (A∩B)∪ (A∩C) for F, and 
B for G in Axiom 4.  Again, this reduces the problem 
to an instance of Theorem 4.4. 

 
 We may now say that the lattice formed by the refinements of a fixed event is 
distributive. 

5.  Possibility and Impossibility 
 An element E0 in a partial order is a zero if E0 ⊆  E for all E.  It follows from this 
definition that any two zeroes for a given partial order are equal, and so we speak of the zero 
when it exists. 
 We now construct the impossible event. 
 
RULE OF CONSTRUCTION Explanation 
Impossible Event  Construct the event Λ. Λ is the impossible event. 
 
 We adopt a single axiom for Λ, which tells us that it is the zero for the refinement order. 
 
AXIOM Explanation 
5  Λ ⊆  E. The impossible event cannot happen. 
 
THEOREM Demonstration 
5.1  If E ° F, then E ° Λ. Axiom 5 and Theorem 1.14 
5.2  E∩Λ = Λ. Axiom 5 and Theorem 2.5 
5.3  E∪Λ  = E. Axiom 5 and Theorem 3.5 
 
 Axiom 5 suffices to specify conditions under which the construction Λ stands on either 
side of the relation ° with other events.  The relation Λ ° E never holds (Axiom 5), and the 
relation E ° Λ holds if and only if E ° F for some F (Theorem 5.1). 
 Because Λ ⊆  E for all E, the condition E ⊆  Λ is equivalent to E = Λ. 
 We define possibility and impossibility in terms of the impossible event. 
 
PREDICATE Definition Reading Meaning 
poss(E) E ° Λ E is possible. E may happen. 
imposs(E) not(poss(E)) E is impossible. E cannot happen. 
 
We call a possible event a situation. 
 Here are a few facts about possibility. 
 
THEOREM Demonstration 
5.4  imposs(E) if and only if E = Λ. Axiom 5 and the definition of imposs(E) 
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5.5  poss(E) if and only if E ° F for some 
F. Theorem 5.1 and the definition of poss(E) 

5.6  If poss(E) and E ⊆  F, then poss(F). Theorem 1.13 and the definition of poss(E) 
 
 We define two binary predicates, lap(E,F) and dis(E,F). 
 
RELATION Definition Reading Meaning 
lap(E,F) E∩F ° Λ E and F overlap. E and F may happen at the same time. 
dis(E,F) E∩F = Λ E and F are disjoint. E and F cannot happen at the same time. 
 
The relations lap(E,F) and dis(E,F) are symmetric; lap(F,E) if and only if lap(E,F), and 
dis(F,E) if and only if dis(E,F).  We will use this symmetry without comment. 
 Here are some implications of disjointness. 
 
THEOREM Demonstration 
5.7  If dis(E,F) and poss(G), then G ° E or 
G ° F. 

The assumptions E∩F = Λ and G ° Λ imply G ° 
E∩F.  Axiom 2B then implies that G ° E or G ° 
F. 

5.8  If dis(E,F) and G ⊆  F, then dis(E,G). By Theorem 2.8, G ⊆  F implies E∩G ⊆  E∩F.  
So E∩F = Λ implies E∩G = Λ. 

6.  Relative Complements in the Refinement Order 
 We now study relative complements in the partial order ⊆ .  The axioms we adopt will 
assure that the refinements of a possible event form a Boolean algebra. 
 We say that G is a complement of F relative to E if  

(E∩F)∩G = Λ and (E∩F)∪ G = E. 
If F is a refinement of E, then this condition simplifies to 

F∩G = Λ and F∪ G = E. 
The general concept can be understood in terms of the special case:  G is a complement of F 
relative to E if and only if it is a complement of E∩F relative to E. 
 The following theorem tells us that relative complements are unique when they exist. 
 
THEOREM Demonstration 
6.1  If A∩C = A∩D and A∪ C = A∪ D, 
then C = D. 

Substituting C for E, D for F, and A for G in 
Axiom 4, we obtain C ⊆  D.  By symmetry, D ⊆  C. 

 
So we may call E\F the complement of F relative to E. 
 We now authorize a new construction and adopt axioms that guarantee it is the relative 
complement. 
 
RULE OF CONSTRUCTION Explanation 
Relative Complement  From E and F, 
construct E\F. 

E\F is the event that E happens without F 
happening at the same time. 
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AXIOM Explanation 
6A  E\F ° G if and only if 
E ° (E∩F)∪ (E∩G). 

Both propositions assert that E can happen with neither F nor G 
happening at the same time. 

6B  G ° E\F if and only if 
G ° E or E∩F∩G ° Λ. 

There are two ways G can happen without E\F happening at the 
same time.  One is for E not to happen then (this proves G ° E).  
The other is for E and F both to happen then (this proves 
E∩F∩G ° Λ). 

 
These axioms state directly conditions under which the construction E\F stands on either side 
of the relation ° with other events. 
 We now establish that E\F is indeed the complement of E relative to F—the unique 
refinement of E that is disjoint from E∩F and has E as its merger with E∩F. 
 
THEOREM Demonstration 
6.2  E\F ⊆  E. 
6.3  (E∩F)∩(E\F) = Λ. Axiom 6B, with E\F substituted for G, together with Axiom 1A 

6.4  (E∩F)∪ (E\F) = E. 

The relation (E∩F)∪ (E\F) ⊆  E follows from Axiom 2A and 
Theorems 6.2 and 3.1.  To establish E ⊆  (E∩F)∪ (E\F), we 
assume E ° (E∩F)∪ (E\F), rewrite this as E ° (E∩F)∪ (E∩(E\F)) 
using Theorems 6.2 and 2.5, and then deduce from Axiom 6A, 
with E\F for G, that E\F ° E\F, in contradiction to Axiom 1A. 

 
 As we noted before proving Theorem 6.1, it follows from the definition of relative 
complement that the complement of E relative to F is the same as its complement relative to 
E∩F.  This is recorded by the following theorem. 
 
THEOREM 
6.5  E\F = E\(E∩F). 
 
 Here are some additional properties of relative complements. 
 
THEOREM Demonstration 
6.6  E\F ° G if and only if E\G ° F. Axiom 6A and Theorem 3.3 
6.7  E\F ⊆  G if and only if E\G ⊆  F Theorem 6.6 

6.8  Suppose F∪ G can be 
constructed.  Then E\F ° G if and 
only if E ° F∪ G. 

When F∪ G can be constructed, (E∩F)∪ (E∩G) is 
equal to E∩(F∪ G) by distributivity.  So E\F ° G is 
equivalent to E ° E∩(F∪ G) by Axiom 6A.  And E ° 
E∩(F∪ G) is equivalent to E ° F∪ G by Theorem 2.15. 

6.9  E\E = Λ. Axiom 6A with E for F and Λ for G 
6.10  E\Λ = E. Theorem 6.4 with Λ for F 

6.11  (E\F)∩F = Λ. Since E\F ⊆  E (Theorem 6.2), (E\F)∩F = (E\F)∩F∩E 
(Theorem 2.5), which is equal to Λ by Theorem 6.3. 

6.12  If E\F ° G, then E ° G. Theorems 6.2 and 1.13 

6.13  If (E\F)∩G ° Λ, then G ° F. By Theorem 6.11, (E\F)∩G ° Λ implies (E\F)∩G ° 
(E\F)∩F, and by Theorem 2.6, this implies G ° F. 
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6.14  E\F ° Λ if and only if E ° F. Axiom 6A and Theorem 2.15 
6.15  E\F = Λ if and only if E ⊆  F. Theorem 6.14 
 
 The construction E\F is monotonic with respect to the partial order ⊆  in both its 
arguments, in opposite directions. 
 
THEOREM Demonstration 

6.16  If G\H ° E\F, then G ° E or F ° H. 

Suppose G\H ° E\F.  By Axiom 6B, G\H ° E 
(which implies G ° E by Theorem 6.12) or 
E∩F∩(G\H) ° Λ (which implies F ° H by 
Theorem 6.13). 

6.17  If E ⊆  G, then E\F ⊆  G\F. Theorem 6.16 
6.18  If G ⊆  F, then E\F ⊆  E\G. Theorem 6.16 
 
 We have strong extensionality for E\F, and so we can substitute equals for equals. 
 
THEOREM Demonstration 
6.19  If E\F ≠ G\H, then E ≠ G or F ≠ H. Theorem 6.16 
6.20  If E = G, then E\F = G\F. Theorem 6.17 
6.21  If G = F, then E\F = E\G. Theorem 6.18 
 
 Our definition of relative complement—E\F is the unique event that is disjoint from F 
and has E as its merger with E∩F—is algebraic.  The event E\F can also be characterized, 
however, in a more order-theoretic way.  It is the largest refinement of E that is disjoint from 
F.  This is established as follows. 
 
THEOREM Demonstration 
6.22  If G ⊆  E and F∩G = Λ, then G ⊆  E\F. Axiom 6B 
6.23  E\F is the largest refinement of E that is 
disjoint from F. 

This is the content of Theorems 6.2, 6.11, 
and 6.22. 

 
 Moreover, (E\F)\G is the largest refinement of E that is disjoint from both F and G.  To 
see this, we reason as follows. 
 
THEOREM Demonstration 
6.24  (E\F)\G ⊆  E. Theorem 6.2 
6.25  ((E\F)\G)∩G = Λ. Theorem 6.11 

6.26  ((E\F)\G)∩F = Λ. 
Since E\F is disjoint from F (Theorem 6.11), 
and (E\F)\G ⊆  E\F (Theorem 6.2), (E\F)\G is 
disjoint from F (Theorem 5.8). 

6.27  If H ⊆  E, H∩F = Λ, and H∩G = Λ, 
then H ⊆  (E\F)\G. 

By Theorem 6.22, it follows from H⊆  E and 
H∩F = Λ that H ⊆  E\F.  And it follows from 
H ⊆  E\F and H∩G = Λ that H ⊆  (E\F)\G. 

6.28  (E\F)\G is the largest refinement of E 
that is disjoint from both F and G. 

This is the content of Theorems 6.24, 6.25, 
6.26, and 6.27. 
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 These theorems follow. 
 
THEOREM Demonstration 
6.29  (E\F)\F = E\F. Theorems 6.23 and 6.28 
6.30  (E\F)\G = (E\G)\F. Theorem 6.28 
 
 By Theorems 6.15 and 6.30, the four following statements are all equivalent: E\F ⊆  G, 
E\G ⊆  F, (E\F)\G = Λ, and (E\G)\F = Λ. 
 Here are some further results that will prove helpful. 
 
THEOREM Demonstration 

6.31  If G ⊆  E, then G∩(E\F) = G\F. 
By Theorems 6.2, 6.17, and 2.1, G\F ⊆  
G∩(E\F).  By Axiom 2A and Theorems 
6.11 and 6.23, G∩(E\F) ⊆  G\F. 

6.32  If E\F ° (E\A)\B, then A ° F or B ° F. Axiom 6B and Theorems 6.13 and 6.16 
6.33  If A ⊆  F and B ⊆  F, then E\F ⊆  (E\A)\B. Theorem 6.32 
 
 Here is a theorem that does not involve relative complements in its statement but which 
apparently requires the axioms for relative complements for its proof. 
 
THEOREM Demonstration 

6.34  If E ° Λ, then lap(E,F) or E 
° F. 

Theorem 6.4 says that (E∩F)∪ (E\F) = E.  If E ° Λ, then 
Axiom 3B yields the conclusion that E∩F ° Λ (i.e., 
lap(E,F)) or E\F ° Λ (whence E ° F by Theorem 6.14). 

 
 This leads to the following symmetric interpretation of (H\E)\F being impossible. 
 
THEOREM Demonstration 

6.35  (H\E)\F = Λ if and 
only if [poss(G) and G ⊆  H] 
implies [lap(G,E) or 
lap(G,F)]. 

Suppose [poss(G) and G ⊆  H] does imply [G∩E ° Λ or G∩F ° 
Λ].  Taking (H\E)\F for G, we see that (H\E)\F ° Λ would 
imply ((H\E)\F)∩E ° Λ or ((H\E)\F)∩F ° Λ, in contradiction 
to Theorems 6.25 and 6.26.  Going the other way, suppose 
(H\E)\F = Λ, poss(G), and G ⊆  H.  By Theorem 6.15, H\E ⊆  
F.  By Theorem 6.34, G ° H\E (which implies G∩E ° Λ by 
Axiom 6B) or G∩(H\E) ° Λ (which implies G∩F ° Λ). 

 
Intuitively, (H\E)\F = Λ means that H’s happening must involve either E’s happening or F’s 
happening.  Theorem 6.35 yields this interesting implication:  If G ⊆  H and G are disjoint 
from both E and F, then G is impossible. 
 We now show that our other constructions, E∩F, E∪ F, and Λ, can be defined in terms of 
relative complement.  First, E∩F = E\(E\F). 
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THEOREM Demonstration 

6.36  E∩F = E\(E\F). 

If E\(E\F) ° E∩F, then Axiom 6A, gives E ° (E\F)∪ (E∩F), 
contradicting Theorem 6.4.  If E∩F ° E\(E\F), Axiom 6B gives 
either E∩F ° E, contradicting Axiom 2A, or (E∩F)∩(E\F) ° Λ, 
contradicting Theorem 6.3. 

 
Second, E∪ F = I\((I\E)\F), where I is any event refined by both E and F. 
 
Suppose E ⊆  I and F ⊆  I. 
THEOREM Demonstration 
6.37  F ⊆  I\((I\E)\F). Axiom 6B and Theorem 6.11 
6.38  E ⊆  I\((I\E)\F). Theorem 6.30 and 6.37 
6.39  If E ⊆  G, and F ⊆  G, then 
I\((I\E)\F) ⊆  G. 

By Theorem 6.33, I\G ⊆  (I\E)\F.  So by Theorem 6.7, 
I\((I\E)\F) ⊆  G. 

6.40  E∪ F = I\((I\E)\F). By Theorems 6.37, 6.38, and 6.39, I\((I\E)\F) is the least 
upper bound of E and F in the refinement order. 

 
Third, the impossible event is equal to E\E for any event E. 
 
THEOREM Demonstration 
6.41  Λ = E\E. Theorem 6.9 
 
 Finally, we prove DeMorgan’s laws. 
 
Suppose E ⊆  I and F ⊆  I. 
THEOREM 
6.42  I\(E∩F) = (I\E)∪ (I\F). 
6.43  I\(E∪ F) = (I\E)∩(I\F). 
 
 To prove Theorem 6.42, we first use E∩F ⊆  E and E∩F ⊆  F to conclude, by Theorem 
6.18, that I\E ⊆  I\(E∩F) and I\F ⊆  I\(E∩F), so that (I\E)∪ (I\F) ⊆  I\(E∩F).  To prove the 
opposite refinement, we use Theorem 6.17 to obtain E\F ⊆  I\F and then Theorem 6.18 to 
obtain E\(I\F) ⊆  E\(E\F), whence, by Theorem 6.36, E\(I\F) ⊆  E∩F.  Because E = I\(I\E) (by 
Theorem 6.36), we obtain (I\(I\E))\(I\F) ⊆  E∩F.  Another application of Theorem 6.18 yields 
I\(E∩F) ⊆  I\((I\(I\E))\(I\F)).  By Theorem 6.40, this can be written I\(E∩F) ⊆  (I\E)∪ (I\F). 
 To prove Theorem 6.43, we first use E ⊆  E∪ F and F ⊆  E∪ F to conclude, by Theorem 
6.18, that I\(E∪ F) ⊆  I\E and I\(E∪ F) ⊆  I\F, so that I\(E∪ F) ⊆  (I\E)∩(I\F).  To show the 
opposite refinement, we use (I\E)∩(I\F) ⊆  (I\E)\F to obtain I\((I\E)\F) ⊆  I\((I\E)∩(I\F)), or 
E∪ F ⊆  I\((I\E)∩(I\F)), which yields (I\E)∩(I\F) ⊆  I\(E∪ F) by Theorem 6.7. 

7.  The Refinement Order:  Summary 
 Here is a summary of the axioms and primitive relations and constructions we have 
introduced so far. 
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Relation 
E ° F 
 
 We write E ⊆  F for not(E ° F). 
 
RULE OF CONSTRUCTION 
Overlap  From events E and F, construct the event E∩F. 
Merger  From events E, F, and I and proofs of E ⊆  I and F ⊆  I, construct the event E∪ F. 
Impossible Event  Construct the event Λ. 
Relative Complement  From events E and F, construct the event E\F. 
 
AXIOM 
1A  E ⊆  E. 
1B  If E ° F, then E ° G or G ° F. 
2A  E∩F ⊆  E and E∩F ⊆  F. 
2B  If G ° E∩F, then G ° E or G ° F. 
3A  If E∪ F can be constructed, then E ⊆  E∪ F and F ⊆  E∪ F. 
3B  If E∪ F ° G, then E ° G or F ° G. 
4  If E ⊆  F∪ G and E∩G ⊆  F, then E ⊆  F. 
5  Λ⊆  E. 
6A  E\F ° G if and only if E ° (E∩F)∪ (E∩G). 
6B  G ° E\F if and only if G ° E or E∩F∩G ° Λ. 
 
 We could make this system more parsimonious, if we wished, by defining the other 
constructions in terms of the relative complement, as in Theorems 6.36, 6.40, and 6.41.  
However, this would make the axioms much less readable. 
 Recall that a Boolean algebra is a complemented distributive lattice with a zero (an 
element Λ such that Λ ⊆  E for all E) and a unit (an element Ω such that E ⊆  Ω for all E).  
Our axioms postulate the existence of a zero but do not postulate the existence of a unit.  
They also do not quite give a lattice, since two events may fail to have a merger.  If we were 
to add the construction Ω and the axiom E ⊆  Ω to our system, a merger could be constructed 
for any pair of events, and so we would have a constructive system of axioms for the concept 
of a Boolean algebra.17  In any case, our axioms as they stand imply that the refinements of a 
fixed possible event E form a Boolean algebra, with E as its unit. 

8.  The Temporal Order:  Happening First 
 We now turn to the temporal ordering of events—the possibility that one may occur after 
another.  We begin with another excess relation. 
 

                                                 
17  As far as we are aware, no constructive system of axioms for Boolean algebras has 

previously been published.  We are also not aware of any previous use of our resolution 
axiom, Axiom 4, in any axiomatization for Boolean algebras, constructive or classical. 
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RELATION Reading Example of proof 

E ∇  F E may happen without F ever 
having happened. 

An example where E has happened 
and F has not. 

 
AXIOM Explanation 

8A  If E ∇  F, then E ° F. If E has happened and F has not, then F did not happen 
at the same time E happened. 

8B  If E ∇  F, then E ∇  G or G ∇  F. 

Suppose E happens without F yet having happened.  
Then G has either happened or not.  In the first case, G 
has happened and F has not.  In the second case, E has 
happened and G has not. 

8C  If E ° F, then E ∇  F or F ∇  G 
or E ° G. 

Suppose E happens without F happening at the same 
time.  If G did not happen as E happened, E ° G.  If F 
did not happen earlier, E ∇  F.  If G did happen at the 
same time and F happened earlier, then F happened 
without G ever having happened, for otherwise G would 
happen twice. 

8D  If E ⊆  I and F ⊆  I, then G ∇  
E∩F implies G ∇  E or G ∇  F. 

Because E and F are refinements of the same 
instantaneous event, they can both happen only by 
happening at the same time. 

 
 Axiom 8D requires the relation ∇  to respect the instantaneous nature of the event I. 
 The following figures lay out the constructive intuition behind the specific instances of 
the principle of the excluded middle embodied in Axioms 8B and 8C. 
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Hypothesis:  F happens at a finite distance in 
time after E, as in (a), or not at all, as in (b).

Case 1:
G happens at a 
finite distance 
before E or
infinitesimally 
close to E.

F

E E

a b

Case 2:
G happens at a 
finite distance 
after E or
not at all.

F

E E

a b

 
 
Figure 15  An explanation of Axiom 8B.  If E ∇  F, then one of two courses of events must be possible:  (a) E 
happens followed by F after a finite interval of time, or (b) E happens and F never happens.  In case 1, Nature 
can make the judgment that G has happened without F yet having happened, so that G ∇  F.  In case 2, Nature 
can make the judgment that E has happened without G yet having happened, so that E ∇  G. 
 
 
 
 

F

EE E

F

a b c

Hypothesis:  F, if it 
happens, happens at a 
finite distance from E,
either before E as in (a) 
or after E as in (b).

F

E,G

F

a b c

Case 1:  G happens 
infinitesimally close in 
time to E.

F

EE E

F

a b c

Case 2:  G, if it happens, 
at all, happens at a finite 
distance from E.

E,G E,G

G happens 
before E,
after E, or 
not at all.

 
 
Figure 16  To explain Axiom 8C, we use the same picture that we used to explain Axiom 1B.  If E ° F, then one 
of the three courses of events on the left must be possible:  (a) F happens followed by E after a finite interval of 
time, (b) E happens followed by F after a finite interval of time, or (c) E happens and F never happens.  In case 
1a, Nature can make the judgment that F has happened without G yet having happened, so that F ∇  G.  In cases 
1b and 1c, Nature can make the judgment that E has happened without F yet having happened, so that E ∇  F.  In 
case 2, Nature can make the judgment that E has happened without G happening at the same time, so that E ° G. 



Shafer, Gillett, and Scherl  May 8, 2000 
 

To appear in Annals of Mathematics and Artificial Intelligence 41 

 
THEOREM Demonstration 
8.1  not(E ∇  E). Axioms 8A and 1A 
8.2  If E ° F, then E ∇  F or F ∇  E. Axiom 8C with E for G and Axiom 1A 

8.3  If E ° Λ, then E ∇  Λ. 
By Theorem 8.2, E ° Λ implies E ∇  Λ 
or Λ ∇  E.  But by Axiom 8A, Λ ∇  E 
implies Λ ° E, contradicting Axiom 5. 

8.4  [E ° F or F ° E] if and only if [E ∇  F or F ∇  E]. Axiom 8A and Theorem 8.2 
 
 Theorem 8.1 and Axiom 8B tell us that ∇ , like °, is an excess relation.  So we can draw all 
the conclusions about ∇  that we drew about ° in §1. 
 Theorem 8.4 tells us that the excess relation ∇  produces the same apartness relation ≠ and 
hence the same equality relation = as the excess relation ° produces.  (Recall from §1 that E ≠ 
F means, by definition, that E ° F or F ° E, while E = F means not(E ≠ F).) 
 We now introduce the relation that denies E ∇  F. 
 
RELATION Definition Reading Meaning 

E ≤ F not(E ∇  F) E requires F. E can happen only if F happens at the 
same time or earlier. 

 
 Because it is the negation of an excess relation, ≤ is a partial order.  We call it the 
temporal order.  As we note in Theorem 8.5, E ≤ F holds whenever E ⊆  F does.  As we note 
in Theorem 8.7, ≤ coincides with ⊆  when we consider only refinements of a fixed event.  
(This is why ≤ points in the direction it does, which might otherwise seem odd.) 
 
THEOREM Demonstration 
8.5  If E ⊆  F, then E ≤ F. Axiom 8A 
8.6  If E ⊆  I and F ⊆  I, then E ° F implies E ∇  F. Axiom 8C with I for G 
8.7  If E ⊆  I and F ⊆  I, then E ≤ F implies E ⊆  F. Theorem 8.6 
 
 It follows from Theorem 8.5 that Λ, the zero for ⊆ , is also the zero for ≤. 
 The next two theorems are exactly analogous to Theorems 1.13 and 1.14; they show that 
∇  respects the partial order ≤ just as ° respects the partial order ⊆ . 
 
THEOREM Demonstration 
8.8  If E ∇  F and E ≤ G, then G ∇  F. Axiom 8B 
8.9  If E ∇  F and G ≤ F, then E ∇  G. Axiom 8B 
 
 Hence we can substitute equals for equals in E ∇  F. 
 
THEOREM Demonstration 
8.10  If E ∇  F and G = E, then G ∇  F. Theorem 8.8 
8.11  If E ∇  F and G = F, then E ∇  G. Theorem 8.9 
 
 Next, we note that ∇  respects ⊆  in the same way as it respects ≤. 
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THEOREM Demonstration 
8.12  If E ∇  F and E ⊆  G, then G ∇  F. Theorems 8.5 and 8.8 
8.13  If E ∇  F and G ⊆  F, then E ∇  G. Theorems 8.5 and 8.9 
 
Contraposing these last two theorems, we obtain the following statements, which can also be 
thought of as aspects of the transitivity of ≤. 
 
THEOREM Demonstration 
8.14  If E ⊆  G and G ≤ F, then E ≤ F Theorem 8.12 
8.15  If E ≤ G and G ⊆  F, then E ≤ F. Theorem 8.13 
 
 When do the constructions we have already introduced, E∩F, E∪ F, Λ, and E\F, stand on 
one or the other side of the relation ∇  with another event?  One way to answer this question 
is to use the characterizations of these constructions in terms of the order ⊆ .  This is 
straightforward, but we spell it out for the sake of completeness. 
 
THEOREM Demonstration 

8.16  E∩F ∇  G if and only if there exists 
an event H such that H ⊆  E, H ⊆  F, and 
H ∇  G. 

If E∩F ∇  G, then E∩F is the requisite H.  Going 
the other way, suppose H ⊆  E and H ⊆  F.  Then H 
⊆  E∩F by Theorem 2.1.  This, together with H ∇  
G, implies E∩F ∇  G by Theorem 8.12. 

8.17  G ∇  E∩F if and only if [H ⊆  E and 
H ⊆  F imply G ∇  H]. 

Suppose G ∇  E∩F.  From H ⊆  E and H ⊆  F, we 
obtain H ⊆  E∩F by Theorem 2.1 and then G ∇  H 
by Theorem 8.13.  Going the other way, suppose 
H ⊆  E and H ⊆  F imply G ∇  H.  By Axiom 2A, 
E∩F ⊆  E and E∩F ⊆  F.  So G ∇  E∩F. 

8.18  Suppose E∪ F can be constructed.  
Then E∪ F ∇  G if and only if [E ⊆  H and 
F ⊆  H imply H ∇  G]. 

Suppose E∪ F ∇  G.  From E ⊆  H and F ⊆  H, we 
obtain E∪ F ⊆  H by Theorem 3.1 and then H ∇  G 
by Theorem 8.12.  Going the other way, suppose 
E ⊆  H and F ⊆  H imply H ∇  G.  By Axiom 3A, E 

⊆  E∪ F and F ⊆  E∪ F.  So E∪ F ∇  G. 
8.19  Suppose E∪ F can be constructed.  
Then G ∇  E∪ F if and only if there exists 
an event H such that E ⊆  H, F ⊆  H, and 
G ∇  H. 

If G ∇  E∪ F, then E∪ F is the requisite H.  If E ⊆  
H, F ⊆  H, and G ∇  H, then E∪ F ⊆  H, and hence 
G ∇  E∪ F by Theorem 8.13. 

8.20  Λ ∇  E does not hold for any E. Λ ∇  E would imply Λ ° E by Axiom 8A, in 
contradiction of Axiom 5. 

8.21  E ∇  Λ if and only if E ° Λ. 
By Axiom 8A, E ∇  Λ implies E ° Λ.  If E ° Λ, then 
Axiom 8C, with E for G and Λ for F, together 
with 8.20, implies that E ∇  Λ. 

8.22  If E ≤ F and E ° Λ, then F ° Λ. Theorems 8.8 and 8.21 
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8.23  E\F ∇  G if and only if there is a 
refinement H of E that is disjoint from F 
and satisfies H ∇  G. 

If E\F ∇  G, then E\F is the requisite H.  Going the 
other way, if H is a refinement of E that is disjoint 
from F, then H ⊆  E\F.  So E\F ∇  G follows from 
Theorem 8.12. 

8.24  G ∇  E\F if and only if [H ⊆  E and 
H∩F = Λ imply G ∇  H]. 

We know that H ⊆  E and H∩F = Λ imply H ⊆  
E\F.  This, together with G ∇  E\F, implies G ∇  H 
by Theorem 8.13.  Going the other way, we know 
that E\F ⊆  E and (E\F)∩F = Λ.  So [H ⊆  E and 
H∩F = Λ imply G ∇  H] implies G ∇  E\F. 

 
 To conclude, we put Axioms 8C and 8D in contrapositive form. 
 
THEOREM Demonstration 
8.25  If E ⊆  G and E ≤ F ≤ G, then E ⊆  F. Axiom 8C 
8.26  If E ⊆  I, F ⊆  I, H ≤ E, and H ≤ F, then H ≤ E∩F. Axiom 8D 
 
We will use Theorem 8.26 in §12. 

9.  Happening After 
 After studying the partial order ⊆  in §1, we introduced the construction E∩F, which is 
the largest part of E that stands in the relation ⊆  with F.  We now proceed analogously for 
the binary relation ≤, by introducing a construction that represents the largest part of E that 
stands in the relation ≤ with F. 
 
RULE OF CONSTRUCTION Explanation 
After  From events E and F, construct 
the event EF. 

EF happens when E happens and F happens at the 
same time or has already happened. 

 
 We call EF the happening of E after F.  Here “after” is used in a weak sense, to mean 
“simultaneously or later.” 
 
AXIOM Explanation 
9A  EF ⊆  E. When EF happens, E happens. 

9B  EF ≤ F. When EF happens, F happens simultaneously or has 
already happened. 

9C  If G ° EF, then G ° E or G∩E ∇  F. 
In a situation G where E does not happen after F, 
either E does not happen at all, or else E happens 
without F having happened yet. 

9D  If E ⊆  I, F ⊆  I, and GE∪ F ° Λ, 
then GE ° Λ or GF ° Λ.   

When G happens after E∪ F, it happens after E or 
after F. 

 
 Contraposition of Axiom 9C produces the following statement. 
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THEOREM Demonstration 
9.1  If G ⊆  E and G ≤ F, then G ⊆  EF. Axiom 9C 
 
 The event EF is the least upper bound in the partial order ⊆  for the events that refine E 
and follow F.  Theorem 9.1 says that it is an upper bound for these events, and Axioms 9A 
and 9B imply that there is no smaller upper bound.  Speaking less precisely, we say that E is 
the largest part of E that follows F. 
 As it turns out, the relation ∇  can be defined in terms of the relation ° and the 
construction After.  This is spelled out in Theorem 9.4. 
 
THEOREM Demonstration 
9.2  If E ∇  F, then E ∇  EF. Axiom 8B, with EF for G, and Axiom 9B 
9.3  If E ° EF, then E ∇  F. Axiom 9C, with E for G, and Axiom 1A 
9.4  E ∇  F if and only if E ° EF. Theorems 9.2 and 9.3 
 
Here are a couple of consequences of Theorem 9.4. 
 
THEOREM Demonstration 
9.5  E ≤ F if and only if E = EF. Axiom 9A and Theorem 9.4 
9.6  If E ⊆  I and F ⊆  I, then G ° GE∩F 
implies G ° GE or G ° GF. Axiom 8D and Theorem 9.4 

 
Note the analogy of Theorem 9.6 with Axiom 9D. 
 We now state conditions for EF to stand on one side or another of the relations ∇  and ° 
with another event. 
 
THEOREM Demonstration 

9.7  EF ∇  G if and only if there exists 
H such that H ⊆  E, H ≤ F, and H ∇  G. 

If EF ∇  G, then EF is the requisite H, by Axioms 9A 
and 9B.  If H ⊆  E, H ≤ F, then H ⊆  EF by Theorem 
9.1, and this, together with H ∇  G, implies EF ∇  G 
by Theorem 8.12. 

9.8  G ∇  EF if and only if H ⊆  E and H 
≤ F imply G ∇  H. 

If G ∇  EF, then we can use H ⊆  EF, which follows 
from H ⊆  E and H ≤ F by Theorem 9.1, to obtain G 
∇  H by Theorem 8.13.  If H ⊆  E and H ≤ F imply G 
∇  H, then we get G ∇  EF from Axioms 9A and 9B. 

9.9  EF ° G if and only if there exists 
H such that H ⊆  E, H ≤ F, and H ° G. 

If EF ° G, then EF is the requisite H, by Axioms 9A 
and 9B.  If H ⊆  E and H ≤ F, then H ⊆  EF by 
Theorem 9.1, and this, together with H ° G, implies 
EF ° G by Theorem 1.13. 

9.10  G ° EF if and only if G ° E or 
G∩E ∇  F. 

The implication to the right is Axiom 9C.  If G ° E, 
then G ° EF by Axiom 9A and Theorem 1.14.  If 
G∩E ∇  F, then G ° EF by Theorem 9.2. 

 
 The next theorems explore the strong extensionality of EF. 
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THEOREM Demonstration 

9.11  If EF ° GH, then E ° G or F ° H. 

By Axiom 9C, EF ° GH implies EF ° G or 
EF∩G ∇  H.  From EF ° G, we obtain E ° G by 
Axiom 9A and Theorem 1.13.  From EF∩G ∇  
H, we obtain EF ∇  H by Theorem 8.12.  By 
Axiom 9B and Theorem 8.9, we then obtain F ∇  
H.  Then, from Axiom 8A, we obtain F ° H. 

9.12  If E ⊆  G and F ⊆  H, then EF ⊆  GH. Contraposition of Theorem 9.11 
9.13  If E ⊆  G, then EF ⊆  GF. Theorem 9.12 
9.14  If F ⊆  H, then EF ⊆  EH. Theorem 9.12 
9.15  If EF ≠ GH, then E ≠ G or F ≠ H. Theorem 9.11 
9.16  If E = G and F = H, then EF = GH. Theorem 9.12 
9.17  If E = G, then EF = GF. Theorem 9.13 
9.18  If F = H, then EF = EH. Theorem 9.14 
 
 We now provide a necessary and sufficient condition for E∪ F ∇  G that is more 
interesting than the one given in Theorem 8.18. 
 
THEOREM Demonstration 

9.19  If E∪ F ∇  G, then E ∇  G 
or F ∇  G. 

Suppose E∪ F ∇  G.  By Theorem 9.4, E∪ F ° (E∪ F)G.  By 
Axiom 3B, E ° (E∪ F)G or F ° (E∪ F)G.  If E ° (E∪ F)G, 
then E ° EG by Axiom 3A and Theorems 9.13 and 1.14, 
whence E ∇  G by Theorem 9.4.  Similarly, if F ° (E∪ F)G, 
then F ∇  G. 

9.20  Suppose E∪ F can be 
constructed.  Then E∪ F ∇  G if 
and only if [E ∇  G or F ∇  G]. 

If E∪ F ∇  G, then E ∇  G or F ∇  G by the preceding 
theorem.  If E ∇  G or F ∇  G, then E∪ F ∇  G by Theorem 
8.12. 

 
There is an interesting parallel between Theorem 9.20 and Axiom 8D, both of which involve 
the assumptions E ⊆  I and F ⊆  I.  Axiom 8D implies that under this assumption, G ∇  E∩F if 
and only if G ∇  E or G ∇  F.  Theorem 9.20 says that under this assumption, E∪ F ∇  G if and 
only if E ∇  G or F ∇  G. 
 Here are some additional properties of the construction EF. 
 
THEOREM Demonstration 
9.21  E∩F ⊆  EF. Theorem 9.1 with E∩F for G 

9.22  (EF)F = EF. 
The relation (EF)F ⊆  EF is Axiom 9A with EF for E.  The 
relation EF ⊆  (EF)F follows from Theorem 9.1 with EF for 
G and E. 

9.23  If E ⊆  F, then (GF)E = 
GE. 

The relation (GF)E ⊆  GE follows from Axiom 9A and 
Theorem 9.13.  Using Theorems 9.22, 9.14, and 9.13, we 
obtain and GE = (GE)E ⊆  (GF)E. 
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9.24  If E ⊆  I and F ⊆  I, then 
EF = E∩F. 

By Theorem 9.21, it suffices to show that EF ⊆  E∩F.  We 
assume EF ° E∩F and derive a contradiction.  From EF ° 
E∩F, we obtain EF ° E or EF ° F by Axiom 2A.  But EF ° E 
contradicts Axiom 9A.  And when we apply Axiom 8C to EF 
° F, we find that EF ∇  F (contradicting Axiom 9B), F ∇  I 
(contradicting the assumption F ⊆  I), or EF ° I 
(contradicting the assumption E ⊆  I). 

9.25  (E∩F)G = EG∩FG = 
EG∩F. 

By Theorem 9.13, (E∩F)G ⊆  EG and (E∩F)G ⊆  FG.  So 
(E∩F)G ⊆  EG∩FG by Theorem 2.1.  Because FG ⊆  F 
(Axiom 9A), we obtain EG∩FG ⊆  EG∩F by Theorem 2.8.  
So (E∩F)G ⊆  EG∩FG ⊆  EG∩F.  From EG ⊆  E (Axiom 9A 
again), we obtain EG∩F ⊆  E∩F by Theorem 2.9.  By 
Axiom 9B, EG ≤ G , and hence EG∩F ≤ G by Theorem 
8.12.  So EG∩F ⊆  (E∩F)G by Theorem 9.1. 

9.26  If F ⊆  E, then FG = 
EG∩F. Theorem 9.25 

9.27  If E ⊆  I and F ⊆  I, then 
(E∪ F)G = EG∪ FG. 

Using the relation (E∪ F)G ⊆  E∪ F, distributivity, and 
Theorem 9.26, we may write (E∪ F)G = (E∪ F)∩(E∪ F)G = 
[E∩(E∪ F)G]∪ [F∩(E∪ F)G] = EG∪ FG. 

9.28  EG\FG = (E\F)G. 

Using Theorems 6.5 and 9.25, we may write EG\FG = 
EG\(EG∩FG) = EG\(EG∩F) = EG\F.  So we only need to 
show that (E\F)G = EG\F.  From Theorem 9.13, we obtain 
(E\F)G ⊆  EG.  We have (E\F)G ⊆  E\F by Axiom 9A and 
hence (E\F)G∩F = Λ by Theorems 6.11 and 5.8.  Hence 
(E\F)G ⊆  EG\F by Theorem 6.22.  We obtain EG\F ⊆  E\F 
from Axiom 9A and Theorem 6.17.  And we obtain EG\F ≤ 
G from Axiom 9B and Theorem 8.12.  So EG\F ⊆  (E\F)G by 
Theorem 9.1. 

9.29  EF = Λ if and only if [G 
⊆  E and G ≤ F implies G = 
Λ]. 

If [G ⊆  E and G ≤ F implies G = Λ], then we obtain Axiom 
EF = Λ by Axioms 9A and 9B.  If EF = Λ, then we obtain [G 
⊆  E and G ≤ F implies G = Λ] by Theorem 9.1. 

9.30  If E ⊆  I and F ⊆  I, then 
HE∪ F = HE∪ HF. 

By Theorem 9.14, HE∪ HF ⊆  HE∪ F.  To prove the 
equality, we set G = (HE∪ F)\(HE∪ HF).  Because G ≤ E∪ F, 
GE∪ F = G.  Using Theorems 9.28, 9.23, and 9.27, we find 
that GE = HE\(HE∪ (HF)E) = Λ.  Similarly, GF = Λ.  So by 
Theorem 9.10, GE∪ F = Λ, or G = Λ. 

9.31  If E ≤ F and EG = Λ, 
then E ≤ F\G. 

Since F = (F∩G)∪ (F\G), Theorem 9.30 yields EF = 
EF∩G ∪ EF\G.  From EG = Λ and Theorem 9.14, we obtain 
EF∩G = Λ, and from E ≤ F and Theorem 9.4, we obtain E = 
EF.  So EF = EF∩G ∪ EF\G reduces to E = EF\G.  Again 
using Theorem 9.4, we obtain E ≤ F\G. 

 
Theorem 9.30 marks our first use of Axiom 9D. 
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10.  Happening Strictly After  
 Sometimes we are interested in the event that E happens strictly after F.  This event does 
not require a new rule of construction; it can be constructed using rules we have already 
adopted:  After and Relative Complement. 
 
CONSTRUCTION Definition Reading 
E2F EF\F The happening of E strictly after F. 
 
 We can characterize E2F order-theoretically:  it is the largest refinement of E that requires 
F but is disjoint from F. 
 
THEOREM Demonstration 
10.1  E2F ⊆  E. Axiom 9A and Theorem 6.2 
10.2  E2F ≤ F. Axiom 9A and Theorems 6.2 and 8.5 
10.3  E2F∩F = Λ. Theorem 6.11 
10.4  If G ⊆  E, G ≤ F, and G∩F = Λ, 
then G ⊆  E2F. 

By Axiom 9C, G ⊆  EF, and it follows by Theorem 
6.22 that G ⊆  EF\F. 

 
 Here are some additional properties. 
 
THEOREM Demonstration 

10.5  E2F = EF\(E∩F). By Theorem 6.5, EF\F = EF\(EF∩F).  By 
Theorem 9.21, EF∩F = E∩F. 

10.6  If E ⊆  I and F ⊆  I, then E2F = Λ. Theorems 9.22 and 10.5 
10.7  If E ≤ F∪ G and E2F = Λ, then E ≤ F. Theorem 9.31 

11.  Happening Clear 
 We can also construct, using After and Relative Complement, the event that E happens 
without F yet having happened.  We may call this event the happening of E clear of F. 
 
CONSTRUCTION Definition Reading 
E\\F E\EF The happening of E without F yet having happened. 
 
 Here are some properties of E\\F. 
 
THEOREM Demonstration 

11.1  If G ° Λ, then G ∇  F or G ° E\\F. 

By Theorem 6.34, G ° Λ implies G ° GF or 
lap(G,GF).  By Theorem 9.6, G ° GF means G ∇  F.  
On the other hand, lap(G,GF) means GF ° Λ, which 
implies, by Axiom 1B, that GF ° G∩EF or G∩EF ° 
Λ.  From GF ° G∩EF, we obtain GF ° (G∩E)F by 
Theorem 9.25 and then G ° E by Theorem 9.5.  
Finally, by Axiom 6A, G∩EF ° Λ and G ° E both 
imply G ° E\EF, or G ° E\\F. 



Shafer, Gillett, and Scherl  May 8, 2000 
 

To appear in Annals of Mathematics and Artificial Intelligence 48 

11.2  If G ⊆  E\\F and G ≤ F, then G = 
Λ. Theorem 11.1 

11.3  (E\\F)F = Λ Theorems 9.22 and 9.28 
11.4  (E\\F)F\\E = Λ Theorems 9.14 and 11.3 

11.5  E = (E\\F)∪ (E2F)∪ (E∩F). 

By definition, E\\F = E\EF, and since EF ⊆  E, this 
implies E = (E\\F)∪ (EF).  By Theorem 10.5, E2F = 
EF\(E∩F), and since E∩F ⊆  EF, this implies EF = 
(E2F)∪ (E∩F). 

12.  Diverging and Implying  
 We say two events diverge if they cannot both happen.  This is made precise by the 
following definition. 
 
RELATION Definition Reading Meaning 

div(E,F) If H ≤ E and H ≤ F, 
then H = Λ.18 E and F diverge. There is no situation (possible event) 

where both E and F have happened.   
 
This relation is obviously symmetric:  div(F,E) if and only if div(E,F).  We will use the 
symmetry without comment.  Depending on the context, we will read “div(E,F)” as “E and F 
are divergent,” “E and F diverge,” E diverges from F,” or “F diverges from E.” 
 The idea of divergence takes on a different significance when we think of one of the 
instantaneous events involved as a situation.  If E is a situation (i.e., if E is an instantaneous 
event and E ° Λ), and div(E,F), then we may say that F has failed in the situation E:  it is no 
longer possible for F to happen, because there is no possible situation H after E where F has 
happened. 
 If two events cannot both happen, then they cannot both happen at the same time:  
divergent events are disjoint.  This intuition is confirmed by the following theorem. 
 
THEOREM Demonstration 

12.1  If div(E,F), then dis(E,F). By Axiom 2A and Theorem 8.5, E∩F ≤ E and 
E∩F ≤ F.  So div(E,F) implies E∩F = Λ.   

 
 Disjoint events are not necessarily divergent, for one can happen after the other.  But 
disjoint refinements of a single event are divergent. 
 
THEOREM Demonstration 
12.2  If E ⊆  I and F ⊆  I, then div(E,F) if 
and only if dis(E,F). Theorems 12.1 and 8.26 

 

                                                 
18  Perhaps we should use the constructively stronger condition, “If H ° Λ, then H ∇  E or 

H ∇  F.”  (In words:  in any situation H, either E has not happened or else F has not 
happened.)  It is not clear to us how to choose between the two conditions as the definition of 
divergence. 
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 Implication is a relation between propositions.  As such, it can be regarded as a primitive.  
It can also be explained semantically:  A implies B if B is true in all situations where A is 
true.   
 Instantaneous events are not true or false.  They happen or fail.  So does it make sense to 
talk about one instantaneous event implying another?  What would this mean?  A natural 
way of responding to this question is to shift our attention from the instantaneous events to 
related propositions.  Situating ourselves at the beginning of time, we might consider 
propositions of the form, “E will happen,” where E is an instantaneous event.  We could then 
discuss whether “E will happen” implies “F will happen”—without regard to which 
happening will come first.  Such a discussion seems, however, to require philosophical and 
mathematical assumptions going far beyond what we have adopted so far. 
 Instead of speculating about propositions, we will use the concept of divergence, which is 
already in our framework, to define implication.  We can do this because, as we have already 
noted, the relation div(G,F) can be interpreted by saying that F has failed in the situation G.  
If we assume that any event eventually happens or fails (it does seem reasonable to make this 
part of our intuitive concept of an instantaneous event), the proposition that F must happen if 
E happens is equivalent to the proposition that E must fail if F fails.  So we adopt the 
following definition. 
 
RELATION Definition Reading Meaning 

E → F If div(G,F), then 
div(G,E). E implies F. Whenever the happening of F is ruled 

out, the happening of E is also ruled out. 
 
 It follows directly from this definition that → is reflexive and transitive: 
 
THEOREM 
12.3  E → E 
12.4  If E → F and F → G, then E → G. 
 
If E → F and F →E, we say that E and F are logically equivalent instantaneous events.  
Either both eventually happen or else neither ever happens. 

13.  Incomparable Events 
 Let us call two events incomparable if neither can happen after the other. 
 
RELATION Definition Reading Meaning 

inc(E,F) EF = Λ and FE = Λ. E and F are incomparable. Neither E nor F can 
happen after the other. 

 
 The condition EF = Λ means that G ⊆  E and G ≤ F implies G = Λ (see Theorem 9.29).  
So the precise meaning of incomparability is that there is no situation in which one of the 
events happens and the other also happens or has already happened.  Divergence is stronger:  
it says there is no situation in which both events have happened. 
 In ordinary reasoning, we assume that all events that actually happen fall along a single 
time-line, and hence incomparability is the same as divergence.  If two events both happen, 
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one must happen after or simultaneously with the other.  In the theory of relativity, however, 
there is no universal time-line.  In the relativistic world, E can be said to happen after F only 
if the locations of the two events in space and time permit the news of F’s happening, 
traveling at the speed of light from where F happens to where E happens, to arrive by the 
time E happens.  If the two events are far apart in space, it may be that neither precedes the 
other in this sense.  The two events are then incomparable, and yet if they both happen there 
is a later situation where they are both in the past (where the news of both has arrived), and 
hence they are not divergent. 
 The axioms and rules of construction we have adopted so far appear do not involve 
assuming the existence of a universal time-line, and they appear, therefore, to be valid for a 
relativistic world.  It is interesting that most of the axioms we need for causal reasoning are 
valid in this general context.  We are primarily interested, however, in systems for ordinary 
causal reasoning, not in systems for space travelers.  So in the next section we will finally 
adopt axioms that are valid only in a non-relativistic world, where there is a universal time-
line.   
 The following theorems clarify the relationship among the concepts of incomparability, 
divergence, and disjointness under the axioms adopted so far. 
 
THEOREM Demonstration 
13.1  If div(E,F), then inc(E,F). Theorem 9.29 
13.2  If inc(E,F), then dis(E,F). Theorem 9.21 
13.3  If E ⊆  I and F ⊆  I, then div(E,F), 
inc(E,F), and dis(E,F) are all equivalent. Theorem 12.2 

 
 Here is an additional property of incomparability. 
 
THEOREM Demonstration 
13.4  If E ⊆  I and F ⊆  I, inc(E,G), and inc(F,G), 
then inc(E∪ F,G). Theorems 9.27 and 9.30 

 
 Here are some examples of incomparable events. 
 
THEOREM Demonstration 

13.5  inc(E2F,F2E). 

By Theorem 9.29 (and symmetry), it suffices to show that G ⊆  E2F 
and G ≤ F2E imply G = Λ.  Obtaining G ⊆  E from G ⊆  E2F and 
expanding G ≤ F2E to G ≤ F2E ≤ E, we see, by Theorem 8.25, that 
G ⊆  F2E, whence G ⊆  F.  But G ⊆  E2F also implies that G is 
disjoint from F.  So G = Λ.   

13.6  inc(E\\F,F\\E). 
Again, it suffices to show that G ⊆  E\\F and G ≤ F\\E imply G = Λ.  
But G ≤ F\\E implies G ≤ F, and this implies G = Λ by Theorem 
11.2. 

13.7  inc(E2F,E∩F). This follows from Theorem 13.3, because E2F and E∩F are both 
refinements of E and are disjoint. 

13.8  inc(E\\F,E∩F). This follows from Theorem 13.3, because E\\F and E∩F are both 
refinements of E and are disjoint. 
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 Here is an application of Theorem 13.5. 
 
THEOREM Demonstration 
13.9  E2F ≤ F\(F2E). Theorems 9.31, 10.2, and 13.5 

14.  Disjoint Merger 
 We now make our theory non-relativistic by assuming that incomparable events can 
always be merged into a single instantaneous event. 
 
RULE OF CONSTRUCTION Explanation 
Disjoint Merger  From events E and 
F such that inc(E,F), construct the 
event E⊕ F. 

We will adopt axioms that imply E⊕ F = E∪ F.  So 
the rule says that incomparable events can be 
merged into a single instantaneous event. 

 
 The axioms that we adopt for E⊕ F are essentially the same as Axioms 3A and 3B, the 
axioms we adopted for E∪ F in Chapter 3. 
 
AXIOM Explanation 
14A  If inc(E,F), authorizing the construction 
of E⊕ F, then E ⊆  E⊕ F and F ⊆  E⊕ F. 

When E happens or F happens, E⊕ F 
happens. 

14B  If E⊕ F ° G, then E ° G or F ° G. When E⊕ F happens, either E happens or F 
happens. 

 
 From Axioms 3A and 3B, we deduced that E∪ F, when it can be constructed, is the least 
upper bound of E and F in the refinement order.  We can similarly deduce from Axioms 14A 
and 14B that E⊕ F, when it can be constructed, is also the least upper bound of E and F in the 
refinement order.  It follows that when both E⊕ F and E∪ F can be constructed, they are 
equal. 
 
THEOREM Demonstration 
14.1  If inc(E,F), then E⊕ F = E∪ F. By the reasoning just explained 

14.2  inc(E,F) if and only if div(E,F). 
By Theorem 13.1, div(E,F) implies inc(E,F).  If 
inc(E,F), then E ⊆  E⊕ F and F ⊆  E⊕ F by Axiom 
15A, and so div(E,F) by Theorem 13.3. 

14.3  E⊕ F exists if and only if [E∪ F 
exists and dis(E,F)].   

Suppose E∪ F exists and dis(E,F).  Since E∪ F 
exists, E ⊆  E∪ F and F ⊆  E∪ F, and hence, by 
Theorem 13.3, dis(E,F) implies inc(E,F).  And so 
E⊕ F exists.  Going the other way, if E⊕ F exists, 
then inc(E,F).  So E∪ F exists by Theorem 14.1, 
and dis(E,F) by Theorem 13.2.   

 
Theorem 14.3 explains the name disjoint merger for E⊕ F. 
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 The following theorem clarifies further the relationship between merger and disjoint 
merger. 
 
THEOREM Demonstration 

14.4  Suppose E, F, and G are pairwise 
incomparable:  inc(E,F), inc(F,G), and 
inc(E,G).  Then (E⊕ F)⊕ G and E⊕ (F⊕ G) 
exist and are equal. 

By Theorem 12.1, E⊕ F = E∪ F.  By Theorem 
13.4, inc(E∪ F,G), and hence (E∪ F)⊕ G exists.  
It is equal to both (E⊕ F)⊕ G and (E∪ F)∪ G.  
Analogously, we find that E⊕ (F⊕ G) exists and 
is equal to E∪ (F∪ G). 

 
It follows from this theorem that we can speak unambiguously of the disjoint merger of any 
number of pairwise incomparable events. 

15.  The Temporal Lattice 
 With the help of one additional axiom, we can now show that the temporal order ≤ is a 
distributive lattice. 
 We will write E∧ F for the greatest lower bound of E and F with respect to ≤, and we will 
write E∨ F for the least upper bound.  These constructions are defined as follows. 
 
CONSTRUCTION Definition Reading 
E∧ F (E2F)⊕ (F2E)⊕ (E∩F) The ending of E and F 
E∨ F (E\\F)⊕ (F\\E)⊕ (E∩F) The beginning of E and F. 
 
Theorems 13.5 and 13.7 authorize the disjoint merger in the definition of E∧ F, while 
Theorems 13.6 and 13.8 authorize the disjoint merger in the definition of E∨ F.  We call E∧ F 
the ending of E and F because it happens when the happening of the pair ends—either by 
their happening at the same time or by one happening after the other has already happened.  
We call E∨ F the beginning of E and F because the two begin to happen when the first 
happens.  The happening of a pair of events can begin (when one of them happens) without 
ever ending (because the second never happens). 
 Here are alternative expressions for E∧ F and E∨ F. 
 
THEOREM Demonstration 

15.1  E∧ F = EF∪ FE. By Theorems 9.31 and 10.5, EF = (F2E)∪ (E∩F) and FE 
= (E2F)∪ (E∩F).  So EF∪ FE = (E2F)∪ (F2E)∪ (E∩F). 

15.2  E∨ F = (E\(E2F))∪ (F\(F2E)). 
By Theorem 11.5, E\(E2F) = (E\\F)∪ (E∩F) and F\(F2E) 
= (F\\E)∪ (E∩F).  So (E\(E2F))∪ (F\(F2E)) = 
(E\\F)∪ (F\\E)∪ (E∩F). 

 
 In order to establish that E∧ F and E∨ F are the greatest lower bound and least upper 
bound, respectively, for E and F, we need to prove or assume statements analogous to 
Axioms 2A, 2B, 3A, and 3B.  We adopt as an axiom the statement analogous to Axiom 2B. 
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AXIOM Explanation 

15  If G ∇  E∧ F, then G ∇  E or G ∇  F. If E and F have not ended happening, at least one of 
them hasn’t happened. 

 
The other statements we prove from axioms already adopted, as follows. 
 
THEOREM Demonstration 

15.3  E∧ F ≤ E and E∧ F ≤ F. 

By Theorem 15.1, we can prove E∧ F ≤ E by 
proving EF∪ FE ≤ E.  By Axiom 9A, EF ⊆  E and 
hence, by Theorem 8.5, EF ≤ E.  By Axiom 9B, FE 
≤ E.  So, by Theorem 9.19, EF∪ FE ≤ E.  

15.4  E ≤ E∨ F and F ≤ E∨ F. 

By Theorem 16.2, we can prove E ≤ E∨ F by 
proving (E\(E2F))∪ E2F ≤ (E\(E2F))∪ (F\(F2E)).  
But this follows from applying Theorems 9.19 and 
8.15 to Theorem 14.9. 

15.5  If E∨ F ∇  G, then E ∇  G or F ∇  G. 

By Theorem 15.2, E∨ F ∇  G can be written 
(E\(E2F))∪ (F\(F2E)) ∇  G.  By Theorem 9.19, this 
implies E\(E2F) ∇  G or F\(F2E) ∇  G, whence E ∇  G 
or F ∇  G. 

 
 Using Theorem 15.3 and Axiom 15 just as we used Axioms 2A and 2B in §2, we can 
establish that E∧ F is indeed the greatest lower bound of E and F with respect to ≤, with 
properties analogous to the properties for E∩F listed in Theorems 2.1 through 2.13.  
Similarly, using Theorems 15.4 and 15.5, we can establish that E∨ F is the least upper bound 
of E and F with respect to ≤, with properties analogous to the properties for E∪ F listed in 
Theorems 3.1 through 3.13.  Because both E∧ F and E∨ F exist for every pair E and F, we 
may conclude that the temporal order ≤ is a lattice. 
 Moreover, as the following theorem establishes, this lattice obeys the resolution axiom.   
 
THEOREM Demonstration 

15.6  If E ≤ F∨ G and E∧ G ≤ F, then E ≤ F. 

By Theorem 11.5, our task is to show that 
(E\\G)∪ (E2G)∪ (E∩G) ≤ F.  The condition 
E∧ G ≤ F tells us that (E2G)∪ (E∩G) ≤ F.  And 
the condition E ≤ F∨ G tells us that E\\G ≤ 
(F\\G)⊕ (G\\F)⊕ (F∩G).  Since (F\\G)G = Λ, it 
follows by Theorem 10.7 that E\\G ≤ 
(F\\G)⊕ (F∩G), and hence that E\\G ≤ F. 

 
As we learned in §4, this implies that the lattice is distributive. 
 Here are some further results. 
 
THEOREM Demonstration 
15.7  (E\\F)∧ (F\\E) = Λ. Theorems 11.4 and 15.1 
15.8  If E ⊆  I and F ⊆  I, then E∧ F = E∩F. Theorem 10.6 
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16.  Axioms for Event Spaces:  Summary 
 Here is a summary of our relations, constructions, and axioms.  Altogether, there are two 
primitive relations, six primitive constructions, and twenty-one axioms.  When a set with the 
two relations and six constructions obey the twenty-one axioms, we call the set an event 
space. 
 
RELATIONS 
E ° F 
E ∇  F 
 
RULES OF CONSTRUCTION 
Overlap  From events E and F, construct the event E∩F. 
Merger  From events E, F, I and proofs of not(E ° I) and not(F ° I), construct the event E∪ F. 
Impossible Event  Construct the event Λ. 
Relative Complement  From events E and F, construct the event E\F. 
After  From events E and F, construct the event EF. 
Disjoint Merger  From events E and F such that inc(E,F), construct the event E⊕ F. 
 
DEFINED PREDICATES Definition 
Possible  poss(E) E ° Λ 
Impossible  imposs(E) not(poss(E)) 
 
DEFINED RELATIONS Definition 
Refines  E ⊆  F not(E ° F) 
Unequal  E ≠ F E ° F or F ° E 
Equals  E = F E ⊆  F and F ⊆  E 
Requires  E ≤ F not(E ∇  F) 
Overlaps  lap(E,F) E∩F ° Λ 
Disjoint  dis(E,F) E∩F = Λ 
Diverges  div(E,F) If H ≤ E and H ≤ F, then H = Λ. 
Implies  E ⇒  F If div(G,F), then div(G,E). 
Incomparable  inc(E,F) EF = Λ and FE = Λ. 
 
DEFINED CONSTRUCTIONS Definition 
Strictly After  E2F EF\F 
Clear  E\\F E\EF 
Ending  E∧ F  (E2F)⊕ (F2E)⊕ (E∩F) 
Beginning  E∨ F  (E\\F)⊕ (F\\E)⊕ (E∩F) 
 
AXIOMS 
1A  E ⊆  E. 
1B  If E ° F, then E ° G or G ° F. 
2A  E∩F ⊆  E and E∩F ⊆  F. 
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2B  If G ° E∩F, then G ° E or G ° F. 
3A  If E ⊆  I and F ⊆  I, then E ⊆  E∪ F and F ⊆  E∪ F. 
3B  If E∪ F ° G, then E ° G or F ° G. 
4  If E ⊆  F∪ G and E∩G ⊆  F, then E ⊆  F. 
5  Λ⊆  E. 
6A  E\F ° G if and only if E ° (E∩F)∪ (E∩G). 
6B  G ° E\F if and only if G ° E or E∩F∩G ° Λ. 
8A  If E ∇  F, then E ° F. 
8B  If E ∇  F, then E ∇  G or G ∇  F. 
8C  If E ° F, then E ∇  F or F ∇  G or E ° G. 
8D  If E ⊆  I and F ⊆  I, then G ∇  E∩F implies G ∇  E or G ∇  F. 
9A  EF ⊆  E. 
9B  EF ≤ F. 
9C  If G ° EF, then G ° E or G∩E ∇  F. 
9D  If E ⊆  I, F ⊆  I, and GE∪ F ° Λ, then GE ° Λ or GF ° Λ. 
14A  If inc(E,F), authorizing the construction of E⊕ F, then E ⊆  E⊕ F and F ⊆  E⊕ F. 
14B  If E⊕ F ° G, then E ° G or F ° G. 
15  If G ∇  E∧ F, then G ∇  E or G ∇  F. 
 
 The concept of an event space is very general.  An event space, like a Boolean algebra, 
can be finite or infinite.  Although our axioms are motivated in part by pictures of finite 
trees, they do not require that time be discrete, or that Nature foresee only a finite number of 
possibilities for the situation a short time in the future, or that time end at any point.  On the 
contrary, these axioms are fully consistent with continuous time, in which situations do not 
necessarily have immediate successors.  They permit a situation to decompose into a 
continuum of alternatives, and they permit open sequences of situations—sequences of 
situations E1,E2,… such that Ei+1 ≤ Ei but there is no E with E ≤ Ei for all i.  (See Shafer 
1998a.) 
 Like all constructive axiomatizations, our axiomatization is open-ended; we can 
introduce further constructions if we want.  Some possibilities are discussed in the appendix. 
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IV.  Classical Axioms for Event Spaces 
 We now translate our axioms into classical form and use the classical form to prove a 
generalization of the Stone representation theorem, as in Shafer (1998a). 
 Our work in this section brings us back to the intuitive idea with which we began in 
Section 3 of Part II:  an instantaneous event can be represented as a clade in an event tree.  
We show first that the set of all clades in an event tree satisfies our classical axioms for an 
event space.  Our representation theorem is a converse to this statement:  any other structure 
that satisfies our classical axioms for an event space is isomorphic to a collection of clades in 
an event tree. 
 The reasoning in this section is necessarily classical.  A clade, by definition, is a subset, 
which is a classical mathematical idea.  And the proof of the representation theorem involves 
classical reasoning about ultrafilters.  But the consequences of our axioms that we cite in the 
course of our reasoning are all theorems that we proved constructively in Part III. 

1.  The Classical Axioms 
 From a classical viewpoint, it is most natural to take ⊆  and ≤ as basic and then to have 
the constructions emerge from the axioms.  We begin with a set of objects that we call 
events, with the assumption that we know what is meant by equality for these objects, and 
with the assumption that we can substitute equals for equals in any relation.  We posit two 
relations on the set: 
 
RELATION READING 
E ⊆  F E refines F 
E ≤ F E requires F 
 
 We adopt the following axioms for the refinement ordering ⊆ .  We leave it to the reader 
to verify that these axioms are classically equivalent to the constructive axioms formulated in 
§§1-6 of Part III and thus imply that the refinements of a fixed event form a Boolean algebra. 
 
AXIOM COMMENTS 

1  The relation ⊆  is a partial order.   
This means that ⊆  is reflexive (E ⊆  E), transitive (E ⊆  
F and F ⊆  G implies E ⊆  G), and antisymmetric (E ⊆  F 
and F ⊆  E imply E = F). 

2  Every pair of events E and F 
have a greatest lower bound.   

A greatest lower bound in a partially ordered set is 
unique.  We write E∩F for the unique greatest lower 
bound of E and F. 

3  If E and F have an upper bound, 
then they have a least upper bound.   

A least upper bound in a partially ordered set is unique.  
We write E∪ F for the unique least upper bound of E 
and F when it exists. 
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4  If E ⊆  F∪ G and E∩G ⊆  F, then 
E ⊆  F. 

As observed in §4 of Part III, this implies that the 
distributive laws hold whenever the least upper bounds 
in them exist. 

5  There exists an event that 
refines every other event. 

This event is unique; we designate it by Λ. 

6  For every pair of events E and F, 
there exists a complement of F 
relative to E. 

A complement of F relative to E is an event H such that 
(E∩F)∩H = Λ and (E∩F)∪ H = E.  With the help of the 
preceding axioms, it can be shown that such a 
complement is unique.  We write E\F for the unique 
complement of F relative to E 

 
 Next we adopt axioms for the temporal ordering ≤ that are classically equivalent to the 
constructive axioms formulated in §§8-9 of Part III. 
 
AXIOM COMMENTS 
8A  If E ⊆  F, then E ≤ F.  
8B  The relation ≤ is a partial order.  
8C  If E ≤ F ≤ G and E ⊆  G, then E ⊆  F.  

8D  If E ⊆  I, F ⊆  I, G ≤ E, and G ≤ F, 
then G ≤ E∩F. 

Looking back from the situation G, we may say 
that if two refinements of an event have 
happened, they must have happened 
simultaneously. 

9  There is a largest refinement of E that 
requires F. 

This refinement is easily seen to be unique; we 
designate it by EF. 

9D  If E ⊆  I, F ⊆  I, GE = Λ and GF = Λ, 
then GE∪ F = Λ. 

If G is impossible in both E and F, then G is 
impossible in E∪ F. 

 
 Finally, we adopt classical versions of the axioms that are not valid in a relativistic world. 
 
14  If EF = Λ and FE = Λ, then E and F have 
an upper bound. 

This means the least upper bound E∪ F exists. 

15  G ≤ E and G ≤ F imply G ≤ EF∪ FE. The existence of EF∪ FE follows from the 
preceding axiom. 

 
 We call a set Ξ an event space if has relations ⊆  and ≤ satisfying these axioms.  A 
bijection between two event spaces is an isomorphism if it preserves the two relations ⊆  and 
≤.  A subset Ξ0 of an event space Ξ is itself an event space with the same relations ⊆  and ≤ 
provided that (1) Λ ∈  Ξ0, (2) E∩F ∈  Ξ0, E\F ∈  Ξ0, and EF ∈  Ξ0 whenever E ∈  Ξ0 and F ∈  
Ξ0, and (3) E∪ F ∈  Ξ0 whenever E ∈  Ξ0, F ∈  Ξ0, and E and F have an upper bound in Ξ. 

2.  The Clades in an Event Tree Form an Event Space 
 As we learned in Part I, an event tree is a set ℑ  with a partial order ≤t such that two 
elements S and T are comparable (S ≤t T or T ≤t S) whenever they have a common lower 
bound (there exists an element U such that U ≤t S and U ≤t T).  Let us call the elements of an 
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event tree situations.  A subset E of an event tree is called a clade if every two distinct 
situations in E are incomparable (neither S ≤t T nor T ≤t S).  The empty set qualifies as a 
clade. 
 Write Ξ(ℑ ) for the set of all clades in the event tree ℑ , and define relations ⊆  and ≤ on 
Ξ(ℑ ) as follows: 
• E ⊆  F means that E is a subset of F. 
• E ≤ F means that for every S ∈  E there exists T ∈  F such that S ≤t T. 
We leave it to the reader to verify that this defines an event space—i.e., to check that all the 
axioms listed in §1 are satisfied.  In fact, we carried out this verification, implicitly but 
thoroughly, when we explained the constructive versions of these axioms in Part III. 

3.  The ⊆⊆⊆⊆  Ultrafilters in an Event Space Form an Event Tree 
 Now we show that starting from an event space we can construct an isomorphic space of 
clades in an event tree.  Our demonstration is a straightforward generalization of the usual 
demonstration of the Stone representation theorem for Boolean algebras (Davey and 
Priestley, 1990, p. 196).  Starting with an arbitrary Boolean algebra, Stone’s theorem 
constructs an isomorphic algebra of sets—the points in the sets being ultrafilters with respect 
to the partial order in the Boolean algebra.  In our generalization, ultrafilters with respect to 
our partial order ⊆  turn out to be nodes in an event tree, and the event space is then seen to 
be isomorphic to a set of clades in this event tree.  (Ultrafilters with respect to our other 
partial order, ≤, correspond to paths down the tree.) 
 The concept of an ultrafilter can be defined in any semilattice Ξ with a zero Λ.  (A 
semilattice is a set with a partial order ⊆  in which any two elements E and F have a greatest 
lower bound E∩F.)  We call a nonempty subset S of such a semilattice Ξ an ultrafilter19 if  

(1) Λ ∉  S, 
(2) if E ∈  S and F ∈  S, then E∩F ∈  S, and 
(3) if T is a subset of Ξ containing S, Λ ∉  T, and E∩F ∈  T whenever E ∈  T and F ∈  

T, then S = T. 
In other words, an ultrafilter in Ξ is a maximal subset satisfying (1) and (2).  Since an 
ultrafilter is maximal, two distinct ultrafilters must each contain an event not in the other.  By 
the axiom of choice, any nonempty subset S of Ξsatisfying (1) and (2) is contained in an 
ultrafilter (Davey and Priestley, p. 189).  Because the set containing a single element of Ξ 
satisfies (1) and (2), this implies that each element of Ξ is a contained in an ultrafilter. 
 Here are some general properties of ultrafilters—properties that hold in any semilattice 
with a zero.   
 
                                                 

19  A more common way of defining this concept begins with the concept of filter.  A 
filter is a subset of the semilattice that satisfies (i) if E ∈  S and E ⊆  F, then F ∈  S, and (ii) if 
E ∈  S and F ∈  S, then E∩F ∈  S.  A filter S is proper if it does not contain the whole 
semilattice; or, equivalently, if Λ ∉  S.  A filter is maximal if there is no distinct filter that 
contains it.  We then say that an ultrafilter is a maximal proper filter.  Condition (1) is the 
condition that the ultrafilter be proper.  Condition (2) is the same as (ii), and condition (3) is 
the condition of maximality.  Condition (ii) appears to be missing from our definition, but as 
we shall see (Theorem A2), it is implied by the maximality. 
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THEOREM Demonstration 
A1.  Suppose S is an 
ultrafilter.  Then E ∈  S 
if and only if E∩F ≠ Λ 
for all F ∈  S.   

Conditions (1) and (2) imply that if E ∈  S, then E∩F ≠ Λ for all F 
∈  S.  On the other hand, if E∩F ≠ Λ for all F ∈  S, then 
S∪ {E}∪{ E∩F|F ∈  S} satisfies (1) and (2) and hence is equal, by 
(3), to S, and hence E ∈  S. 

A2.  Suppose S is an 
ultrafilter, E ∈  S, and 
E ⊆  F.  Then F ∈  S. 

By the preceding theorem, E∩G ≠ Λ for all G ∈  S.  Because E ⊆  F, 
it follows that F∩G ≠ Λ for all G ∈  S.  Hence, again by the 
preceding theorem, F ∈  S. 

 
 The following theorems, familiar from the theory of ultrafilters in Boolean algebras, are 
also valid in the more general context of an event space. 
 
THEOREM Demonstration 
A3.  Suppose S is an ultrafilter and E 
∈  S.  Then F ∈  S or E\F ∈  S. 

Set  T := S∪ {F}∪{ F∩G|G ∈  S} and U := 
S∪ {E\F}∪{ (E\F)∩G|G ∈  S}.  Both T and U contain 
S and are closed under pairwise overlap.  At least 
one of them is composed exclusively of possible 
events.  Indeed, if Λ were in both T and U, then we 
would have F∩G1 = Λ and (E\F)∩G2 = Λ, where G1 
∈  S and G2 ∈  S.  This would imply F∩G = Λ and 
(E\F)∩G = Λ, where G = G1∩G2, and hence E∩G = 
Λ, contradicting the definition of ultrafilter.  So 
either T or U is an ultrafilter and hence is equal to S. 

A4.  Suppose S is a nonempty set of 
events, (1) Λ ∉  S and (2) if E ∈  S and 
F ∈  S, then E∩F ∈  S, and (3) if E ∈  
S, then F ∈  S or E\F ∈  S.  Then S is 
an ultrafilter.20 

Let T be an ultrafilter containing S.  Suppose F ∈  T.  
Choose an element E of S.  By (3), either F ∈  S or 
E\F ∈  S.  But E\F cannot be in S, for if it were, 
(E\F)∩F, which is equal to Λ, would also be in T.  
So F ∈  S. 

A5.  E ⊆  F if and only if F is in all 
ultrafilters that contain E. 

Theorem A2 says that if E ⊆  F, then F is in all 
ultrafilters containing E.  On the other hand, if E ⊆  F 
does not hold, then E\F ≠ Λ, and any ultrafilter that 
contains E\F will also contain E but not F. 

A6.  A nonempty set of events is an 
ultrafilter if and only if (1) Λ ∉  S and 
(2) if E ∈  S and F ∈  S, then E∩F ∈  
S, and (3) if E ∈  S, E1∩E2 = Λ and 
E1∪ E2 = E, then E1 ∈  S or E2 ∈  S.   

Theorems A3 and A4 

 

                                                 
20  This theorem, together with the preceding theorem, shows that the condition that E ∈  

S implies F ∈  S or E\F ∈  S can replace the condition of maximality in the definition of an 
ultrafilter.  A proper filter in a Boolean algebra is said to be prime when this condition is 
satisfied, and so in the theory of Boolean algebras Theorem A4 can be expressed by saying 
that a prime filter is an ultrafilter (Davey and Priestley, p. 187). 
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 Theorem A6 is intuitive if we think of an ultrafilter as representing an indefinitely precise 
specification of what happens at a particular instant.  We call an element E of our event space 
an event; but E can have only some limited degree of detail.  If E actually happened, much 
else happened at the same time.  If E1 and E2 partition E, then E1 and E2 represent more 
detailed but mutually exclusive accounts of what happened when E happened.  The fact that 
one of these more detailed accounts must always be in S means that S specifies everything 
that happened at that moment. 
 The different ultrafilters containing an event E constitute different ways of filling out the 
details about what else happens along with E.  If we write E* for the set consisting of all the 
ultrafilters that contain E, then E* can be thought of as E in different clothing:  E is a partial 
description of what happened, whereas E* is the set of all complete descriptions that are 
consistent with this partial description.  The equivalence between E and E* is the intuitive 
content of Stone’s representation theorem. 
 We conclude our survey of the basic properties of ultrafilters in an event space with two 
theorems that do not appear in the theory of Boolean algebras because they involve our 
second partial order, ≤. 
 
THEOREM Demonstration 
A7.  Suppose E ≤ F.  Then 
for every ultrafilter S 
containing E, there is an 
ultrafilter T containing F 
such that for every F' ∈  T, 
there is an E' ∈  S such that 
E' ≤ F'. 

     Suppose S is an ultrafilter containing E.  Set 
T0 := {F0 | F0 ⊆  F and E0 ≤ F0 for some E0 ∈  S}. 

By construction, F is in T0, and for every F0 ∈  T, there is an 
E0 ∈  S such that E0 ≤ F0.  Set 

T := {F1 | F0 ⊆  F1 for some F0 ∈  T0}. 
It has the same properties.  So we only need to show that T is 
an ultrafilter.  We do this using Theorem A6. 
     If F1 ∈  T, there exists E0 ∈  S satisfying E0 ≤ F1.  Because S 
is an ultrafilter, E0 ≠ Λ.  So by Theorem 8.22, F1 ≠ Λ. 
     Now we need to show that F1∩F2 ∈  T if F1 ∈  T and F2 ∈  
T.  It suffices to establish the analogous property for T0—i.e, 
to show that F1∩F2 is in T0 if F1 and F2 are in T0.  Choose E1 
and E2 in S such that E1 ≤ F1 and E2 ≤ F2.  By Theorem 8.14, 
E1∩E2 ≤ F1 and E1∩E2 ≤ F2.  So by Theorem 8.26, E1∩E2 ≤ 
F1∩F2.  Since E1∩E2 ∈  S, this implies F1∩F2 ∈  T0. 
     Now we need to show that F1 ∈  T or F2 ∈  T whenever F' ∈  
T, F1∩F2 = Λ, and F1∪ F2 = F'.  It suffices to establish the 
analogous property for T0—i.e, to show that if F1 ∈  T0 or F2 ∈  
T0 whenever F0 ∈  T0, F1∩F2 = Λ, and F1∪ F2 = F0.  Choose E0 
∈  S such that E0 ≤ F0.  Set E1 := E0F1 and E2 := E0F2.  By 
Theorems 9.5 and 9.30, E1∪ E2 = E0.  By Theorem 8.26, 
E1∩E2 ≤ F1∩F2, or E1∩E2 ≤ Λ, or E1∩E2 = Λ.  Because S is 
an ultrafilter, E1 ∈  S or E2 ∈  S.  So F1 ∈  T0 or F2 ∈  T0. 
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A8.  Suppose that for every 
ultrafilter S containing E, 
there is an ultrafilter T 
containing F such that for 
every F' ∈  T, there is an E' 
∈  S such that E' ≤ F'.  Then 
E ≤ F. 

We argue by contradiction.  Suppose E ≤ F does not hold.  
Then by Theorem 9.2, E\(EF) ≠ Λ.  Choose an ultrafilter S 
that contains E\(EF) and hence E.  Choose an E' ∈  S such that 
E' ≤ F.  Because S is an ultrafilter, E'∩(E\EF) ∈  S.  But by 
Theorem 11.2, E'∩(E\EF) = Λ, contradicting the assumption 
that S does not contain Λ. 
 

 
 As we know, E ≤ F means that E can happen only after F has already happened.  No 
matter what else happens when E happens (no matter what ultrafilter S containing E we 
choose), F has already happened in some way (corresponding to some ultrafilter T containing 
F).  Intuitively, S and T are infinitely detailed situations, and T precedes S, because no matter 
how detailed we make our description F' of T, we can find a description E' of S that is 
sufficiently detailed to make it clear that F' must have already happened (E' ≤ F').  This is the 
intuitive content of Theorems A7 and A8. 
 Now we are ready to show that our ultrafilters form a tree.  We write ℑ (Ξ) for the set of 
ultrafilters in Ξ.  We define a relation ≤t on ℑ (Ξ) by saying that S ≤t T if for every F ∈  T 
there exists E ∈  S satisfying E ≤ F.  The next three theorems establish that ≤t is a partial 
order. 
 
THEOREM Demonstration 
B1.  The relation ≤t is 
reflexive:  S ≤t S 

This follows from the reflexivity of ≤:  Because E ≤ E, we may 
say that for every E ∈  S there exists F ∈  S satisfying E ≤ F. 

B2.  The relation ≤t is 
transitive:  If S ≤t T and T 
≤t U, then S ≤t U. 

This follows from the transitivity of ≤:  For every G ∈  U there 
exists F ∈  T satisfying F ≤ G and then there exists E ∈  S 
satisfying E ≤ F and hence, by the transitivity of ≤, E ≤ G. 

B3.  The relation ≤t is 
anti-symmetric:  If S ≤t T 
and T ≤t S, then S = T. 

Suppose S ≤t T and T ≤t S.  We will consider an event E in S and 
show that it is also in T; by symmetry, this will suffice to prove 
the theorem.  Choose F ∈  T such that F ≤ E.  By Theorem A3, 
either E∩F ∈  T or F\E ∈  T.  If E∩F ∈  T, we have our desired 
conclusion:  E ∈  T.  So assume F\E ∈  T; we will complete the 
proof by deriving a contradiction.  First choose G ∈  S such that 
G ≤ F\E.  From E∩G ⊆  G and G ≤ F\E we get E∩G ≤ F\E by 
Theorem 8.14, and from E∩G ≤ F\E ≤ E and E∩G ⊆  E we get 
E∩G ⊆  F\E by Theorem 8.25, and since E∩G ∈  S, this implies 
F\E ∈  S.  So we obtain E∩(F\E) ∈  S, contradicting the 
assumption that Λ ∉  S. 

 
 Now we show that the partially ordered set ℑ (Ξ) is a tree. 
 
B4.  Suppose U ≤t S and U ≤t T.  
Then E∧ F ≠ Λ whenever E ∈  S 
and F ∈  T. 

Consider E ∈  S and F ∈  T.  Then there exist G1 ∈  U and 
G2 ∈  U such that G1 ≤ E and G2 ≤ F.  So there exists G ∈  
U (namely G1∩G2) such that G ≤ E and G ≤ F.  It follows 
from Axiom 15 that G ≤ E∧ F and hence E∧ F ≠ Λ. 



Shafer, Gillett, and Scherl  May 8, 2000 
 

To appear in Annals of Mathematics and Artificial Intelligence 62 

B5.  Suppose S and T are 
ultrafilters, and E∧ F ≠ Λ 
whenever E ∈  S and F ∈  T.  
Then for every E ∈  S and F ∈  T, 
either there exists G ∈  S such 
that G ≤ F, or there exists G ∈  T 
such that G ≤ E. 

By Theorem A3, either EF or E\\F is in S, and either FE 
or F\\E is in T.  We cannot have E\\F ∈  S and F\\E ∈  T, 
because (E\\F)∧ (F\\E) = Λ (Theorem 15.8).  So either EF 
∈  S or FE ∈  T.  In the first case, we have an element G 
of S such that G ≤ F.  In the second case, we have an 
element G of T such that G ≤ E. 

B6.  Suppose S and T are 
ultrafilters, and for every E ∈  S 
and F ∈  T, either there exists G 
∈  S such that G ≤ F, or there 
exists G ∈  T such that G ≤ E.  
Then S ≤t T or T ≤t S. 

If S ≤t T fails, then there is some F ∈  T such that there is 
no G ∈  S satisfying G ≤ F.  Then by hypothesis, for 
every E ∈  S, there exists G ∈  T such that G ≤ E, and 
hence T ≤t S. 
 
 

B7.  If U ≤t S and U ≤t T, then S 
≤t T or T ≤t S. 

Theorems B4, B5, and B6.   

 
 Now we display an isomorphism between our event space Ξ and a set of clades in ℑ (Ξ).  
This is the mapping from E to E*, where 

E* := {S | E ∈  S}. 
(Notice that E ∈  S is equivalent to S ∈  E*.)  This mapping is one-to-one, because if E ≠ F, 
then either E\F or F\E is a possible event; if E\F is possible, then there is an ultrafilter 
containing it, which will be in E* but not in F*, and if F\E is possible, then there is an 
ultrafilter containing it, which will be in F* but not in E*.  We have already shown that the 
mapping preserves our two partial orders: 

• Theorem A5 establishes that E ⊆  F if and only if E* ⊆  F*. 
• Theorems A7 and A8 establishes that E ≤ F if and only if E* ≤ F*. 

So it is an isomorphism. 
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V.  From Axioms to Logic 
 In this article, we have provided a concise constructive axiomatization for event spaces, 
and we have validated this axiomatization in terms of our intuitions about event trees.  What 
use is this?  As we explained briefly in the introduction, we have been motivated mainly by 
the project of using our constructive axioms directly as a logic of events in higher-level type 
theory.  Implementation of this project is beyond the scope of this article, but we need to 
explain the project in slightly more detail in order to make the significance and value of our 
work clear.  The explanation will be easier if we first discuss the difficulties that arise when 
we try to use event spaces in a more classical fashion. 

1.  Putting Events into Classical Logic 
 Classical (non-intuitionistic) logic makes a clear distinction between syntax and 
semantics.  When we speak of a classical logic, we mean a language with a well-defined 
syntax—basic symbols together with rules for forming terms and formulae from the basic 
symbols.  Semantics refers to the interpretation of this syntax.  In this setup, a mathematical 
object such as an event space enters primarily as part of the semantics, although its relations 
and constructions may be mirrored somewhat in the syntax.   
 Here is one way the classical approach might go in the case of an event space.21  To 
construct a language L, we would introduce some symbols for events (including EL, FL, and 
GL, say), some symbols for relations between events (including ⊆ L and ≤L), some function 
symbols (∩L, ∪ L, \L, ∧ L, and ∨ L), and so on.  We would also introduce symbols for objects of 
other kinds, for predicates about and relations among these objects, and for the usual logical 
connectives.  Once the syntax is constructed out of all these symbols, we would then speak of 
models and interpretations.  A model would include (1) a set Ξ of events (which should be an 
event space) and (2) a set Φ of other objects, together with various mathematical predicates, 
relations, and functions on Φ.  An interpretation using such a model would include (3) a 
mapping of the event symbols and terms constructed from them to elements of Ξ and (4) a 
mapping of the other object symbols to elements of Φ.  If the interpretation maps EL to the 
event E in Ξ and FL to the event F in Ξ, we would require, of course, that it also map EL∧ LFL, 
a term in L, to the event E∧ F in Ξ. 
 This seems unexceptional and not very interesting.  What is interesting and leads to 
difficulties is the fact that the events in Ξ can also be interpreted as situations.  Intuitively, 
whether a certain predicate, say P, holds for a certain object in Φ, say γ, may depend on the 
situation.  This can be incorporated into the formalism in the manner of the situation 
calculus, which we discuss briefly in Part VI, by adding the situation as another argument of 
the predicate.  What we were calling a predicate symbol in L, say PL, then becomes a symbol 
for a relation between objects in Φ and situations in Ξ.  Given an event symbol γL and an 
object symbol EL, the term PL(γL,EL) says, intuitively, that the object named by γL has the 
                                                 

21  Another way of implementing the classical approach, taken by Scherl and Shafer 
(1998), is to represent actions instead of events in the syntax. 
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property named by PL in the situation named by EL.  This term will be mapped to the truth 
value True by an interpretation if P(γ,E) holds, where P is the relation to which the 
interpretation maps the symbol PL, γ the object to which it maps γL, and E the event to which 
it maps EL.  Otherwise it will be mapped to False. 
 But wait!  The last sentence of the preceding paragraph cannot be right, because our 
situations differ in their specificity.  The situation E might specify that the object γ has the 
property P, and it might specify that γ does not have the property P.  But it might also be too 
broad to say either.  It might decompose into two non-zero refinements E1 and E2, such that γ 
has the property P in E1 but does not have the property P in E2. 
 So what shall we do?  Shall we say that we have a logic with three truth values—True, 
False, and Maybe—and forge ahead?  This option is explored in Shafer (1998b), but not with 
clear success.  While coherent, a classical three-valued logic of events is not simple and has 
limited appeal.  For many people, the payoff of the superstructure formed by the semantics in 
classical logic is that it gives a definite meaning to the terms and formulae in the language, 
and those who take this point of view will have little use for an exceptionally unwieldy 
semantics that does not even arrive at a definite meaning in many cases. 

2.  Putting Events into Intuitionistic Logic 
 The contemporary intuitionistic literature offers a different approach to semantics.  In this 
approach, as articulated by Martin-Löf (1982, 1984), logic is seen as functional 
programming, and the meaning of terms and propositions is found in the rules for computing 
with them.  The user of the logic establishes the meaning of a symbol by declaring the 
functional type of the symbol and declaring additional functions for working with it.  The 
concept of assigning a truth-value to a proposition symbol P is replaced by the concept of 
providing a proof p for the proposition represented by P.  The relation between a proposition 
P and a proof p of it is itself expressed as a type declaration; we say that P is the type of p, 
and we write 

p : P. 
The ordinary logical connectives are brought into type theory by declaring certain functions.  
For example, conjunction involves a function that forms a new proposition from a pair of 
propositions, another function that forms proofs of the new proposition from proofs of the 
pair, and yet another function that yields proofs of the individual propositions from proofs of 
the pair.  In the higher-level version of Martin- Löf’s type theory (Nordström et al. 1990, 
Ranta 1994), all logical judgments are expressed as type declarations. 
 When a mathematical theory is axiomatized constructively, in the style we followed in 
Part III, it can be used directly in this logical framework.  The rules of construction and 
axioms of the theory are simply added as additional type declarations.  For example, a rule 
that permits the construction of a line from two points is a function that maps a pair of points 
to a line.  To adopt the rule, we declare the existence of a function of this type; this is the 
type declaration  

l : (point)(point)line. 
Axioms can also be declared as functions, which supply proofs of certain propositions from 
proofs of certain other propositions.  See the axiomatization of elementary geometry in type 
theory by von Plato (1995). 
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 The logic of events that we envision begins by adding our axiomatization of event spaces 
to the higher-level type theory in the style of von Plato.  Then we develop a syntax for 
representing both propositions and events.  In classical logic, one applies predicate symbols 
to object symbols in order to construct terms that can name propositions.  In type theory, the 
role of a predicate is played by a function that maps objects of some type to propositions; for 
example, the type declaration  

isyoung : (Person)Prop 
says that “isyoung” maps people to propositions (Ranta 1994).  Because we take the meaning 
of “Bill is young” to be relative to the situation, we add the situation as an argument in this 
type declaration, obtaining 

isyoung : (Situation)(Person)Prop. 
In addition to these propositional functions, we also declare event functions.  For example, 
the function 

die : (Situation)(Person)Event 
maps the situation S and the person X to the event that X dies in or after S.  Actions are 
represented similarly.  Other functions, which relate propositions and events in various ways, 
can be added as the need arises in particular applications. 
 These ideas can be developed in any computational system that supports higher-level 
type theory.  These include: 

• ALF (Magnusson and Nordström 1994), which hews strictly to Martin-Löf’s 
predicative type theory (Nordström, Petersson, and Smith 1990), 

• Nuprl (Constable 1986), based on an older variant of Martin-Löf’s theory, 
• Coq (Dowek et al. 1993), based on Coquand and Huet’s calculus of constructions 

(Coquand and Huet 1988), and 
• Lego (Luo and Pollack 1992), based on an extended version of the calculus of 

constructions (Luo 1994). 
Isabelle (Paulson 1994) is a more generic logical framework; it supports a variety of logics, 
including classical first-order logic and Zermelo-Fraenkel set theory as well as constructive 
logics based on type theory.  These systems are all completely and provably adequate as 
proof-checkers.  They vary in the extent to which they provide tactics and other facilities for 
theorem proving, but of course they provide only starting points for the development of 
practical reasoning systems in any particular domain.  The development of a practical version 
of our logic of events within one these systems must therefore be regarded as a long-term 
research project. 

3.  Conclusion and Future Prospects 
 In this article, we have provided simpler and more transparent axioms for event spaces.  
These axioms are constructive in the intuitionistic sense, which means that they can be used 
as the starting point for computational implementations of event spaces for causal reasoning 
in specific domains.  We believe that this approach to causal reasoning offers greater 
prospects for the implementation of event-space logics than the approaches previously 
developed by Scherl and Shafer (1998) and Shafer (1998b), which stay closer to first-order 
logic.  In order to demonstrate the value of our approach, we plan to implement these axioms 
in one or more of the logical frameworks described in §2.  We also anticipate that practical 
applications of our approach will require extensions to include probabilities. 
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VI.  Comparisons 
 We conclude with some comments on other well-known approaches to temporal and 
causal reasoning, which may help readers form their own understanding of how our ideas fit 
into a wider context. 

1.  Temporal Logic 
 Temporal logics augment the syntax of classical logic with operators that represent 
temporal notions.  From a proposition P, these operators allow us to form additional 
propositions, such as sometimes(P), always(P), nexttime(P), etc.  The semantics of a 
temporal logic always includes an ordered set of time points, or situations, that are used to 
interpret the temporal operators.  In the case of linear temporal logics, these situations fall 
along a single line, while in branching-time logics, they form a tree.  These situations appear 
only in the semantics, however; the syntax of the language does not provide any way of 
talking directly about situations, events, or points in time. 
 Event spaces go beyond the semantic picture used by branching-time temporal logics in 
at least two ways.  First, event spaces allow continuous time, whereas those temporal logics 
that use the operator “nexttime” require discreteness in the set of situations.  Second, and 
more fundamentally, the concept of refinement in event spaces means that a situation is more 
than a point in time.  Even after a situation is refined enough to specify the time exactly, it 
can gain further substantive content by further refinement. 
 The logic of events that we outlined in the preceding section involves facilities for talking 
explicitly about events and situations, and this is not usually desired in a temporal logic.  It is 
interesting to note, however, that objects functionally equivalent to events tends to emerge in 
the syntax when branching-time temporal logic is fully developed.  This is illustrated by 
CTL* (Emerson and Halpern 1986; Emerson 1990), a well-known and highly expressive 
branching-time temporal logic.  As it turns out, CLT* involves two different concepts of 
proposition.  On the one hand, the logic has state formulae, which are true or false in 
situations and thus represent propositions of the usual kind.  On the other hand, it has path 
formulae, which are true or false only with respect to paths.  Intuitively, a path formula is an 
assertion in future tense.  It says that some event will eventually happen, without saying 
when.  Having such a statement in one’s language is functionally equivalent to having a 
name for the event in one’s language.  
 For additional information on temporal logic, see Bolc and Szalas (1995), Goldblatt 
(1992), or Vila (1994). 

2.  The Situation Calculus 
 There is a great deal of work on reasoning about action in artificial intelligence that 
comes closer to our ideas, because it puts situations (or at least time) into the syntax.  This 
includes work on causal reasoning with explicit time (Shoham 1988, Stein and Morgenstern 
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1994), as well as substantial body of work on the situation calculus (McCarthy and Hayes 
1969, Levesque et al. 1997, Pinto 1994). 
 As formulated by Reiter (1991), the situation calculus is a sorted first-order language.  It 
has a constant S0, which denotes the initial situation, and a distinguished binary function 
symbol “do,” which allows us to talk about how actions change the situation.  When α 
denotes an action and s denotes a situation, do(α,s) denotes the situation that results when 
one performs α in s.  Time is not represented explicitly, but time passes as actions are 
preformed.  (For an extension in which time is represented explicitly, see Pinto 1998.)  A 
number of authors (Reiter 1993, Lin and Reiter 1994, Shanahan 1998, Pirri and Reiter 1999, 
Reiter 2000) have explored foundational axioms for the situation calculus.  Shanahan calls 
them axioms of arboreality, because they require that the space of situations form a tree.  One 
of these axioms is a second-order sentence that rules out the existence of situations that 
cannot be obtained by actions we have named starting with S0.  The axioms ensure that two 
situations will be the same if they result from the same sequence of actions applied to the 
initial situation.   
 The most fundamental difference between the situation calculus and our event-space 
approach is that in our approach we can name situations at varying levels of detail.  In the 
situation calculus, the initial situation S0 is supposed to specify the state of the world in 
complete detail, at least in all the detail that will ever be needed in the discussion that ensues, 
and this completeness is supposed to persist as actions are applied.  Another artificial 
intelligence language, the event calculus (Shanahan 1997, Kowalski and Sergot 1986), has 
been developed to represent partial information about events.  But unlike the situation 
calculus, the event calculus is a linear logic rather than a branching-time logic; it cannot 
handle alternative sequences of events.  Our event-space approach can be seen as a way of 
accomplishing the purposes of both the situation calculus and the event calculus in a single 
framework. 
 Both the situation calculus and the event calculus make assumptions of inertia 
(Sandewall 1994), which ensure that properties are persistent in the absence of the specified 
actions.  Such persistence is needed in order to plan and reason about actions.  Although it 
does not seem to make sense for us to adopt the situation-calculus axioms of inertia 
wholesale, we obviously need to deal with the issue of persistence in our logic of events. 
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Appendix.  Additional Constructions 
 The constructive axiomatization we developed in Part III is open; additional rules of 
construction, together with additional axioms, can always be added.  In particular, we can 
regain the fuller system of Shafer (1998a) with a few additions.  These are reviewed here. 

1.  Decomposing E with Respect to F 
 It is most natural, perhaps, to introduce as additional constructions the part of E that 
diverges from F and the part of E that implies F.  We write E5F for the part of E that diverges 
from F—i.e., the largest refinement of E that diverges from F.  And we write E→→→→

F for the part 
of E that implies F—i.e., the largest refinement of E that implies F.  These constructions are 
illustrated in Figure 17.   
 

E

F
G

H

D

 

 
 
E5F = {D} 
 
 
E→→→→

F = {G,H} 
 
 

Figure 17  The parts of E diverging from and implying F. 
 
 Once we have defined E5F and E→→→→

F, we can decompose E into five events E1F, E2F, E3F, 
E4F, and E5F as follows. 

• E1F := E∩F.  Whenever E1F happens, F happens simultaneously. 
• E2F:= (EF)\(E∩F).  Whenever E2F happens, F has already happened strictly earlier. 
• E3F := (E→→→→

F)\(EF).  Whenever E3F happens, F is inevitable; it must happen later. 
• E4F := E\((E1F)∪ (F2E)∪ (E3F)∪ (E5F)).  Whenever E4F happens, F is possible but not 

inevitable; it may happen later and it may fail later. 
• E5F we have constructed directly.  Whenever E5F happens, F is impossible; either it 

was already impossible or becomes impossible (fails) with the happening of E5F. 
Some of these five events may sometimes be impossible.  But they always decompose E, 
inasmuch as they all refine E, they do not overlap; and their merger is all of E.  Figure 18 
gives an example in which each EiF is represented by a single node.   
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F
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E2*

E3* E5*E4*

 
Figure 18  The decomposition of E with respect to F, where E = {E1*,E2*,E3*,E4*,E5*}.   
 
 Shafer (1998a) bases his axiomatization of event spaces on the constructions E1F, E2F, 
E3F, E4F, and E5F, together with relations, E 1 F, E 2 F, E 3 F, E 4 F, and E 5 F, where E i F holds 
if EiF is possible.  Using these five constructions and five relations as primitives, he 
constructs a wide variety of causal relations, which we will not review here. 

2.  Failure 
 Figure 19 illustrates the last construction we will consider:  the failure of E, which we 
designate E-.  This is the event that happens when E fails—i.e., when Nature (who sees 
everything that happens as it happens) sees that E has become impossible. 
 

E
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A

B

CG

 
Figure 19  The failure of E.  Here we assume that A, B, and C mark the first point in time where it is 
determined that E will not happen.  (This assumption is not part of the meaning of an event tree that we 
generally give to an event tree.) 
 
 Failure is a very powerful construction.  We can use it to define the constructions 
introduced in the preceding section:  E5F = E(F-), and E→→→→

F = E(F+), where E+ = (E-)-.  It is 
not clear to us, however, that failure should play a fundamental role in casual reasoning.  In 
ordinary causal talk, we often say that an event E makes an event F impossible:  Bill’s going 
to the bar made it impossible for him to get home for dinner on time, the 10 inches of snow 
made it impossible for the plane to take off, etc.  But usually we mean only that by the time E 
happens, F is impossible; we are not very concerned about exactly when F becomes 
impossible.  The plane’s take-off may have been blocked before the snowfall total reached 
ten inches.  Pinpointing just when this was may be difficult and not particularly helpful.  We 
have therefore avoided making the construction E- fundamental in our axiom system. 
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 The construction also has other aspects that are restrictive.  For example, it forces us to 
assume that our event tree has an initial node—a starting point at the top.  This assumption is 
not actually made in the rest of our axiomatic system; all our other axioms and constructions 
permit the past to be infinite, without beginning.  In order to avoid assuming there is an 
initial situation, Shafer (1998a) used a relative rather than an absolute concept of failure.  
Instead of assuming that we can construct the failure of E in an absolute sense, he assumed 
only that we can construct the failure of E after another event F.   
 Another aspect of failure that makes its representation in event trees confusing, even if 
we do not assume an initial situation, is that an event tree detailed enough to represent E is 
not necessarily detailed enough to represent E-.  Figure 20 illustrates the point.  This figure 
differs from Figure 19 merely by interpolating an additional situation N between two 
situations.  In general, we do not consider such interpolation a falsification of an event tree, 
because a tree is never more than a partial description of the possibilities in nature.  But the 
interpolation of N does falsify the additional assumption, made when we identify {A,B,C} as 
the failure of E, that there are no situations preceding any of them in which Nature already 
knows E to have failed. 
 

E

E-
N

A

B

CG

 
Figure 20  This tree differs from the tree in Figure 19 only in that a node N has been inserted between G and B.  
The presence of N rules out B’s marking the first point in time where Nature knows E will not happen, because 
Nature already knows this in N.  If this new tree is detailed enough to depict E-, then E- is equal to {A,N,C}, 
not to {A,B,C}.  If there are yet other situations, preceding A, N, or C but not shown in this figure, where 
Nature already knows that E will not happen, then even this figure is not detailed enough to allow the depiction 
of E-. 
 
 From an abstract point of view, the existence of the failure E- is a continuity condition on 
the partial order ≤.  It says that the situations in which E has failed have a least upper bound 
in our space of events, and that E has also failed in this least upper bound.  We consider it an 
open question whether this kind of continuity condition is appropriate or needed for causal 
reasoning.  We are much more comfortable with analogous continuity conditions in the 
partial order ⊆ , because the requisite least upper bounds necessarily exist if we have a 
representation in terms of an event tree.  In an event tree, refinements are represented by 
subsets, and the algebra of subsets of a set is a complete Boolean algebra:  every collection of 
subsets has a least upper bound.  
 The fact that the axiomatization in this article does not rely on a concept of failure is one 
of the major advances of this axiomatization over the one given by Shafer (1998a). 
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